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a b s t r a c t

Extinction has claimed half of all historically-known Hawaiian passerines, and today many extant species
are increasingly threatened due to the combined effects of invasive species and climate change. Habitat
disturbance has affected populations of feeding specialists most profoundly, and our results indicate that
specialists continue to be most vulnerable, although even some abundant, introduced, generalist species
also may be affected. Surveys of passerines during 1998–2011 in subalpine woodland habitat on Mauna
Kea Volcano, Island of Hawai0i, revealed that the abundance of the critically endangered palila (Loxioides
bailleui), a seed specialist, declined by 79% after 2003. The 0akiapōlā0au (Hemignathus munroi), an endan-
gered specialist insectivore, was not detected in the survey area after 1998. The Hawai0i 0amakihi (Hem-
ignathus virens virens), a generalist feeder and the most abundant species on Mauna Kea, was the only
native species to maintain a stable population. The Japanese white-eye (Zosterops japonicus), a well-
entrenched generalist and one of the three most common introduced species, declined. Drought prevailed
in 74% of months during 2000–2011, and dry conditions contributed to the recent decline of the palila by
reducing the annual māmane (Sophora chrysophylla) seed pod crop, which influences palila breeding and
survival. Sustained browsing by introduced ungulates also lowered habitat carrying capacity, and their
elimination should reduce the effects of drought and promote forest restoration. Our results illustrate
how the feeding ecology of a species can influence its response to interacting environmental perturba-
tions, and they underscore the value of long-term monitoring to detect population trends of sensitive
species.

Published by Elsevier Ltd.

1. Introduction

The decline of specialist species contributes substantially to the
overall loss of global biodiversity (Clavel et al., 2011). Most globally
threatened birds are tropical forest-dwelling species, but birds en-
demic to islands are most vulnerable to extinction (Birdlife Inter-
national, 2000). Since 1800, more than 90% of bird extinctions
have occurred on islands, and in the Hawaiian Islands 14 of 44 spe-
cies of historically-known forest passerines (songbirds) are extinct
while 20 are listed as endangered, although 9 of these, most of

which are Hawaiian honeycreepers (Fringillidae: Drepanidinae),
have not been seen in decades (Banko and Banko, 2009). The feed-
ing specialists, species with unusual bills and relatively con-
strained or stereotypic feeding behaviors, have all disappeared or
are in danger of extinction, whereas about one-third (10 species)
of non-specialized passerines are still not considered threatened
(Banko and Banko, 2009).

The palila (Loxioides bailleui), a species of Hawaiian honey-
creeper, is ranked among the 150 most critically endangered bird
species (Birdlife International, 2011), and its population and range
are declining rapidly. The palila is the last honeycreeper species re-
stricted to dry forest habitat, and it depends on the unhardened
seeds that it extracts from the green pods of the māmane (Sophora
chyrsophylla) for most of its food (Banko et al., 2009, 2002a). Mā-
mane is an endemic, leguminous tree that was once more widely
distributed but is now primarily found in dry montane and subal-
pine habitats on the islands of Hawai0i and Maui. Specialization on
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māmane dramatically increases the palila’s vulnerability to extinc-
tion, especially in the face of global climate change and multiple
threats from invasive species. Palila cannot persist long where mā-
mane is sparsely distributed or confined to a narrow band of eleva-
tion (Scott et al., 1984; van Riper et al., 1978), because the birds
track seed pods as they ripen seasonally along an elevation gradi-
ent (Banko et al., 2002a, 2002b; Hess et al., 2001). The range of ele-
vation over which māmane occurs has been truncated at both the
lower and upper margins by nearly 200 years of browsing by intro-
duced ungulates, which continue to degrade the remaining habitat
(Banko et al., 2009). Another factor affecting palila habitat is
drought, and a trend towards drier climatic conditions seems to
be developing (Giambelluca and Luke, 2007; Loope and Giambell-
uca, 1998). Palila survival and reproduction decline during
drought, when māmane pod production is reduced (Banko et al.,
2002a; Lindsey et al., 1997).

