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ABSTRACT

Cork oak, (Quercus suber) is widely distributed in the Mediterranean region, an area subject to frequent fires. The ash produced
by burning can have impacts on the soil status and water resources that can differ according to the temperature reached during
fire and the characteristics of the litter, defined as the dead organic matter accumulated on the soil surface prior to the fire. The
aim of this work is to determine the physical and chemical characteristics of ash produced in laboratory experiments to
approximate conditions typical of fires in this region. The litter of Quercus suber collected from two different plots on the Iberian
Peninsula, Mas Bassets (Catalonia) and Albufeira (Portugal), was combusted at different temperatures for 2 h. We measured
Mass Loss (ML per cent), ash colour and CaCO3 content, pH, Electrical Conductivity (EC) and the major cations (Ca2þ,
Mg2þ, Kþ and Naþ) released from ash slurries created by mixing ash with deionized water. The results showed that ML per cent
is higher at all temperatures in Albufeira samples compared to Mas Bassets samples, except at 5508C, and the rate of loss
increases faster with temperature than the Mas Bassets samples. At 1508C the ash colour is yellowish, becoming reddish at 200–
2508C and black at 3008C. Above 4008C the ash is grey/white. This thermal degradation is mostly observed in Albufeira litter.
The formation of CaCO3 was identified at a lower temperature in Albufeira litter. At temperatures < 3008C, pH and EC values
are lower, rising at higher temperatures, especially in Albufeira slurries. The concentration of cations at lower temperatures does
not differ substantially from the unburned sample except for Mg2þ. The cation concentration increases at medium temperatures
and decrease at higher temperatures, especially the concentration of divalent cations. The monovalent cations showed a larger
concentration at moderate temperatures, mainly in Albufeira ash slurries. The analysis of the Ca:Mg ratio also showed that for
the same temperature, a higher severity results for Albufeira litter. Potential negative effects on soil properties are observed at
medium and higher temperatures. These negative effects include a higher percentage of mass loss, meaning more soil may be
exposed to erosion, higher pH values and greater cation release from ash, especially monovalalent cations (Kþ, Naþ) in higher
proportions than the divalent ions (Ca2þ, Mg2þ), that can lead to impacts on soil physical properties like aggregate stability.
Furthermore, the ions in ash may alter soil chemistry which may be detrimental to some plants thus altering the recovery of these
ecosystems after fire. Low intensity prescribed fire can be a useful tool to land management in these sites, due to the reduced
effects of fire temperatures on the physical and chemical properties of surface litter, and can reduce the risk of high temperature
wildland fires by reducing fuel loadings. From the perspective of water resources, lower fire temperatures produce fewer impacts
on the chemistry of overland flow and there is less probability that the soil surface will be eroded. Copyright # 2009 John Wiley
& Sons, Ltd.
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INTRODUCTION

After fire, ash, consisting of the organic and inorganic residues of the combustion process, is left on the soil surface.

The fire residues are, mainly in the form of oxides, hydroxides and carbonates and this ash is rich not only in elements
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such as Calcium (Ca), Magnesium (Mg), Potassium (K) and Sodium (Na) but also in Phosphorous (P) and Silica

(Si). The mineralization of the original material depends on the quantity and composition of fuels and the

temperature and length of exposure to heat (Khanna and Raison, 1986; DeBano, 1989; Etiegni and Campbell, 1991;

Ulery et al., 1993; Khanna et al., 1994; Neary et al., 1999; Gray and Dighton, 2006). Throughout a fire, the

temperatures in the litter layer and soil surface can reach 9008C. However, due to the poor conductivity of dry soils,

the temperature at 5 cm below the surface is not likely to exceed 1508C (DeBano, 1981). The nutrients in ash can be

lost from the system by ash convection, volatilization, mineralization, erosion, runoff and leaching. Some nutrients

are vaporized during the combustion process and this loss of nutrients to the atmosphere depends on the

temperature. Ca volatilizes at temperatures > 19628C, Mg at > 11078C, K at > 7748C and Na at > 8808C (Weast,

1988; Neary et al., 2005). The nutrients incorporated in ash are easily leached into overland flow and into the soil,

leading to an increase in and transport of elements in the system that will affect water resources, mainly in the first

months after the fire but also after several years (Hauer and Spencer, 1998; Thomas et al., 2000; Malmer, 2004;

Ferreira et al., 2005; Lasanta and Cerdà, 2005).

Cork oak, (Quercus suber) belongs to the order of Fagales and the family of Fagaceae. It is an evergreen tree with

sclerophyllous leaves and is a widely distributed species characteristic of the Mediterranean region both in Europe

and North Africa between 33 and 458N. The species grows in warm-humid areas with at least 450 mm of annual

rainfall and in areas from sea-level to 2000 m a.s.l. The trees prefer siliceous- or carbonate-free soils and can

colonize extremely acid soils. According to the Raunkiaer (1934) classification, the species is a mesofanerofit and

has a period of floration between April and May (Boavida et al., 1999). The Quercus suber forests are of the highest

cultural, economic and ecological value and sustain a great variety of floral and faunal diversity (Loisel, 1976;

Orgeas et al., 2002).

Fire is considered the most serious problem affecting the sustainability of Quercus suber forests. However, this

species is perfectly adapted to the impacts of fire due the capacity of the bark to protect against high temperatures

(Barberis et al., 2003; Úbeda et al., 2006). The bark provides an efficient protection to dormant buds which exist in

the trunk and there is a good positive relationship between bark thickness and recovery after fire. After a fire, a tree

can resprout from the stem and it is the only European tree with above-ground sprouting capability, similar to the

genus Eucalyptus from Australia. Even at higher fire intensities, a great proportion of burnt trees sprout from the

stump. For these reasons this species is probably one of the best adapted to fire impacts (Pausas, 1997, 1998; Silva

and Catry, 2006). However, when bark is stripped for the cork industry, the resistance of trees to fire effects is

reduced. According to Barberis et al. (2003) who monitored 200 scorched trees of different ages, mortality was less

than 10 per cent for trees not harvested in the last 30 years, and 40 per cent for old trees which have been stripped

several times. Fire recurrence also has implications for Quercus suber distribution. Trabaud and Galitie (1996)

observed that in areas burnt three times, the surface occupied by Quercus suber was reduced in favour of scrubland

and in areas with less fire recurrence the distribution of Quercus suber was higher as was the diversity of species in

the ecosystem.

