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How will global climate change affect
parasite–host assemblages?
Daniel R. Brooks1 and Eric P. Hoberg2

1 Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada
2 US National Parasite Collection, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705,

USA

Parasites are integral components of the biosphere. Host
switching correlated with events of episodic climate
change is ubiquitous in evolutionary and ecological
time. Global climate change produces ecological pertur-
bations, which cause geographical and phenological
shifts, and alteration in the dynamics of parasite trans-
mission, increasing the potential for host switching. The
intersection of climate change with evolutionary con-
servative aspects of host specificity and transmission
dynamics, called ecological fitting, permits emergence
of parasites and diseases without evolutionary changes
in their capacity for host utilization.

Interconnectedness of climate change, biodiversity and
infectious disease
The human population grows daily, deepening its techno-
logical footprint on this planet. Introducing ourselves and
other species into novel regions of the biosphere acceler-
ates landscape alteration and ecological perturbation,
which leads to potentially irrevocable changes in biotic
structure. Accelerated perturbation in global ecosystems
can initiate events that link climate change, loss of biodi-
versity and emerging infectious diseases (EID) [1–9].
Whether we adapt successfully to these changes depends
on how we develop and apply knowledge about the
responses of parasite systems during episodes of climate
change.

Responses of parasite–host systems to climate change
The effects of global warming on assemblages of hosts,
parasites and pathogens can be numerical, functional or
microevolutionary, and can involve cascading changes in
ecosystems [2,10–14]. Numerical responses include ampli-
fication and emergence of parasite populations associated
with changing rates for parasite development and survival,
and alteration in seasonal dynamics of transmission, con-
strained by environmental and ontogenetic lag times [15].
Such EID drivers have been implicated for marine, terres-
trial and aquatic assemblages of micro- and macropara-
sites [16], and have been demonstrated empirically in a few
systems: nematode–gastropod–ungulate systems in the
Arctic [15,17–19], nematode–avian systems in Scotland
[20] and digenean–amphipod systems in intertidal
environments [14]. Despite the paucity of empirical data

for assessing numerical- and density-dependent impacts
on hosts and parasites during global warming, such
responses are expected to be widespread [14,17,20].

Functional responses include biotic expansion by hosts
and parasites with potential for host and geographic colo-
nization, shifting patterns of geographic range, changing
phenology for habitat use, modification of ecotones and
contact zones [8,21], and even local extinction [9,11]. Such
responses have had major influences on biotic structure
and the distribution of parasite–host assemblages
throughout earth history [21]; recent responses might
result from anthropogenic effects beyond those caused
by climate warming [13,15,22–24].

Microevolutionary responses include mosaic-like,
ephemeral patterns of local adaptation, directional changes
in gene frequencies through mutation, and selection for
parasites associated with emergence [22,25]. These mech-
anisms have not yet been linked directly to climate change,
but could represent a component of expected ecological
isolation [22].

Numerical, functional and evolutionary drivers for EID
can be synergistic or cumulative, which affect the structure
of entire parasite–host communities during climate change
episodes. Such changes might begin with host colonization
and outbreaks of disease on local spatial and fine temporal
scales, which lead to ‘mosaics of emergence‘ [21,25] that
arise from established associations. New associations
might proliferate and emerge through geographic or host
colonization, potentially associated with disease in a chan-
ging array of ‘reservoir’ hosts [22,23].

Strategic approaches for dealing with EID are predi-
cated on particular evolutionary and ecological models of
parasite–host relationships, themselves implying particu-
lar relationships between climate change, biodiversity
and EID. We believe the EID crisis is ‘new’ only in the
sense that this is the first such event that scientists have
witnessed directly. Previous episodes of global climate
change and ecological perturbation, broadly defined,
throughout earth history have been associated with
environmental disruptions that could have led to EID
[6,21]. The evolutionary basis for such episodes has
been elucidated [26,27], but not internalized within
parasitology.