Range size is a powerful predictor of extinction risk among birds
(Harris and Pimm, 2008), and montane species are most vulnerable
to the effects of climate change (S�ekercioğlu et al., 2012, 2008). Pal-
ila are at risk from both factors because they are now entirely re-
stricted to high-elevation habitats and they occupy one of the
smallest ranges of any bird in Hawai0i (Gorresen et al., 2009). His-
torically, palila were found in woodlands dominated by māmane
and naio (Myoporum sandwicense), another common endemic tree,
on three of the five volcanoes of Hawai0i Island (Fig. 1). Neverthe-
less, habitat loss and degradation, mostly due to cattle ranching
and introduced feral ungulates (Scowcroft, 1983), has reduced
the palila’s range to only 5% of its historical extent, palila have dis-
appeared from all areas outside the largest remaining forest frag-
ment on the southwestern slope of Mauna Kea (Banko et al.,
2009; Leonard et al., 2008).

Introduced ungulates are universal transformers of vegetation
structure and composition, and they can impact biodiversity in a
number of ways (Spear and Chown, 2009) within their native con-
tinental ranges (Holmes et al., 2009), on islands near continents
(Martin et al., 2010), and especially on remote oceanic islands
(Caujapé-Castells et al., 2010; Loope et al., 1988). Habitat degrada-
tion by introduced ungulates has broadly affected Hawaiian bird
communities (Banko and Banko, 2009; Pratt and Jacobi, 2009; Scott
et al., 1986) and has been the most important factor driving the
palila’s historical range contraction and population decline (Banko
et al., 2009). Since the early 1800s, cattle (Bos taurus), goats (Capra
hircus), and sheep (Ovis aries and, more recently, mouflon [O. gme-
lini musimon] and their hybrids) have roamed widely through the
palila’s range, killing or damaging trees and shrubs, removing seed-
lings, and exacerbating erosion (Hartt and Neal, 1940; Hess and
Banko, 2011; Warner, 1960). Cattle, goats, and sheep prefer mā-
mane over non-native species (Giffin, 1980, 1976), and long-term
browsing has reduced the cover and regeneration of māmane as
well as other tree and shrub species in palila habitat (Scowcroft,
1983; Scowcroft and Giffin, 1983). Large gaps created in māmane
woodland by ungulates have been invaded by grasses and other
weeds (Banko et al., 2009; Hess et al., 1999), greatly increasing
the threat of fire (Thaxton and Jacobi, 2009). Efforts to reduce
ungulate populations during the 1930s and 1940s and since the
1980s have resulted in the episodic regeneration of māmane (Hess
et al., 1999; Scowcroft and Conrad, 1988). Nevertheless, forest
recovery has been limited and intermittent because widespread
browsing has continued (Banko et al., 2009; Hess and Banko,
2011; Hess et al., 1999).

In addition to browsing ungulates, other invasive species and
climate change threaten palila and Mauna Kea’s subalpine bird
community (Banko et al., 2009). Climate change is expected to
modify Hawaiian forest bird habitats, food webs, and the distribu-
tions of invasive threats in ways that are only recently being con-
sidered (Loope and Giambelluca, 1998; Pratt et al., 2009). Climatic

trends indicate that the palila’s habitat will become even drier (Cao
et al., 2007; Chu et al., 2010; Chu and Chen, 2005; Giambelluca and
Luke, 2007), which will likely affect vegetation structure and com-
position (Juvik et al., 2011; Lohse et al., 1995; Loope and Giambell-
uca, 1998) and further reduce habitat carrying capacity.
Unfortunately, the effects of increased drought will be com-
pounded by browsing, pathogens, competition from invasive
weeds, and other stressors (Banko et al., 2009).

To assess how the subalpine bird community may be respond-
ing to recent weather patterns, we evaluated population trends of
palila and other passerines in relation to rainfall and drought since
1998. This analysis is the first to include all passerines across a ma-
jor portion of Palila Critical Habitat since the Hawai0i Forest Bird
Survey program was initiated (Scott et al., 1986). Although we fo-
cus our attention on the palila due to its significance to conserva-
tion biology and policy, trends of the other species provide
important context for understanding how species with divergent
life histories respond to drought and habitat degradation. Data
on weather conditions and on the ecology of palila, māmane, and
naio were not collected continuously throughout the 14-year study
period, but information overlapped sufficiently to allow us to ex-
plore major relationships. Additionally, earlier studies provide a
basis for understanding how drought affects the breeding and sur-
vival of passerines (Banko et al., 2002a; Lindsey et al., 1997; Pratt
et al., 1997) and the phenology and productivity of māmane and
naio (Banko et al., 2002b). Although palila are the only birds that
feed on māmane seeds, a number of other passerines forage in mā-
mane for nectar and arthropods, including the ubiquitous, native
Hawaii 0amakihi (Hemignathus virens virens) and the widespread,
introduced Japanese white-eye (Zosterops japonicus), both general-
ist foragers. Additionally, two species of Hawaiian honeycreepers,
the 0i0iwi (Vestiaria coccinea) and 0apapane (Himatione sanguinea),
visit subalpine Mauna Kea seasonally to feed on māmane nectar
(Banko et al., 2002b; Hess et al., 2001). Palila and other bird spe-
cies, notably the native generalist insectivore, Hawai0i 0elepaio
(Chasiempis sandwichensis), and the introduced generalist frugi-
vore-insectivore, red-billed leiothrix (Leiothrix lutea), also forage
in naio, which is widespread on the southwestern slope of Mauna
Kea (Scott et al., 1986). Although ungulates browse less on naio
than they do on māmane, we have observed that drought impacts
are more severe on naio than they are on māmane. Therefore, pro-
longed drought is likely to affect other passerines in addition to
palila. Our results provide insights about the roles of climate
change and invasive species in shaping Hawaiian forest bird com-
munities above the range of introduced mosquito-borne diseases,
which have major impacts elsewhere (Scott et al., 1986). Our study
also highlights the importance of increasing the carrying capacity
of all forest bird habitats to help populations survive multiple envi-
ronmental challenges.