The flammability of different species has been shown to vary and depends, among other factors, on the chemical

composition of the plants, their physical structure and architecture, and moisture content, which differs seasonally.

In general, the majority of species showed a major flammability in summertime due to lower levels of humidity

(Nuñez-Reguira et al., 1996; Weise et al., 2005). Conifers are more flammable than hardwood species due the great

quantity of resins and essential oils produced (Nunez-Regueira et al., 2000). Litter from needle-leaved tree species

has lesser concentrations of water soluble phenolics than litter from broad-leaved trees (Kuiters and Sarink, 1986).

Species that have a variety of secondary metabolic compounds and constituents as well as diverse surface area-to

volume ratios and fuel particle densities will respond differently to different fire temperatures (Kuiters and Sarink,

1986; Dimitrakopoulos and Panov, 2001).

Flammability and the consequent fire severity (defined below) are also observed as an interaction between plant

communities and environment over the time (Mutch, 1970) and in this sense, important differences can be found

between ecosystems in response to fire temperatures. However, there is a lack of studies about the effects of fire

temperatures on Quercus suber, one of the most common species in the Mediterranean environment, and little

assessment of the different vulnerability of these ecosystems to fire severity. The Quercus suber flammability is low
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in relation to other Quercus species and this species is only flammable during the summer season (Vélez, 1991;

Vallette, 1997; Pausas, 1997). Moreover, from the perspective of water resources and the long-term response of the

cork oak ecosystems, it is of crucial importance to understand the effects of fire temperatures on the physical and

chemical characteristics of ash from this species and solute mobility and whether differences exist in these

characteristics between Quercus suber populations located in different environments.

The duration and temperature of fire affect the physical and chemical properties of ash. However little knowledge

exists about the relation between temperature and the range of effects on ash properties. Collecting ash generated at

exact temperatures is impossible under field conditions and in this sense, laboratory experiments subjecting leaf

litter to several temperatures is a good methodology to identify the relation between fire temperatures, fire severity

and solute release. Fire severity is evaluated by the magnitude of the effect that fires have on the environment and

especially in the loss of or change in organic matter aboveground and belowground (Keeley, 2009). This work

assesses the impacts of temperature on physical and chemical changes of Quercus suber litter. Fire severity can be

also evaluated through the properties of the fuels (size, flammability and moisture or mineral content) (DeBano

et al., 1998; Suguihara et al., 2006) and some experiments have been conducted using Mediterranean species at a

specific temperature (Nunez-Regueira et al., 1996, 2000; Liodakis et al., 1997, 2005; Dimitrakopoulos and Panov,

2001; Dimitrakopoulos and Papaioannou, 2001; Guijarro et al., 2002). However, no one has evaluated changes in

ash properties according to temperature gradients and no studies have focussed on Quercus suber. In addition, only

a few studies have measured major cation solute release from ash produced at specific temperatures (Soto and Diaz-

Fierros, 1993; Blank et al., 1996; Gray and Dighton, 2006; Quintana et al., 2007; Marcos et al., 2007).

The purpose of this study is to analyse the effects of fire temperatures (150, 200, 250, 300, 350, 400, 450, 500 and

5508C) on Loss of Mass (ML per cent), ash colour and CaCO3 content, pH, electrical conductivity (EC) and the

major cations (Ca2þ, Mg2þ, Kþ and Naþ) released from ash slurries in a laboratory experiment using the litter from

two Quercus suber plots located in different areas of the Iberian Peninsula. These temperatures were chosen to

complement ongoing studies that are measuring the hyperspectral signature of combusted litter and the range

covers those temperatures expected during many prescribed fires and wildland fires. At these temperatures is

unlikely that nutrients are vaporization and thus the great majority of elements still remain in the ash after

combustion. Because the ash is produced under controlled laboratory experiments, differences in the ash properties

will lead to a better understanding of the pattern of temperatures effects on Quercus suber populations located in

two different ecosystems.

METHODS AND MATERIALS

Study Sites

The Quercus suber leaf litter of Mas Bassets was collected in the Gavarres Mountains (Catalonia), located at 418 870

N and 028 870 W and the Albufeira samples were collected near the Albufeira Lagoon situated on the Portuguese

western coast, at 388 310 N and 98 080 W (Figure 1) during the spring and summer of 2007. The sites had similar

litter depths and distribution on the soil surface. The geologic substrate of Mas Bassets is mainly composed of

granite rocks of fragile structure (Úbeda et al., 1998) and the Albufeira site is underlain by Plio-Pleiostocene dunes

with low cementation (Freitas, 1995). The soils of Mas Bassetes are classified as Luviarenosols and in Albufeira as

Podzols (Soil Survey Staff, 2006) both with a higher content of sand and low in organic matter, pH, Electrical

Conductivity (EC), and Cation exchange capacity (CEC) (Table I). The temperature in Mas Bassets has an annual

mean of 13�98C and in Albufeira of 14�88C. The annual precipitation is an average of 768�31 mm in Mas Basstes

and of 639�2 mm in Albufeira. In Mas Bassets, the vegetation is primarily composed of Quercus suber with a

smaller proportion of Quercus ilex, Quercus robur, Pinus pinea and Pinus pinaster. The Albufeira site has Quercus

suber, Pinus pinea and Pinus pinaster. Both sites in this study are representative of the Quercus suber distribution in

the Iberia Peninsula. In Catalonia, the major occurrence of the species is in the Gavarres Mountains area and in

Portugal in the Mesocenozoic Tagus and Sado Basins. Soil properties (Table I), climate characteristics and historic

and present land use are similar for both sites. In Mas Bassets the sample collection site is well-developed forest
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mainly comprised of Quercus suber trees, exploited during the last centuries for the cork industry. However, since

the last quarter of the 20th century, this activity was abandoned as people migrated from rural lands to urban areas.

