Comparing Dry, Wet, or Modified Distillers Grains Plus Solubles on Feedlot Cattle Performance

Brandon L. Nuttelman
University of Nebraska-Lincoln

William A. Griffin
University of Nebraska-Lincoln, wgriffin2@unl.edu

Joshua R. Benton Benton
University of Nebraska-Lincoln, jbenton2@unl.edu

Galen Erickson
University of Nebraska-Lincoln, gerickson4@unl.edu

Terry Klopfenstein
University of Nebraska-Lincoln, tklopfenstein1@unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/animalscinbcr

Part of the Animal Sciences Commons

Nuttelman, Brandon L.; Griffin, William A.; Benton, Joshua R. Benton; Erickson, Galen; and Klopfenstein, Terry, "Comparing Dry, Wet, or Modified Distillers Grains Plus Solubles on Feedlot Cattle Performance" (2011). Nebraska Beef Cattle Reports. 619.
https://digitalcommons.unl.edu/animalscinbcr/619

This Article is brought to you for free and open access by the Animal Science Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Nebraska Beef Cattle Reports by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Comparing Dry, Wet, or Modified Distillers Grains Plus Solubles on Feedlot Cattle Performance

Brandon L. Nuttelman
Will A. Griffin
Josh R. Benton
Galen E. Erickson
Terry J. Klopfenstein

Summary

Three types of distillers grains (DG): 1) wet distillers grains plus solubles (WDGS), 2) dried distillers grains plus solubles (DDGS), or 3) modified distillers grains plus solubles (MDGS), included at 3 levels: 20%, 30%, or 40% the diet DM, and a corn-based control compared the effect of drying distillers grains on feedlot performance. Type of DG had no effect on ADG (P = 0.30), but DMI increased for MDGS and DDGS compared to WDGS (P < 0.01). Therefore, F:G was improved for WDGS (P < 0.01) compared to MDGS and DDGS. Gain was greater and F:G was lower when DG were fed compared to the corn control. The feeding value of WDGS was 35.4% and 17.8% greater than DDGS and MDGS, respectively. The feeding value was 45.7%, 26.5%, and 9.3% more than corn for WDGS, MDGS, and DDGS, respectively.

Introduction

A University of Nebraska–Lincoln pen mean meta-analysis (2011 Nebraska Beef Cattle Report, pp. 40-41) determined a feeding value for wet distillers grains plus solubles (WDGS), modified distillers grains plus solubles (MDGS), and dried distillers grains plus solubles (DDGS) relative to dry-rolled corn (DRC) in feedlot diets. The feeding value for WDGS is 143 - 130%, 124 - 117% for MDGS, and 112% for DDGS. However, little research has been conducted comparing WDGS, DDGS, and MDGS in the same study. Therefore, the objective of this study was to compare the effects of drying ethanol co-products produced from the dry milling process on feedlot cattle performance by feeding WDGS, MDGS, and DDGS in the same study.

Procedure

Crossbred, yearling steers (n = 440; 778 ± 42 lb) were utilized in a randomized complete block design. Treatments were arranged in a 3 x 3 factorial treatment structure, with three types of distillers grains (DG), three inclusions of DG (20%, 30%, or 40% diet DM), and a negative corn-based control (CON). Steers were blocked by BW, stratified within block, and assigned randomly to pen (55 pens; 8 steers/pen). Pens were assigned randomly to one of 10 treatments. The CON treatment was repeated within replication (10 replications), whereas all other treatments had 5 replications.