2. Methods

2.1. Study area

The survey area consisted of 64.4 km2 of subalpine dry forest
between 1800 and 2900 m elevation on the southwestern slope
of Mauna Kea Volcano, Hawai0i Island (Fig. 1). We refer to it as
the ‘‘core’’ habitat or area of the species because it has supported
over 95% of the palila population since standardized surveys began
in 1980 (Scott et al., 1984). The climate is cool and dry. Annual
mean temperatures range between 9� and 13 �C; rainfall averages
511 mm annually and falls mostly during heavy winter storms, but
cloud water intercepted by vegetation (‘‘fog-drip’’) contributes
additional precipitation (Juvik et al., 1993). The vegetation is dom-
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inated by two native tree species, māmane and naio (Banko et al.,
2002b; Hess et al., 1999).

2.2. Survey methods

We annually surveyed all passerine species during 6-min
counts at 355–418 stations along 13 transects in the core habitat
during 1998–2011 (Fig. 1, Supplementary material A.1.1).
Because of their high conservation profile, density estimates
(birds/km2) of palila were calculated from point-transect sampling
data using program DISTANCE (Supplementary material A.1.1). To
allow for comparisons among all species, including those for which
there were too few detections to reliably estimate densities, we
calculated an annual index of abundance as the average number
of birds per station (total detections/total stations). We character-
ized trends in the annual mean number of birds per station for
each species based on the magnitude of change indicated by a
best-fit linear model (Camp et al., 2008). We also used this method
to characterize trends in the number of stations at which species
were detected each year.

2.3. Drought index, habitat degradation, and evaluation of impacts

We developed an index to characterize the extent and severity of
drought in the survey area using available data from the U.S.
Drought Monitor website that modeled the distribution of five qual-
itative categories of drought projected to occur on Hawai0i Island
each week for the period January 2000–April 2011. (Supplementary
material A.1.2). To this dataset, we applied a GIS template to calcu-
late the proportion of our study area covered by each category of
drought, which included ‘‘abnormally dry,’’ ‘‘moderate drought,’’
‘‘severe drought,’’ ‘‘extreme drought,’’ and ‘‘exceptional drought’’
in addition to ‘‘no drought.’’ We then multiplied the proportional
area by the rank (values 1–4 for drought and �1 for no drought) of
the drought category that covered it to produce a score. Scores were
combined into a composite score representing drought severity over
the entire study area for each week, and these results were then
averaged to produce monthly scores that were analyzed descrip-
tively to characterize seasonal or annual environmental conditions.

We analyzed recent (1997–2010) and long-term (1940–1977)
rainfall data from two sites, Pu0u Lā0au and Halepōhaku (National

Fig. 1. The historic range of the palila coincided with the range of māmane, which provides the seeds that are its primary food. Once found in subalpine habitat on three
volcanoes of Hawai0i Island, palila are now found only on the southwestern slope of Mauna Kea. Inset A shows the main Hawaiian Islands with the historic range of palila
shown in black. Inset B shows the core palila habitat with survey transects.
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Climatic Data Center, Hawai0i Division of Forestry and Wildlife;
Supplementary material A.1.3) to determine the degree to which
the distribution of rainfall supported the results of the drought in-
dex and to provide additional context for understanding bird pop-
ulation trends.