In Portugal, the forest where we collected the samples was also exploited for industrial proposes (cork oak and

Pinus exploitation), and, as in Catalonia, the exodus from rural areas, resulted in a decrease in the importance of the

cork oak area since the last 20–30 years of the last century. Hence, the lack of forest management has resulted in a

higher accumulation of biomass, increasing the risk of wildfire occurrence in these areas with vulnerable climatic

conditions for a fire event. These socio-economic and land use changes have been observed in other locations of the

Iberian Peninsula and, with the recent climatic warming since the last quarter of the 20th century, are the major

causes of the modification of fire regimes and the increase in area affected by wildland fires (Lavorel et al., 1998;

Millan et al., 1998; Pausas, 2006; Viegas et al., 2006).

Sample Preparation, Loss of Mass Per cent and Ash Colour

The leaf litter was collected under the dominant trees from each site. About 3 kg samples were collected from the

surface of the forest soil, from an area of approximately 15 m2. The litter was taken to the laboratory, the Quercus

suber litter separated from leaves and twigs of other species, and the remaining material cleaned with deionized

water to remove all impurities. After this task, the samples were air-dried for 24 h before exposing them to the

specified temperatures (Pereira et al., 2008). Subsequently, samples were subjected to the specified temperatures in

porcelain crucibles for 2 h in a muffle furnace (Dinko Mod.D – 61-D), a period of heating also applied in other

studies (Gray and Dighton, 2006). The ML per cent of the samples was measured as the weight difference before

and after the litter was heated. After this task, 1 g of the ash produced was pulverized in the Frich Pulverizate 23 for

about 2 min in order to homogenize the sample to analyse the ash colour. To classify colour, we utilized the Munsell

colour chart (Munsell, 1975), and observed the ash colour of samples exposed to each temperature.

Chemical Analysis

The calcium carbonate (CaCO3) of the samples subjected to each temperature was measured with a Bernard’s

calcimeter calibrated with 0�2 g of pure CaCO3 using a 1:2 hydrochloric acid solution (50 per cent concentrated HCl

Figure 1. Study Sites.

Table I. Some characteristics of the upper 5 cm soil (<2 mm fraction) collected in both areas of study. EC in m/cm3, base cations
and CEC in mg/l (N¼ 1 per sample per element)

Specie OM
per cent

Sand
per cent

Silt
per cent

Clay
per cent

pH EC Ca2þ Mg2þ Naþ Kþ CEC

Mas Bassets 8�85 86 4 10 5�35 0�118 5�15 1�66 11�98 5�33 24�12
Albufeira 4�82 85 2 13 5�97 0�100 1�66 0�48 16�20 2�93 21�27
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and 50 per cent deionized water). Subsamples of ash weighing 0�2 g were mixed with the 1:2 solution. The CaCO3

was estimated by calculating the difference between the volume of CO2 before and after introducing each sample.

An ash slurry was created for each sample by mixing 6 g of the ash generated at the different temperatures with

36 ml of deionized water, which was mixed for 2 h on a Thermo Scientific Variomag Poly inductive-drive stirrer.

This solution was filtered through a 4�7 cm diameter Whatman QMA 0�45mm pore size quartz fibre filter, using a

Millipore 220/240 Volt, 50 Hz pump. After this task, the pH was measured with a Crisol GLP 22 pH meter and EC

with a Hanna instruments HI 8820. Major cations were determined by producing an ash slurry, 1:40 (1 g of ash and

40 ml of deionized water), that was mixed for 24 h and then filtered though a Whatman QMA 0�45mm pore size

quartz fibre filter. The solution was analysed by inductively coupled plasma mass spectrometry (ICP-MS) with a

PerkinElmer, model Elan-6000 Spectrometer, and by optical emission spectrometry (OES) with the PerkinElmer

Optima 3200 RL Spectrometer. An unheated control subsample was treated in the same manner as the heated

subsamples.

Statistical Analysis

To observe the significance of ML per cent with temperature gradient an F-test was performed. Analysis of

variance, Tukey’s HSD test, was applied in order to identify differences between the exposure temperatures within

each site. Data normality was analysed with the Shapiro–Wilk test (Shapiro and Wilk, 1965) for all temperatures in

this study. Since all distributions were considered normal at p> 0�05, and in order to identify significant statistical

differences among species at each temperature, we compared the average ML per cent with a student t-test. The

differences found in all analyses were considered significant at a p< 0�05. In order to understand the relationship

between ash colour and temperature we compared the temperatures and the chroma value of the Munsell colour

chart (Munsell, 1975). In this analysis we did not consider the 1508C treatment because at this temperature the oak

leaves only lose their water content and no air oxidation process is likely to occur (Grier, 1975; Pospisil and

Klemchuk, 1990; Misra et al., 1993). In the examination of CaCO3 and major cations we only used one sample per

species per temperature. Thus, CaCO3 data are presented as per cent of ash sample subjected to the temperatures

and major cations data were presented as a per cent of the values in comparison to unheated control samples in order

to observe the impacts of the temperatures on cation release in the test solution. All treatments were compared by

cluster analysis (CA) according to the complete linkage amalgamation rule and the distance measure of 1-Pearson r.

The comparison between the release of divalent and monovalent cations released by the ash slurries of Mas Bassets

and Albufeira at the temperatures under analysis is presented in Log mg/l. All analyses were performed with

STATISTICA1 6�0 for Windows (Statsoft, Tulsa OK, USA).

RESULTS AND DISCUSSION

Loss of Mass

The results of the ML per cent are plotted in Figure 2. The ML per cent increased with temperature up to 4008C in

the Albufeira samples and to 4508C in the Mas Bassets samples. After about 90 per cent ML, differences in ML per

cent are not statistically significant. The results obtained from our study showed that leaf litter of the same species

located in different environments had diverse responses to same fire temperatures. At the temperatures of 200 and

5008C, no significant differences between species were observed. With the exception of 5508C, for all the

remaining temperatures the ML per cent of the Albufeira samples were always higher than the Mas Bassets samples

(Table II). According to Oregas et al. (2002) the nutrient content of soil is likely to be the most spatially variable

factor influencing leaf nutrition of Quercus suber. Although, leaf litter chemical characteristics influence fuel

flammability (Nuñez-Regueira et al., 2000; Wise et al., 2005), since the soil composition of both environments is

similar, as is litter moisture content, other variables must determine the higher flammability of Albuferia litter.