Basal ingredients consisted of a high-moisture and dry-rolled corn blend (HMC:DRC) fed at a 60:40 ratio (DM basis), 15% corn silage, and 5% dry supplement (DM basis; Table 1). Distillers grains replaced HMC:DRC. Steers were adapted to the finishing diet by feeding 37.5%, 27.5%, 17.5%, and 7.5% alfalfa hay (DM basis), replaced with HMC:DRC for 3, 4, 7, and 7 days, respectively. The supplements for diets containing 20% DG contained urea at 0.47% of the diet to ensure there was not a deficiency in degradable intake protein. All diets were formulated to provide a minimum of 13.0% CP, 0.6% Ca, 0.25% P, and 0.6% K. Supplements for all diets were formulated to provide 360 mg/steer daily of monensin (Rumensin, Elanco Animal Health), 90 mg/steer daily of tylosin (Tylan, Elanco Animal Health), and 150 mg of thiamine per steer daily.

Table 1. Nutrient composition of wet, modified, and dry distillers grains.

<table>
<thead>
<tr>
<th></th>
<th>WDGS1</th>
<th>MDGS1</th>
<th>DDGS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>% CP</td>
<td>31.1</td>
<td>31.0</td>
<td>30.9</td>
</tr>
<tr>
<td>% Sulfur</td>
<td>0.81</td>
<td>0.70</td>
<td>0.71</td>
</tr>
<tr>
<td>% Fat</td>
<td>11.9</td>
<td>12.4</td>
<td>11.9</td>
</tr>
<tr>
<td>% NDF</td>
<td>34.1</td>
<td>34.4</td>
<td>32.3</td>
</tr>
</tbody>
</table>

1WDGS = wet distillers grains plus solubles; MDGS = modified distillers grains plus solubles; DDGS = dried distillers grains plus solubles.

Table 2. Main effects of type of distillers grains on cattle performance and carcass characteristics.

<table>
<thead>
<tr>
<th>Type of Distillers Grains1</th>
<th>WDGS</th>
<th>MDGS</th>
<th>DDGS</th>
<th>SEM</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial BW, lb</td>
<td>767</td>
<td>767</td>
<td>768</td>
<td>1</td>
<td>0.83</td>
</tr>
<tr>
<td>Final BW, lb2</td>
<td>1400</td>
<td>1409</td>
<td>1392</td>
<td>10</td>
<td>0.51</td>
</tr>
<tr>
<td>DMI, lb/day</td>
<td>24.8a</td>
<td>26.4b</td>
<td>27.1b</td>
<td>0.07</td>
<td>< 0.01</td>
</tr>
<tr>
<td>ADG, lb</td>
<td>4.11</td>
<td>4.17</td>
<td>4.05</td>
<td>0.3</td>
<td>0.30</td>
</tr>
<tr>
<td>F:G3</td>
<td>6.06a</td>
<td>6.33b</td>
<td>6.67c</td>
<td>0.01</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Carcass Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCW, lb</td>
<td>882</td>
<td>887</td>
<td>877</td>
<td>6</td>
<td>0.52</td>
</tr>
<tr>
<td>12th rib fat, in</td>
<td>0.63</td>
<td>0.64</td>
<td>0.60</td>
<td>0.1</td>
<td>0.15</td>
</tr>
<tr>
<td>Marbling Score4</td>
<td>610</td>
<td>599</td>
<td>602</td>
<td>9</td>
<td>0.69</td>
</tr>
<tr>
<td>LM area, in2</td>
<td>13.3</td>
<td>13.2</td>
<td>13.4</td>
<td>0.15</td>
<td>0.50</td>
</tr>
</tbody>
</table>

1WDGS = wet distillers grains plus solubles; MDGS = modified distillers grains plus solubles; DDGS = dried distillers grains plus solubles.
2Calculated from hot carcass weight, adjusted to a common dressing percentage of 63.0%.
3Marbling score: 400 = Slight0; 450 = Slight50; 500 = Slight0, etc.
4Marbling score: 400 = Slight0; 450 = Slight50; 500 = Slight0, etc.