To evaluate the impact of drought on māmane seed pod produc-
tion during the palila breeding season, we estimated monthly pod
abundance on 335 māmane trees in the survey area during April–
August of 2000 through 2004 (Supplementary material A.1.4).

During 1999–2001, we evaluated vegetation structure, māmane
regeneration, and damage from sheep within the core habitat adja-
cent to bird survey stations. We measured tree canopy dimensions,
counted saplings (0.2–2.0 m height), and recorded the incidence of
browsed branch tips or bark striping on 281 plots measuring
40 � 40 m.

3. Results

3.1. Palila population estimate and trend

Estimates of the palila population during the 14-year period
peaked at 5952 (95% CI: 5022–7073) in 2003 then declined for
eight consecutive years to 1263 (938–1613) in 2011 (Fig. 2, Supple-
mentary Table A2). From 2003 to 2011, population estimates de-
clined each year by an average of 586 ± 105.7 birds (mean ± SE;
range 90–938) for a mean annual loss of 17% ± 3.5 (range 3–37%)
or 79% overall.

During the 1998–2010 surveys, palila were detected in
43.3 km2 (67%) of the core area (64.4 km2), with detections being
broadly distributed in the northern portion of the core habitat
and in a long tail across the upper elevations to the south (Supple-
mentary Fig. A1). In 2011, palila detections were limited to
14.6 km2 (23%) of the core habitat.

3.2. Community-wide population trends

We detected 20 passerine species over the course of the 1998–
2011 surveys (Table 1). Nine species, including the sky lark (Alauda
arvensis), were detected in all 14 years and were relatively wide-
spread. We excluded the sky lark from further analyses because
its conspicuous, aerial displays made it exceptionally detectable,
and therefore inappropriate to compare with species that were
mainly detected in trees and shrubs.

The most abundant species overall (Table 1) were Hawai0i 0ama-
kihi (5.9 birds/station), house finch (Carpodacus mexicanus; 1.75
birds/station), and Japanese white-eye (1.14 birds/station). The
palila was the fourth most common species, averaging 0.66
birds/station, followed by the red-billed leiothrix (0.18 birds/sta-

tion) and Hawai0i 0elepaio (0.13 birds/station). Low numbers of
other species were detected in 1–13 surveys (Table 1). The Japa-
nese bush-warbler (Cettia diphone) was first detected on the 2006
survey, then intermittently on three later surveys. The 0akiapōlā0au
was detected only in 1998.

Of the six most common species, population declines were evi-
dent for palila, Hawai0i 0elepaio, and Japanese white-eye, but an-
nual estimates of the other species varied considerably and
resulted in no apparent trend (Table 1, Supplementary Fig. A2). De-
clines in the native seasonal visitors, 0apapane and 0i0iwi, were the
most notable trends among the less abundant species. Changes in
the number of survey stations at which species were detected gen-
erally followed trends in species abundance (Supplementary
Table A3). Palila were detected at 34% of the stations (n = 373) sur-
veyed in 1998, and 42% of stations (n = 421) in 2003, but only 18%
of stations (n = 411) surveyed in 2011. In contrast, the proportion
of stations occupied by Hawai0i 0amakihi declined very slightly
from nearly 100% during 1998–2000 to 96% in 2011.

3.3. Drought and rainfall patterns

All categories of drought severity, including ‘‘no drought,’’ were
recorded during 2000–2010, but dry conditions were pervasive
(Supplementary Table A4). Drought conditions occurred during
98 (74%) of 132 months, with drought recorded in 52 of 54 months
after June 2006. The longest period without drought was
14 months, which encompassed 2002, but other interruptions
lasted only 1–7 months. Drought was most severe in 2009, fol-
lowed by 2010. Drought occurred in all months of the year but
seemed on average more severe during summer and early fall
(June–October).

Historical and recent rainfall totals were highly variable, provid-
ing weak and inconsistent support for the results of the drought in-
dex (Supplementary material A.2.3; Tables A5 and A6).
Nevertheless, since 1997, annual rainfall at both sites was lower
than normal nearly twice as often as it was higher than normal
when compared with the historical data, indicating that this period
was unusually dry. Moreover, monthly patterns of rainfall gener-
ally agreed with the results of the drought index. Mean monthly
rainfall since 1997 fell below historical means in 65% and 71% of
months at Pu0u Lā0au and Halepōhaku, respectively (Supplemen-
tary Table A7). The months of lowest rainfall were June–October,
which were 39% and 52% drier than November–May for Pu0u Lā0au
and Halepōhaku, respectively (Supplementary Table A5).