Leaves collected from the Albufeira plot are larger than Mas Bassets leaves and they burn more easily. This higher

flammability of the Albufeira sample may be due to the spaces between leaves and the better ventilation, which

enhanced the circulation of oxygen. If the oxygen supply is reduced, the speed of organic matter pyrolysis decreases
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(Drysdale, 1999). According to Scarff and Westboy, (2006) large leaves created an open litter-bed structure that

burns faster and releases more heat due the better ventilation.

Ash Colour and CaCO3

Changes in ash colour with the temperature gradient are represented in Figure 3a. Our study shows that the colour of

litter heated to 1508C is yellowish due to the loss of the water content from the leaves. According to Misra et al.

(1993) and Grier (1975) the loss of mass at temperatures lower than 2008C is a consequence of the vaporization of

the water absorbed in the leaves. Marcos et al. (2007) found from differential thermal analysis (DTA) that the

removal of hygroscopic water was complete at 1778C.

Figure 2. Mean mass loss (ML per cent) with the temperature gradient from Quercus suber litter of Mas Bassets and Albufeira. All values are
present in mean per cent� SE. (N¼ 9 per samples per temperature). F-test was applied with df¼ 9�39 and Tukey’s HSD test with df¼ 40�00 was
applied between the temperatures. The mean separation: A>B>C>D>E> F (A¼ higher mean, F¼ lower mean). All differences are

significant at a p< 0�05.

Table II. Mass loss (ML per cent) differences between Quercus suber litter from Mas Bassets and Albufeira. The statistical
significance was tested under the student t-test means comparison. �< 0�05 and ��< 0�001. Higher mean(A) and lower mean(B).
NS (No significant) (N¼ 9 per samples per temperature)

Temperature (8C) p Mas Bassets Albufeira

550 �� A B
500 NS
450 �� B A
400 �� B A
350 � B A
300 � B A
250 � B A
200 NS
150 �� B A
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Between 200–2508C in Mas Bassets and at 2008C in Albufeira ashes, the colours are reddish due the oxidation of

iron minerals which occur at temperatures lower than 3008C (Driscoll, 1981; Stucki et al., 2002; Markl et al., 2006).

At temperatures near 3008C for Mas Bassets and 2508C for Albufeira litter, the ash becomes black, a product of the

incomplete combustion of the litter and the higher proportion of organic carbon as observed by Khanna et al.,

(1994). At these temperatures, total carbon was higher in the ash produced from the litter of both sites (Úbeda et al.,

2009) and may correspond to the formation of black carbon (Vaughan and Nichols, 1995; Certini, 2005; Brodowski

et al., 2005; Knicker et al., 2007). At 4008C, the ash became grey and white, indicating that fire severity is higher at

these temperatures and at 4508C, complete combustion is observed and there is a higher reduction in Total Carbon

in the ash (Úbeda et al. 2009). Similar results were found elsewhere, as pointed out by Ulery et al., (1993), that

severe burning produced white ash that remained after complete combustion of the fuel at 5008C.

Figure 3. (a) Evolution of ashes colours of Quercus suber litter from Mas Bassets and Albufeira with temperature gradient, (b) Relationship
between temperature gradient and ash Munsell colour chroma value of produced of Quercus suber litter of Mas Bassets and Albufeira. (N¼ 1 per
sample per temperature) and (c) CaCO3 content of the ashes of Quercus suber litter of Mas Bassets and Albufeira according the temperature

gradient. (N¼ 1 per sample per temperature).
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The ash colour is variable depending on the temperature gradient the severity is more pronounced in Albuferia

litter than in Mas Bassets litter. Black carbon appears at lower temperatures in Albufeira samples (2508C), as does

greyish (4008C) and white ashes (4508C) compared to Mas Bassets samples, which indicates that the same fire

temperatures had a greater impact on Albufeira litter, mainly at higher exposure temperatures. The correlation

between temperature and the chroma of Munsell colour chart is r¼ 0�92 (p< 0�001) for both litters (Figure 3b),

thus the higher the temperature, the greater the chroma value.

White ash from wood combustion is largely composed of CaCO3 (Ulery and Graham, 1993; Steenari et al., 1999;

Goforth et al., 2005). Similar to the trend for the creation of grey/white ash, our results confirmed that CaCO3 is

formed at different temperatures for each litter source (Figure 3c). The formation of this mineral at these

temperatures is, according to Quintana et al. (2007), due the thermal degradation of calcium oxalate. In Albufeira

samples, we observed the creation of small amounts of this mineral at 3508C, increasing with higher exposure

temperatures and reaching values greater than 35 per cent of the total ash sample. CaCO3 is only identified in Mas

Bassets ash starting at 4008C and had the same behaviour of Albufeira samples with increasing temperatures

without attaining the high CaCO3 values of the Albufeira samples. These data demonstrate that the impacts of the

temperature gradient are more significant in Albufeira litter and the thermal degradation takes a place at lower

temperatures. Similar results were documented in other studies. Quintana et al. (2007) identified the formation of

CaCO3 at 4008C after heating leaves of Juniperus thurifera L. at several temperatures. Iglesias et al. (1997)

observed the creation of this mineral at 5008C after ashing leaves and branches of Juniperus oxycedros and Quercus

pyrenaica and Misra et al. (1993) and Liodakis et al. (2007) found a predominance of CaCO3 in ash after subjecting

Pinus ponderosa Dougl. exLaws, Populus tremuloides Micx., Liodendron tupilifera L. and Quercus afba (sic; alba)

and some Mediterranean species (Pinus halepensis, Pinus brutia, Olea europea and Quercus coccifera) to 6008C,

respectively.

pH and Electrical Conductivity

Several studies have documented a rise of pH levels in soil solutions and water resources after fire (Stark, 1977;