Means with different superscripts differ (P < 0.05).
Steers were slaughtered on day 154 at a commercial abattoir (Greater Omaha Pack, Omaha, Neb.). Liver scores and HCW were collected on the day of slaughter. Following a 48-hour chill, USDA marbling score, 12th rib fat depth, and LM area were recorded. A common dressing percentage of 63% was used to calculate carcass adjusted performance to determine final BW, ADG, and F:G.

The difference in F:G between the different types of DG was divided by the F:G of the DDGS treatment and the average inclusion level of DG (30% DM) to determine the differences in feeding value between types of DG. The same calculations were used to calculate the improved feeding value of each DG compared to the CON treatment.

Data were analyzed using the MIXED procedure of SAS. Pen was the experimental unit and treatments were analyzed as a randomized complete block design. Initially, the 3x3 factorial was tested for an interaction. If no significant interaction was observed, then main effects of distillers type were evaluated. Also, orthogonal polynomial contrasts were constructed to evaluate a response curve (linear and quadratic) for distillers grains level. If an interaction occurred, then simple effects of different inclusions of each distillers type were evaluated.

Orthogonal polynomial contrasts also were constructed to determine a response curve (linear, quadratic, and cubic) to compare the level of distillers grains against the CON. Proc IML was used to obtain appropriate coefficients for unbalanced inclusion levels.

Results

Cattle Performance

There were no type x level interactions ($P > 0.16$) for the 3 x 3 factorial. Therefore, the main effects of DG type, DG level, and DG level compared against CON are presented.

Type of Distillers Grains

Performance and carcass characteristics for type of DG are presented in Table 2. There were no differences observed for ADG ($P = 0.30$) between WDGS, MDGS, and DDGS. Steers fed WDGS had 1.61 and 2.29 lb/day lower ($P < 0.01$) DM than MDGS and DDGS, respectively. As a result, steers fed WDGS had lower F:G ($P < 0.01$) compared to steers fed MDGS or DDGS. Cattle fed MDGS tended ($P = 0.06$) to have lower F:G than steers consuming DDGS. There were no differences observed between type of DG for carcass traits ($P > 0.15$).
Level of Distillers Grains

Performance and carcass characteristics for level of DG are presented in Table 3. First, main effects of 20%, 30%, and 40% inclusion level are discussed and then followed with the comparison to CON. There were no differences for final BW, DMI, or ADG between 20%, 30%, and 40% DG inclusion level ($P > 0.24$). Cattle fed 40% DG had a lower ($P = 0.05$) F:G than 20% DG. Carcass characteristics were not different ($P > 0.12$) between levels of DG. When comparing CON to 20%, 30%, and 40% DG, there was a linear ($P = 0.01$) increase in DMI, quadratic ($P = 0.04$) increase in ADG, and linear ($P < 0.01$) decrease in F:G. The increase in ADG and decrease in F:G occurred when DG inclusion increased from 0% to 20% inclusion. Increasing dietary inclusion of DG increased HCW quadratically ($P = 0.05$) and increased fat depth ($P < 0.01$) linearly when CON was included. Although there was a difference observed in fat depth, the 0% level had 0.50 in and is a good indication that all steers achieved acceptable feeding endpoints, regardless of treatment. There were no effects on marbling score or LM area ($P > 0.63$).

Based on F:G, calculated feeding values of DG were greater than HMC:DRC, regardless of type of DG. The feeding value of WDGS, MDGS, and DDGS were 45.7%, 26.5%, and 9.3% greater than HMC:DRC. The feeding value of WDGS was 36.0% and 17.9% greater than DDGS and MDGS, respectively.

This study agrees with previous research that found including DG, regardless of moisture level, up to 40% of the diet (DM basis) will improve F:G compared to corn-based diets. Also, this study suggests that partially or completely drying DG has a negative effect on its feeding value compared to WDGS.

Brandon L. Nuttelman, research technician; Will A. Griffin, research technician; Josh R. Benton, research technician; Galen E. Erickson, professor; Terry J. Klopfenstein, professor, University of Nebraska–Lincoln Department of Animal Science.