3.4. Effect of drought on māmane pod abundance and palila nesting

Drought affected the average number of pods per tree per
month during 2000–2004, when data for estimating both the
drought index and pod abundance were available. Contrasting
the wettest and driest years, trees (n = 583) produced an average
of 148 (±16.7 SE) pods per month during the palila breeding season
(April–August) in the drought-free year of 2002; but in 2003, the
driest year, trees (n = 469) produced 76% fewer pods (35 ± 7.4 SE)
(Supplementary Fig. 3).

3.5. Habitat structure and carrying capacity

We estimated that about 731,948 māmane and 730,516 naio
trees populated the core area during 1999–2001. The mean cover
of all tree species was 22.3%, of which māmane accounted for
7.8% and naio accounted for 14.4%. The mean height of 5110 mā-
mane trees was 3.83 m (1.27 m SD). We recorded māmane regen-
eration in 95.0% of plots, but high sapling densities (>100 per ha)
occurred in only 28.5% of plots. Evidence of browsing or bark strip-
ing by sheep was recorded in 59.1% of plots. The total number of
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Fig. 2. Annual palila population estimates and 95% confidence intervals derived
from point-transect surveys since 1998, when for the first time all passerine species
were surveyed instead of select species only and when survey effort was increased
by adding new transects.
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palila counted per station during 1998–2011 was significantly cor-
related to the amount of māmane cover in adjacent vegetation
plots (P < 0.001; correlation = 0.321; r2 = 0.103; slope = 0.428
detections/percent cover).

4. Discussion

4.1. Decline of specialist species

The 79% decline in palila population estimates since 2003 is
unprecedented in 32 years of monitoring (Banko et al., 2009; Jacobi
et al., 1996). Also of concern is the 58% decline in the proportion of

survey stations with palila during 2003–2011. Palila were detected
in <15 km2 of habitat in 2011, underscoring their vulnerability to
local catastrophes. At the present rate of decline, the species could
be extinct very soon (Leonard et al., 2008), and even under im-
proved environmental conditions, this diminished population will
be slow to rebound due to low reproductive rates of wild birds
and the limited ability to release captive-reared birds into the wild
(Banko et al., 2009). Furthermore, absent effective management,
relict populations of Hawaiian passerines have never been recov-
ered and many have dwindled to extinction (Banko et al., 2001;
Gorresen et al., 2009). For example, in addition to the recent disap-
pearance of the 0akiapōlā0au from subalpine Mauna Kea, decades
have passed since the endangered Hawai0i 0ākepa (Loxops coccineus
coccineus), another specialist, and the endangered Hawai0i creeper
(Oreomystis mana) have been reported in māmane-naio woodland
(Banko, 1984a; Scott et al., 1986; Snetsinger, 1995). Due to low
reproductive capacity, reduced tolerance of ecological perturba-
tions (Banko and Banko, 2009; S�ekercioğlu et al., 2012), and
long-term, widespread habitat deterioration, this downward tra-
jectory of specialists suggests that their recovery will be slow, even
after effective management is applied.

4.2. Trends of non-specialist and uncommon species

Despite their overall resiliency to disturbance, populations of
some non-specialist species also declined on Mauna Kea, including
the Hawai0i 0elepaio and the Japanese white-eye. Additionally, both
species declined in the proportion of stations where they were de-
tected, indicating that environmental stress is affecting some na-
tive and introduced generalists. Nevertheless, the generalist
Hawai0i 0amakihi declined little in abundance or distribution, indi-
cating a high degree of resilience.

Table 1
Birds per station index by species detected during annual surveys in the core palila habitat on Mauna Kea during 1998–2011, including mean and total number of individuals.
Endemic and introduced species (see Table 1 footnotes for key to alpha codes) listed separately in order of abundance. Trends in annual mean number of birds per station for each
species were based on the magnitude of change indicated by a best-fit linear model: decline or increase 625% (M), decline 650% (;), decline >50% (;;), local extirpation (X),
insufficient data (NA). Population increases >25% were not observed.