Two traditions of parasite–host interactions
Two traditions in ecology and evolutionary biology concern
parasite–host associations: (i) the parasite-centred view

Opinion TRENDS in Parasitology Vol.23 No.12

Brooks & Hoberg in Trends in Parastology (2007) 23(12)

mailto:dbrooks@zoo.utoronto.ca
http://dx.doi.org/10.1016/j.pt.2007.08.016
sgardner2
Stamp



with roots in Darwinism; and (ii) the host-centred view
with roots in orthogenetic concepts of evolution [27,28].
Both agree that parasites are ecological specialists with
respect to their microhabitat requirements (e.g. their pre-
ferred site of infection) and their mode of transmission
from host to host through the environment (their life cycle
patterns) [27,29]. They differ in the nature and significance
of host specificity, particularly the ease or difficulty with
which parasites can switch hosts (parasite-centred termi-
nology) or with which hosts can capture parasites (host-
centred terminology). This distinction is fundamental for
EID studies, because EID often occur when parasite species
begin infecting and causing disease inhostswithwhich they
have no previous history of association. If the nature of host
specificity is such that host switches are likely to be rare,
attention can be focused on managing each EID as it
emerges. Little attention need be paid to its origins, beyond
a search for the taxonomic identity of the parasite acting as
the pathogen, and its immediate reservoir.

The host-centred tradition assumes that the focus of
coevolution is the host species. The host-centred view
implies that progressive specialization on particular host
species mitigates against capture by other hosts, so coe-
volution provides a safeguard against EID. This seems
reasonable, what host species would want to ‘capture’ more
parasites? Thus, EID can be considered rare events.

The parasite-centred view, by contrast, assumes that the
resources for parasites are particular attributes of the host
species, not the host species themselves. It doesnot question
the assumption that parasites are ecological specialists, but
questions the premise that host switches are rare events.
This is not as paradoxical as it might seem. Phylogenetic
conservatism in host attributes upon which a parasite is
specialized might produce a range of susceptible hosts,
whereas restricted geographic distribution of the parasite
at any given time would mean that many susceptible hosts
are not infected. Parasites inhabit all susceptible hosts with
which they come into contact; at any given place and time
that might be one host. Changes in geographical distri-
bution or local ecology associated with parasite trans-
mission should produce immediate changes in host range.
This is called ‘ecological fitting’ [5,26,30–33]. If the host trait
(or trait complex) is a persistent ancestral attribute, the
susceptible hosts might not form a clade, so host switching
could involve species that are not ‘close relatives’ [6].

Empirical studies indicate that few parasite groups
conform to the phylogenetic patterns of parasite–host
associations expected by the host-centred view. Clades,
primarily ectoparasitic arthropods, which exhibit limited
host switching [34–36], although interesting to evolution-
ary biologists and ecologists, cannot form the general
conceptual framework for dealing with EID because they
are rare. The majority of cases indicate substantial host
switching throughout history, and extensive diversifica-
tion through cospeciation appears to be limited (reviewed
in [27,37,38]).

A macroevolutonary dynamic: taxon pulses, ecological
fitting and climate
What drives host switching byway of ecological fitting? The
taxon pulse hypothesis [39,40] predicts that historical

biogeographic patterns result from alternating episodes
of biotic expansion and isolation, which lead to complex
geographic distributions. Recent empirical studies in
historical biogeography that document marked influence
of taxon pulses [5,38,41–45] implicate geological phenom-
ena, such as tectonic changes and climatological phenom-
ena, including global or regional climate change, as taxon
pulse drivers.

During biotic expansion phases, susceptible hosts co-
me into contact with novel (for them) parasites. Host
switching occurs rapidly, without the need for any evol-
utionary innovation. For example, alternating cycles of
biotic expansion and isolation across Beringia at the
crossroads of the northern continents are clearly associ-
ated with cyclical episodes of climate change in the
Pleistocene epoch [38,42,46,47]. Natural selection acts
only on what has happened, so there will have been no
opportunity for the evolution of resistance to, or tolerance
of, the parasite by the new hosts. This suggests that most
host switching occurs in conjunction with episodes of
global climate change and associated biotic expansion
and altered trophic relationships. This has been demon-
strated for tapeworms (Taenia spp.) in humans, hook-
worms (Oesophagostomum) and pinworms (Enterobius)
in hominoids, and nematodes (Trichinella) in carnivores
[5,38,44,45,48]. The emerging story of human parasites is
one of ancestral, ecological associations with secondary
host switches since the Pliocene associated with ecologi-
cal perturbation. More recent human activities associ-
ated with the evolution of agriculture, domesticated
livestock, urbanization, and now global climate change
have served to broaden the arena and disseminated the
risk for EID on a global scale.