Belillas and Rodà, 1993; Khanna et al., 1994; Úbeda, 2001; Úbeda and Sala, 2001; Rhoades et al., 2004; Úbeda

et al., 2005; Afif Khouri and Oliveira Prendes, 2006, among others) due to the higher content in ash of carbonates,

oxides, and hydroxides of basic cations, available to leaching (Ulery et al., 1993). The results of pH values with

temperature gradient are plotted in Figure 4a, and show an increase in the slurry pH with increasing temperature,

especially in the Albufeira ash slurries. The coefficients of correlation are 0�96 (p< 0�001) for Mas Bassets and

0�92 (p< 0�001) for Albufeira samples, respectively. These findings were also identified by Soto and Diaz-Fierros

(1993); Iglesias et al. (1997); Henig-Sever et al. (2001); and Quintana et al. (2007). In our study, up to 3008C the pH

values in the test solutions are low and are similar for both litter samples At 3008C we recognized a slight decline

in pH, and thereafter we observed a large increase, mainly in the Albufeira samples, reaching the highest pH values

after 4508C due to the presence of CaCO3, as reported elsewhere (Etiegni and Campbell, 1991; Ulery et al., 1993;

Henig-Sever, 2001). As observed for ash colour and CaCO3 per cent in ash, the temperatures had a greater effect

on pH rise in Albufeira samples than in Mas Bassets samples. Similar results were observed by Marcos et al. (2007)

who did not find important differences in pH after subjecting soils to temperatures of 100 and 2008C for different

exposure times, and Giovannini (1994), Úbeda, (2001) and Badı́a and Martı́ (2003) who documented a reduction

of pH levels at 220, 300 and 2508C in soil solutions, respectively. Also, higher pH values were identified by Iglesias

et al. (1997) and Quintana et al. (2007) after ashing soils at 400 and 5008C.

Water salinity rises after fire due to the release of ions from ash as reported by some investigations (Kutiel and

Naveh, 1987; Iglesias et al., 1997; Badı́a and Martı́, 2003; Lasanta and Cerdà, 2005; Notario del Pino et al., 2008).

In our study we observed a rise of EC with increasing temperature, 0�96 (p< 0�001) for Mas Bassets ash and 0�90

(p< 0�001) for Albufeira ash (Figure 4b). Up to 3008C we identified for both litters a low EC value in ash slurries

and above this temperature, we observed an increase in ionic concentration in the test solutions, mostly in Albufeira

samples, reaching high levels at 4508C and decreasing afterwards, due to the high pH levels and CaCO3 content.

The CaCO3 sorption capacity for all metals rises with increasing pH, and at value pH> 8 the CaCO3 surfaces are
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negatively charged (Zachara et al., 1991; Brady et al., 1999; Ettler et al., 2006) thus decreasing the EC of ash

slurries (Wen et al., 2003). This decrease was also documented by Mellbo et al. (2008). This can explain the

decrease of EC in Albufeira ash slurries created at higher temperatures. Similar results were also documented by

Iglesias et al. (1997) and Badı́a and Martı́ (2003). Quintana et al. (2007) identified a reduction in ion concentration

in solution after heating soils at 400 and 5008C.

Figure 4. (a) pH evolution with temperature gradient in Quercus suber litter from Mas Bassets and Albufeira (N¼ 1 per samples per
temperature) and (b) EC evolution with temperature gradient in Quercus suber litter from Mas Bassets and Albufeira (N¼ 1 per samples per

temperature).
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MAJOR CATIONS

Calcium and Magnesium

The results of Ca2þ released from the ash slurries are plotted in Figure 5a and showed also a non-significant

relationship with temperature gradient, Mas Bassets r¼ 0�08 and Albufeira r¼ 0�64, both at p value> 0�05. At low

temperatures 150–3008C, the Ca2þ released in test solution is different between the two litters. In Mas Bassets ash,

the Ca2þ release is higher than in the unburned sample and in Albufeira ash, the release is lower. Above 3008C, the

concentration of Ca2þ in solution rises, mainly in Mas Bassets ash slurries up to 4008C, decreasing significantly

thereafter and in Albufeira litter, this rise continues to 4508C followed by a reduction. Similar results were found

elsewhere. Stark (1977) observed that higher losses of Ca2þ were identified when soil surface temperatures

exceeded 3008C and Úbeda and Sala (2001) reported a reduction in the concentration of this metal in the overland

flow from high intensity burned areas in relation to medium intensity burned areas. In laboratory experiments,

soluble Ca increased with temperature in soil samples heated to 25, 150 and 2508C, but then decreased in samples

heated to 5008C (Badı́a and Martı́, 2003). Blank et al. (1996) reported maximum solute values after exposing litter

of several species to 3508C for 5 and 15 min and observed a subsequent decrease in solute values when litter was

exposed to 4508C for 15 min. The authors attribute the reduction of Ca2þ in solution to the creation of insoluble

forms of CaCO3 as we observed in this study. In comparison to the unburned sample, the Ca2þ content in solution is

always higher in Mas Bassets samples than in Albufeira samples.

Up to 3008C, the low concentration of Ca2þ is a function of pH, and at higher temperatures, the low rate of

CaCO3 dissolution at elevated pH values can be inhibited by the presence of Ca2þ in solution as documented by

several studies (Steenari et al., 1999; Arvidson et al., 2003; Quintana et al., 2007). According to Mellbo et al.

(2008) the solubility of CaCO3 is lower between values of pH 10–12 in water. However, Ca2þ ions can precipitate

onto or be sorbed by CaCO3 surfaces in the form of Ca-phosphates (Badı́a and Martı́, 2003). Calcium has a

tendency to form complexes with HCO�
3 and dissolved organic compounds and the processes of precipitation are

linked with CaCO3 (Christensen et al., 2001). Even in solution Ca2þ adsorption by CaCO3 surfaces can occur, as

has been reported by Brady et al. (1999).

In our study, Mg2þ showed a behaviour similar to Ca2þ in solution and we also report non-significant relations

with increasing temperatures, r¼ 0�23 for Mas Bassets and r¼ 0�29 for Albufeira both with a p> 0�05 (Figure 5b).