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 Mean Total Trend

Endemic speciesa

HAAM 7.188 7.099 5.751 6.080 7.487 4.667 5.882 5.589 4.912 4.998 5.421 7.337 4.664 6.192 5.948 33,838 M

PALI 0.842 0.896 0.545 0.783 0.776 1.043 0.892 0.748 0.682 0.492 0.444 0.451 0.367 0.290 0.661 3,861 ;;
HAEL 0.107 0.164 0.266 0.217 0.167 0.154 0.156 0.067 0.063 0.096 0.079 0.101 0.058 0.102 0.128 746 ;;
APAP 0.038 0.062 0.084 0.279 0.124 0.033 0.111 0.045 0.008 0.005 0.095 0.022 0.032 0.034 0.069 395 ;;
IIWI 0.051 0.051 0.086 0.038 0.078 0 0.017 0.010 0.003 0 0 0 0.005 0 0.024 142 ;;
AKIP 0.003 0 0 0 0 0 0 0 0 0 0 0 0 0 NA 1 X
Introduced speciesb

HOFI 1.279 1.380 1.382 2.442 2.469 1.192 1.618 1.800 1.644 1.885 2.368 1.496 1.659 1.939 1.754 9,771 M

JAWE 1.751 1.385 0.834 1.385 1.517 1.382 0.974 1.176 1.184 1.885 0.750 0.530 0.898 0.324 1.141 6,384 ;;
SKLA 0.692 0.818 0.855 0.901 0.741 0.451 0.707 0.808 0.768 0.986 0.998 0.624 0.353 0.645 0.739 4,148 M

RBLE 0.359 0.124 0.065 0.050 0.078 0.290 0.019 0.166 0.184 0.417 0.373 0.190 0.204 0.022 0.182 1,029 M

YFCA 0.064 0.099 0.037 0.071 0.169 0.069 0.050 0.045 0.182 0.044 0.016 0.041 0.144 0.027 0.076 429 M

NOCA 0.067 0.108 0.077 0.028 0.066 0.021 0.060 0.036 0.068 0.044 0.148 0.063 0.010 0.005 0.057 311 ;
NOMO 0.024 0.016 0.005 0.005 0.030 0.024 0.012 0.021 0.015 0.026 0.025 0.022 0.010 0 0.017 97 M

AFSI 0.013 0 0.002 0.017 0.027 0.038 0.005 0.002 0.053 0.019 0.012 0 0.017 0 0.015 79 M

MELT 0.024 0.028 0.026 0.007 0.014 0.002 0.002 0.002 0.005 0.002 0.002 0.048 0.005 0 0.012 69 ;;
JABW 0 0 0 0 0 0 0 0 0.003 0.005 0 0.048 0 0.012 0.005 28 NA
COMY 0.008 0.007 0.026 0 0 0.002 0.002 0 0.008 0.002 0 0 0 0 0.004 23 NA
HOSP 0 0.014 0.009 0.007 0.009 0.002 0 0.005 0 0 0 0 0 0 0.003 20 NA
YBCA 0 0 0 0 0 0 0 0 0.015 0 0 0 0 0 0.001 6 NA
NUMA 0 0 0 0 0.002 0.007 0 0 0 0 0 0 0.005 0 0.001 5 NA

a AKIP (0akiapōlā0au, Hemignathus munroi, Drepanidinae); APAP (0apapane, Himatione sanguinea, Drepanidinae); HAAM (Hawai0i 0amakihi, Hemignathus virens, Drepanid-
inae); HAEL (Hawai0i 0elepaio, Chasiempis sandwichensis, Monarchidae); IIWI (0i0iwi, Vestiaria coccinea, Drepanidinae); PALI (palila, Loxioides bailleui, Drepanidinae).

b AFSI (African silverbill, Lonchura cantans, Estrildidae); COMY (common myna, Acridotheres tristis, Sturnidae); HOFI (house finch, Carpodacus mexicanus, Fringillidae); HOSP
(house sparrow, Passer domesticus, Passeridae); JABW (Japanese bush-warble, Cettia diphone, Silviidae); JAWE (Japanese white-eye, Zosterops japonicas, Zosteropidae); MELT
(melodious laughingthrush, Leucodioptron canorum, Timaliidae); NOCA (northern cardinal, Cardinalis cardinalis, Cardinalidae); NOMO (northern mockingbird, Mimus poly-
glottos, Mimidae); NUMA (nutmeg manikin, Lonchura punctulata, Estrildidae); RBLE (red-billed leiothrix, Leiothrix lutea, Timaliidae); SKLA (sky lark, Alauda arvensis, Alau-
didae); YBCA (yellow-billed cardinal, Paroaria capitata, Emberizidae); YFCA (yellow-fronted canary, Serinus mozambicus, Fringillidae).