Dimensions of EID risk space
From an epidemiological standpoint, episodes of global
climate change should be associated with the origins of
new parasite–host associations and bursts of EID. The
combination of taxon pulses and ecological fitting suggests
that host and parasite species with the greatest ability to
disperse should be the primary source of EID [6,22,28].
Paleontological studies suggest that species with large
geographic ranges and with the high ability to disperse
are most successful at surviving large scale environmental
perturbation and mass extinctions [49]. The species most
successful at surviving global climate changes will be the
primary sources of EID, so host extinction will not limit the
risk of EID.

The host-centred view suggests that parasites with
complex life cycles should be less successful at dispersing
geographically than those with direct life cycles, assuming
that multiple coadapted host species are required to trans-
plant a parasite with a complex life cycle [50]. Brooks et al.
[32] recently reported the lung fluke Haematoloechus floe-
dae, normally a parasite of bullfrogs that live in the south-
eastern US, inhabits other ranid frog species in
northwestern Costa Rica. The parasite was apparently
introduced to Costa Rica with imported bullfrogs, and
established itself in local hosts. Bullfrogs do not occur in
the collection area, which shows that the parasite is
capable of surviving despite the extinction of the host in
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which it was originally introduced. The parasite-centred
view suggests that conserved trophic connections, rather
than particular species, are required for such dispersals.
For H. floedae, successful establishment required only an
ecosystem that has aquatic pulmonate snails, dragonflies,
and frogs that eat dragonfly naiads. Nor does H. floedae
appear to be an unusual case. Phylogenetic conservatism
in life cycle patterns on the part of most parasite species,
coupledwith phylogenetic conservatism in diet and habitat
preference on the part of anurans explains pronounced
ecological similarities in communities of platyhelminth
parasites of frogs in temperate deciduous forests, temper-
ate grasslands and two different sets of tropical dry forest
and tropical wet forests, despite little cospeciation [33].
These examples indicate ecological isolation and ecological
fitting have a greater influence on the structure of complex
parasite–host assemblages than do coevolutionary pro-
cesses.

Synoptic data inform appropriate action
If current climate changes will have a prolonged duration
and global scope, we should expect an increase in EID. We
are concerned about our preparedness to handle such
events in a timely and cost effective manner. The potential
risk space is geographically and biologically extensive, and
climate change will make more of the risk space accessible
tomore parasites. As a result, the planet is an evolutionary
and ecological minefield of EID through which millions of
people wander daily.

Public health, veterinary and wildlife parasitologists
regularly base tactical responses on systematic, ecological
and evolutionary information. Taxonomic names provide
access to knowledge of evolutionarily conservative traits
and history that form the basis for predictive and thus
proactive measures. When linked to archival collections
that represent historical baselines for assessing patterns of
perturbation in host and geographic associations [12,47],
such information allows us to understand change in com-
plex biological systems over broad spatial scales that link
evolutionary and ecological time.

Managing EID requires facilitating communication,
integrative strategic planning by public, veterinary and
wildlife health specialists who are on the front lines of the
EID crisis, and monitoring shifts in host associations that
are mediated by ecological fitting and climate change, so
we can assess the rate of change in the potential risk space
assessed against archival collections and established
baselines. This requires support for systematics infra-
structure including people, inventories, collections and
information. In the absence of taxonomic names there is
no information, and with the wrong names there is incor-
rect information. Both situations emphasize the con-
sequences for how we identify and understand dynamic
change for parasite–host assemblages under a regime of
climate warming.
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