Up to 3008C, we identified Mg2þ values for the Mas Bassets samples that were almost 4-fold higher than those for

the unburned sample, with reduced variability compared to Albufeira samples. At 3508C our results demonstrated a

rise to maximum values of this metal concentration in the test solution for the Albufeira ash slurry and at 4008C for

the Mas Bassets ash slurry, decreasing thereafter at higher temperatures. As for Ca2þ, Stark (1977) observed that

after 3008C the Mg2þ in solution rises significantly and Úbeda and Sala (2001) observed a reduction in the Mg2þ

content in overland flow from high intensity burned areas. Other laboratory studies are consistent with our findings.

Soto and Diaz-Fierros (1993) and Badı́a and Martı́ (2003) found a decrease of Mg2þ in solution at the temperature

> 460 and 5008C respectively after heating soil samples. Though, Blank et al. (1996) observed an increase of this

metal in solution at 3508C and a decrease at 4508C after 15 min of exposure. Gray and Dighton (2006) identified a

reduction in this metal in ash slurries at the temperatures of 400 and 5008C due to insoluble forms of magnesium

minerals.

Our results showed that with the exception of the temperatures of 350, 500 and 5508C the impact of temperature

in Mg2þ in test solutions is always higher in Mas Bassets samples. As for Ca2þ, the lower concentration of this

metal at lower temperatures is due to the lower pH values and at higher temperatures as a consequence of the

high pH. According to Wetzel (1991) magnesium carbonates have a low solubility at pH of 10 or higher. Also, at

elevated exposure temperatures, the presence of CaCO3 inhibited the presence of Mg2þ in ash slurries. Metals with

ionic radii smaller than Ca are easily sorbed onto CaCO3 surfaces, mainly at elevated pH values (Zachara et al.,

1991). Since the ionic radii of Mg (0�72 Å) is smaller than Ca (0�99 Å), the reduction of Mg2þ in solution can be

explained by this mechanism. Astilleros et al. (2006) attributed the incorporation of Mg2þ ion into CaCO3 surfaces

due to their small radii. Also Brady et al. (1999) reported that CaCO3 has the capacity to sorb this ion onto its

surface.
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In order to analyse the effects of fire temperature on severity we analysed the ratio between Ca2þ:Mg2þ of all

samples. According to Marion et al. (1991) Ca:Mg ratios < 1 are an evidence of extremely severe burning. The ash

chemical composition plays an essential role in this behaviour (Notario del Pino et al., 2008) and thus we are able to

study this dynamic. Our results showed that this ratio had a negative correlation with the temperature gradient,

however this correlation is weak and non-significant in Mas Bassets samples, r¼�0�21, p> 0�05 and stronger in

Figure 5. (a) Ca2þ concentration in the test solution with temperature gradient inQuercus suber litter from Mas Bassets and Albufeira in relation
with unburned sample. (N¼ 1 per samples per temperature), (b) Mg2þ concentration in the test solution with temperature gradient in Quercus
suber litter from Mas Bassets and Albufeira in per cent relation with unburned sample. (N¼ 1 per samples per temperature) and (c) Ca2þ: Mg2þ

ratio concentration in the test solution with temperature gradient in Quercus suber litter from Mas Bassets and Albufeira. (N¼ 1 per samples per
temperature).
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the litter of Albufeira, r¼�0�79, p< 0�05. This means that with increasing temperature this ratio displays a

tendency to be < 1, especially in Albuferia ash slurries. With exception of the temperature of 4508C, the values of

Ca:Mg ratio is always > 1 in Mas Bassets ash slurries (Figure 5c) In Albufeira samples only at temperatures of

1508C and 2008C were the values < 1. These findings further support the observation that the same temperature

produced a higher severity in the samples collected from the Albufeira plot.

Sodium and Potassium

The results obtained in our study of the concentration of Naþ in the test solution with temperature gradient are

represented in Figure 6a. These results showed a significant increase with temperature, r¼ 0�79 p< 0�05 in litter

combusted from Mas Bassets and a non-significant relationship in the Albufeira ash slurry, r¼ 0�26 p> 0�05. The

enhancement of Naþ in solution after a fire has been pointed out by several studies (Lewis Jr, 1974; Grier, 1975;

Stark, 1977; DeBano and Conrad, 1978; Blank and Zamudio, 1998; Gimeno-Garcia et al., 2000; Úbeda and Sala,

2001; Lasanta and Cerdà, 2005; Ferreira et al., 2005, among others). Up to 3008C, the values of Naþ are less than

the unburned sample in the test solution for both Quercus plots, reaching a maximum at 3508C in Albufeira

samples, decreasing thereafter and in Mas Bassets ash slurry this rise in solution continues until a maximum at

5008C. Similar results were found elsewhere. Marcos et al. (2007) observed a low concentration of Naþ in solution

at 100 and 2008C and a significant rise at 5008C. However, Badı́a and Martı́ (2003) observed an increase in Naþ in

solution with increasing temperature.

As with divalent cations, at low temperatures the reduced concentration of this metal in solution is a function

of pH. Nevertheless, for Naþ, elevated pH values have a minor effect on sorption and precipitation processes

(Christensen et al., 2001). However at higher temperatures both ash slurries showed a different pattern of Naþ

concentration in the test solution. As mentioned above, ionic radii influence the sorption process onto CaCO3

surfaces. Since the Naþ ion has a larger radius (1�02 Å) than Ca this dynamic is difficult. In addition, this

monovalent ion does not substitute for Ca2þ, has a low valence and does not bind easily onto the CaCO3 surfaces.

Furthermore, Naþ has a great solubility and a lower complex precipitation (Busenberg and Plummer, 1985). This is

a logical explanation why we found greater concentrations of Naþ in test solutions of Mas Bassets ash slurries. On

Figure 5. (Continued).
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the other hand under certain conditions, Naþ ions can be incorporated onto CaCO3 surfaces. In the presence of a

large surface and crystal defects this ion can be sorbed. As pointed out by Ishikawa and Ichikuni (1984) and

Busenberg and Plummer (1985), Naþ ion sorption increase is directly proportional to the log rate of crystal growth

and the quantity of Naþ captured by CaCO3 surfaces is greatly dependent on the existence of crystal defects.