Fig. 3. Linear relationship (y = �73.772 � +155.9, R2 = 0.9338, P = 0.007) between
mean māmane pod production per tree and drought severity. Māmane trees
produced fewer pods in years when drought was more severe, as indicated by high
annual mean drought index values. Monthly pod production was estimated for the
palila breeding season (April–August).
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Small populations are expected to decline rapidly under deteri-
orating environmental conditions, although trends in small popu-
lations are difficult to detect (Camp et al., 2009). Nevertheless,
our results indicated that small, local populations of many intro-
duced species (Table 1) persisted during the drought years. It
seems unlikely that these populations were sustained solely by
immigrants because potential source areas were also affected by
drought. Nevertheless, some immigration apparently occurred
during the drought because the introduced Japanese bush-warbler,
a small insectivore associated more with dense understory vegeta-
tion (Foster, 2009) than with dry woodland, established a small
foothold in the study area, which is testament to the ability of
some generalists to cope with harsh environmental conditions. In
contrast to these introduced resident species, seasonal movement
to the māmane forest by native nectar-feeders declined during
the survey period.

4.3. Impacts of drought

The drought index provided relatively consistent evidence of
the prolonged and extreme episodes of dry conditions that we ob-
served on Mauna Kea. Although monthly rainfall patterns generally
supported the results of the drought index, annual rainfall was less
congruent, suggesting that localized storms distributed rainfall un-
evenly across the landscape. During normal to wet periods, for
example, rain gauge totals at similar elevations on the southwest-
ern slope of Mauna Kea varied by over 300 mm, although during
drier periods they tended to vary less (Juvik et al., 1993). Neverthe-
less, rainfall patterns at Halepōhaku were more congruent with the
drought index and our observations of wilted vegetation, dry soil,
and the poor condition of the habitat in general. Although it was
not measured, fog-drip can become the dominant form of precipi-
tation under trees during periods of unusually low rainfall (Juvik
et al., 1993), and fog-drip’s contribution to canopy throughfall
probably moderated drought impacts somewhat during our study.

The dry conditions that normally prevail in subalpine Mauna
Kea (Juvik et al., 1993) influence the vegetation structure and com-
position (Hess et al., 1999), but the long-term effects of severe,
multi-year drought on plant vigor, productivity, and recruitment
have yet to be evaluated. Long periods of abnormally dry weather
could be expected to reduce tree cover and increase grass cover
(Lohse et al., 1995; Loope and Giambelluca, 1998), and monitoring
would identify the extent to which māmane is being affected by
drought.

The short-term effects of severe drought on passerine popula-
tions have been noted before on Mauna Kea (Lindsey et al.,
1997), but results of our study allow consideration of the chronic
drought impacts. Drought likely contributed heavily to the recent
decline of palila, although effects on most other species were less
pronounced or consistent over time. The palila population estimate
peaked in 2003, just after the longest period of relatively normal
weather during the study period, which was 14 months (November
2001–December 2002). The population declined each year thereaf-
ter, when drought conditions were interrupted on only six occa-
sions, each lasting from 1 to 7 months. Dry conditions were
strongly associated with lower māmane pod production, and be-
cause palila survival and reproduction are reduced when pods
are scarce (Lindsey et al., 1997, 1995; Pratt et al., 1997), fewer pal-
ila likely nested during the drought. Nevertheless, the relationship
between nesting attempts and pod availability is weak (Banko
et al., 2009), suggesting that age structure, sex ratio, or other fac-
tors also might influence annual nesting activity.

Among the common species that seemed most tolerant of
drought conditions were those that forage mainly in grass and on
the ground for seeds and insects: the house finch, yellow-fronted
canary (Serinus mozambicus), and sky lark. Although Hawai0i 0ama-

kihi may have avoided the graver consequences of drought by for-
aging in a variety of shrubs and trees, the Hawai0i 0elepaio and
especially the Japanese white-eye fared less well. The decline in
Japanese white-eye numbers could be the result of competition
with the more abundant and somewhat larger Hawai0i 0amakihi
during periods of low food availability and harsh environmental
conditions.