Moreover, the rates of crystal growth increases with increasing pH and thus the number of defects and the capture of

Naþ ions in solution will increase (White, 1977, 1978). Due the high content of CaCO3 in the ash and the high pH in

Figure 6. (a) Naþ concentration in the test solution with temperature gradient in Quercus suber litter from Mas Bassets and Albufeira in per cent
relation with unburned sample. (N¼ 1 per samples per temperature) and (b) Kþ concentration in the test solution with temperature gradient in

Quercus suber litter from Mas Bassets and Albufeira in per cent relation with unburned sample. (N¼ 1 per samples per temperature).
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the test solutions, this process explains rationally the smaller number of Naþ ions found in ash slurries from

Albufeira litter burned at high temperatures.

Our results documented a similar behaviour between Kþ and Naþ ions in solution (Figure 6b). As with Naþ, we

observed a significant correlation with temperature gradient in Mas Bassets ash slurry, r¼ 0�74 (p< 0�05) and a

non-significant relation in the Albufeira test solution, r¼ 0�31 (p> 0�05). The rise of Kþ in solution after a fire has

been reported elsewhere (Lewis Jr, 1974; Tomkins et al., 1991; Belillas and Rodà, 1993; Rhoades et al., 2004;

Úbeda et al., 2005, among others). Up to 3008C there is almost no variation of Kþ released to solution in relation to

the unburned sample, rising substantially at 3508C in the Albufeira test solution, and decreasing thereafter. In the

Mas Bassets samples, this increase is observed at 4508C followed by a reduction. As documented by Badı́a and

Martı́ (2003), other laboratory experiments support our findings that the concentration of Kþ in test solution rises

with exposure temperature. In addition, as we observed in our study, Marcos et al. (2007) identified a reduction

of Kþ in a test solution after exposing soil samples to 5008C for several minutes.

The mechanism of the precipitation process for Kþ is similar to Naþ (Ishikawa and Ichikuni, 1984). We observed

a maximum in Kþ concentration in ash slurries of Mas Bassets at 4508C and for Albufeira slurries at 3508C,

respectively, decreasing thereafter. This reduction in solution is related to the higher CaCO3 content in ash as

explained before. The lower valence of this ion, the higher solubility and the larger ionic radii (1�38 Å) in relation to

Ca can explain the higher concentration of Kþ in solution at higher temperatures, yet under certain

circumstances Kþ is sorbed onto CaCO3 surfaces. Also as with Naþ, the incorporation of Kþ ion onto CaCO3

surfaces increases with crystal defect formation and solution pH (White, 1977; Ishikawa and Ichikuni, 1984).

RELATION BETWEEN VARIABLES

Figure 7 shows the relation between all variables in this study. To identify the main groups we applied a cut line at

the distance of 0�6 because the great majority of the variables are clustered under this linkage distance, as we

identified in the screen plot produced. We observed the formation of four main groups and the behaviour of their

elements are linked with the temperature gradient. The first group is composed by the variables whose value rises

with the temperature and it can be observed that ML per cent and pH of both study areas have a good correlation.

Ash chroma value also has a substantial relationship with CaCO3 content for each type of sample, which means that

ash colour is a good predictor to estimate the presence of CaCO3. The second group is composed of cations whose

behaviour in the test solution is conditioned by the CaCO3 content of the ash. All major elements analysed, with the

exception of Naþ and Kþ of the Mas Bassets samples, showed a decrease in solution in the ash slurries with an

increase in the proportion of this mineral in the ash. Groups 3 and 4 consist of the Ca2þ:Mg2þ ratio for Mas Bassets

and Albufeira samples, respectively, which showed an inverse relationship of this ratio with increasing temperature.

STUDY IMPLICATIONS

The temperatures that occur during a fire induce important changes in soil physical, chemical and biological

properties and the magnitude of these impacts will influence the capacity of ecosystems to recuperate. These effects

include the breakdown in soil structure, decrease in soil moisture retention and capacity, formation of a

hydrophobic layer, changes in nutrient pools and cycling rates, vaporization of elements to atmosphere, erosion

losses, combustion of forest litter, decrease or loss of organic matter, changes and loss of microbial and

invertebrates species and activity, and decomposition of plant roots (Mataix-Solera, 1999; Neary et al., 2005).

We observed in this study that ML per cent increases with increasing temperatures, leading to a loss of litter and a

decreased ash cover, leaving the soil surface unprotected and more vulnerable to erosion agents. This effect was

more pronounced in the samples collected from the Albufeira plot where increasing fire temperatures produced a

greater effect. This increase in ML per cent in the Albufeira litter is coincident with a higher fire severity compared

to the Mas Bassets plot, especially at middle and higher temperatures, where major differences were identified

between two plots, observed by the analysis of ash colour, per cent of CaCO3, chroma value and the values of pH,

EC and Ca:Mg ratio in solution.
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Low fire temperatures (< 3008C) will not have important consequences on values of pH and EC in solution,

though these effects increase at medium and higher temperatures of litter combustion (> 350/4008C). At lower

temperatures the cations released into the test solution were not substantial in comparison with the unburned

sample, except for Mg2þ, rising abruptly at moderate temperatures mainly in Albufeira ash for Mg2þ, Naþ and Kþ

and in Mas Bassets for Ca2þ. At higher temperatures the formation of CaCO3 reduced the concentration of ions the

test solution, mainly for the divalent cations because of their major susceptibility to sorption onto CaCO3 surfaces,

and the higher solubility of monovalent cations as discussed by Zachara et al. (1991) and Sinan Bilgili et al. (2007).

This means that under the described temperatures in a real fire, the release of ions into soil solution will be lower at

lower temperatures. However, different patterns were observed in both ash slurries that can be related to the

formation of CaCO3 at moderate to high temperatures and subsequent ion capture on CaCO3 surfaces.

Temperature is a key point in determining the chemical composition of ash and its subsequent solubility (Etiegni

and Campbell, 1991; Pereira et al., 2008). In this sense, fire temperatures have a relationship with type and amount

of ions released that potentially cause adverse effects on soil. After a fire the nutrients dissolved from ash will

induce high soil fertility in the majority of the cases. On the other hand, the ash can generate some problems such as

an excess of salts, which are detrimental to some plants and inhibit the absorption of some elements (Porta et al.,

1994; Mataix-Solera et al., 2007).

Also, the chemical composition of water mixed with ash has several implications for soil aggregate stability

(Rahimi Barzegar et al., 1994) and after the fire the elements released by ash will have effects on the soil physical

status resulting in increased soil erodibility. The higher presence of some major cations will produce the dispersion

of clay minerals. According to Porta et al. (1994), the flocculation of clay minerals is higher when Ca2þ and Mg2þ

are the dominant ions and minor when Naþ and Kþ are the principal ions in soil solution. For example, the

disaggregation of clay minerals such as kaolinite increases with increasing pH (Durgin and Vogelsand, 1984). Our

results showed that at low temperatures, up to 3008C, the presence of the divalent cations is always higher than

monovalent cations, and the potential effect of the water extracts released by the ash generated at these temperatures

on clay dispersion is negligible (Figure 8). Nevertheless, at medium and higher temperatures—greater than 3508C
in Albufeira ash slurries and at 4508C for Mas Bassets ash slurries—the proportion of Ca2þ and Mg2þ decreases

significantly in relation to Naþ and Kþand is accompanied by an increase in pH. The chemistry of ash slurries can

lead to an enrichment of the monovalent cations in soil solutions and increase the susceptibility of soils to erosion.

Figure 7. Dendogram of the relationship between the variables in study of Mas Bassets (MB) and Albufeira (Alb) with temperature gradient. Cut
line in bold. The numbers indicate the groups identified. (N¼ 9 per variable).

Copyright # 2009 John Wiley & Sons, Ltd. LAND DEGRADATION & DEVELOPMENT, 20: 589–608 (2009)

DOI: 10.1002/ldr

EFFECTS OF FIRE TEMPERATURE ON ASH FROM CORK OAK 603



This means that the potential effect of water released by ash on soil clay dispersion increases at medium and higher

temperatures.

Overall, temperature had more significant effects on Quercus suber litter of the Albufeira plot, than that of the

Mas Bassets plot. The higher flammability and consequent ML per cent of Albufeira samples point to a higher

thermal degradation of the Albufeira leaf litter than the Mas Bassets samples, evident also by the formation of grey/

white ash at lower temperatures. This response has the potential to expose the soil surface to erosion. At lower

temperatures the pH values and the cation release are not substantial. However, this release of cations, particularly

monovalent cations, increases at moderate and higher temperatures, especially in Albufeira ash slurries. This means

that at higher temperatures the reduction of ML per cent, the combustion of the organic matter, the impact of

temperatures on soil physical status and the water soluble elements released by the ashes will cause a higher

desegregation of soil mineral particles, leaving them more vulnerable to erosion transport.

Fire can is a useful tool used by humans for land management, but also can develop lead to the degradation of the

land and its resources. The impacts of fire are a function of the intensity of a fire, including the duration of the heat

impulse, and the resulting fire severity on the biophysical conditions of the ecosystem affected (Neary et al., 2005;

Siva Kumar and Ndiang’ui, 2007). Mediterranean ecosystems are well adapted to fire effects.. In particular,

Quercus suber can resprout after fire. However, during high intensity fire, the bark that insulates trees from high

temperatures can be combusted, thereby reducing the capacity of these system to recover after wildfire.

The results obtained in this study are a useful contribution that will help inform land management decisions in the

study areas. Using this information, we know that low fire temperatures do not lead to the substantial release of the

elements we studied to soil solutions or overland flow. Forest management with low intensity prescribed fires can be

a constructive tool. Medium and higher temperatures produce ash that is susceptible leaching, which may release

ions that have effects on aggregate stability and long-term soil fertility. These potential effects are more pronounced

for the Albufeira site. For these reasons, it is of major interest protect these sites from wildfire occurrence, due the

potential negative effects of ash on soil properties and water resources. Management objectives can be

accomplished with the application of prescribed fires, which still release nutrients to the soil but reduce the amount

of biomass in the forests, decreasing the risk of wildfire occurrence in these environments vulnerable to fire events.

Figure 8. Ca2þþMg2þ and NaþþKþþ concentration in the test solution with temperature gradient in Quercus suber litter from Mas Bassets and
Albufeira (N¼ 1 per element per variable).
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CONCLUSION

The results obtained from this study showed that combustion temperatures had diverse effects on Quercus suber

populations located in different environments and that litter characteristics influence the vulnerability of the species

to fire temperatures. The potential effects of the elements concentrated in test solutions on soil physical and

chemical status and water resources were reduced at low temperatures and elevated at medium and higher

temperatures, mainly in the samples collected in Albufeira litter, where we found a higher presence of monovalent

cations in relation to divalent cations. The results obtained from this study are of major importance, because the leaf

litter characteristics and the environment play an important role in the fire severity response of each ecosystem

where Quercus suber is located. The application of low intensity prescribed fires does not have damaging impacts in

the ecosystem and their use could be a useful instrument to land management to reduce the risk of wildfires and their

negative effects on these sites.

In order to validate our laboratory simulations, the next step is to collect ash samples from prescribed and

wildland fires from the environments where we collected the litter to expand this study to observe if these

differences are also evident in field conditions.
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Belillas CM, Rodà F. 1993. The effects of fire on water quality dissolved nutrient losses and export of particulate matter from dry heathland
catchments. Journal of Hydrology 150: 1–17.

Blank RR, Allen FL, Young JA. 1996. Influence of simulated burning of soil-litter from low Sagebrush, Squirreltail, Cheatgrass, and Medusahead
on water-soluble anions and cations. International Journal of Wildland Fire 6: 137–143. DOI:10.1071/WF9960137

Blank RR, Zamudio DC. 1998. The influence of wildfire on aqueous-extractable soil solutes in forested and wet meadow ecosystems along
eastern front of Sierra Nevada range, California. International Journal of Wildland Fire 8: 79–85.
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