4.4. Effects of browsing on habitat carrying capacity and implications
for recovery

Despite the serious, immediate impacts of drought on palila
demography, the most important, long-term manageable threat
to the population is habitat degradation by feral sheep and mou-
flon sheep (Banko et al., 2009; Scott et al., 1984; U.S. Fish and Wild-
life Service, 2006). Over many decades, browsing has changed the
structure and composition of montane and subalpine vegetation on
Mauna Kea by removing seedlings, wounding saplings and trees,
and reducing tree and shrub cover (Hess et al., 1999; Scowcroft,
1983; Scowcroft and Giffin, 1983; Scowcroft and Sakai, 1983).
Although browsing presumably depletes the non-structural carbo-
hydrate reserves of all size classes of māmane trees, it is the seed-
lings, saplings, and small trees that should be especially vulnerable
due to their shallow, less developed root systems, greater propor-
tion of leaf biomass, and reduced concentrations of non-structural
carbohydrates (Niinemets, 2010). On average, māmane measured
during 1999–2001 were less than 4-m tall, suggesting that this rel-
atively young population of trees should be highly susceptible to
browsing, drought, and other stressors compared to a population
of older, larger trees. Additionally, browsing likely reduces the tol-
erance of māmane and other species to the physiological burdens
presumably imposed by drought, temperature extremes (Juvik
et al., 1993), pathogens (Gardiner and Trujillo, 2001), and competi-
tion from invasive grasses and a variety of other weeds (Banko
et al., 2009; Williams, 1994). The ability of trees to tolerate multi-
ple chronic stress factors is rare (Niinemets, 2010); therefore, tree
vigor and productivity should increase when browsing and other
manageable sources of stress are alleviated.

Sheep have long been hunted on Mauna Kea, and during 1998–
2010 nearly 11000 sheep were removed from Palila Critical Habitat
by a combination of public hunting (54%) and aerial shooting (46%)
(Hawai0i Division of Forestry and Wildlife unpublished data). The
impact of this program on the unmonitored population of sheep
is unknown, but this level of removal has not prevented wide-
spread, severe browse damage from continuing and it likely falls
well below the annual rate of removal needed for eradication. Nev-
ertheless, previous work (Scowcroft and Conrad, 1988) and our
vegetation surveys indicate that robust habitat recovery is possible
in the absence of browsing. Although māmane crown cover was
very low during 1999–2001, many of the trees we encountered
were small (young) and saplings were widespread, if sparsely dis-
tributed. Even during the recent drought, māmane seedling density
was observed to be 77.7 seedlings per ha only 6 years after brows-
ers were eliminated from within a recently constructed ungulate
exclosure, whereas 10.9 seedlings per ha were recorded outside
the exclosure (Hawai0i Division of Forestry and Wildlife unpub-
lished data).

We can expect a long lag before palila fully benefit from forest
recovery, given that palila are more common in areas with greater
crown cover, taller trees, and a higher proportion of native plants
in the understory (Scott et al., 1984). Our finding that palila detec-
tions increased with māmane cover confirms this relationship and
establishes a basis for modeling the response of palila to improved
habitat carrying capacity. For example, doubling the fraction of
māmane tree cover from 7.8%, which is the mean for the core area,
to 15.6% should yield 26% more palila detections during surveys. As

P.C. Banko et al. / Biological Conservation 157 (2013) 70–77 75



tree size increases over time, palila detections should increase even
more. Nevertheless, a rapid response to sheep eradication could be
expected as lower tree branches re-sprout and canopy volume in-
creases, yielding more food for palila and other birds (Banko et al.,
2009). Given that most trees are <4 m in height and that browsing
extends to at least 1 m height, tree canopy volume could quickly
increase by roughly 25% after removing sheep.

In the long-term, increased tree cover through ungulate eradi-
cation and habitat restoration will result in higher soil moisture
through increased cloud water interception and canopy through-
fall (Juvik et al., 1993) as well as less grass cover and reduced fire
risk (Hess et al., 1999; Thaxton and Jacobi, 2009). At a global scale,
invasive grasses pose serious threats to ecosystems through com-
petition with native vegetation for water and nutrients and by
escalating fire risks through the accumulation of fine fuels and
the promotion of grass-fire cycles (D0Antonio and Vitousek,
1992). On Mauna Kea, invasive grasses and other weeds compete
for water and nutrients with māmane and other native trees and
shrubs, thereby adding to the stress of drought as well as suppress-
ing regeneration and increasing fire threats (Cabin et al., 2000;
Hess et al., 1999; Williams, 1994). Reducing grass cover by promot-
ing tree cover and potentially by the strategic application of herbi-
cide could also, therefore, boost habitat carrying capacity. Results
of our vegetation survey indicate that nearly 1.5 million māmane
and naio trees are available to palila and other birds in the core
habitat, yet many more trees are needed to sustain bird popula-
tions during prolonged drought.

Without effective and timely intervention, demographic and
stochastic factors may further impede recovery of the dwindling
palila population. Priority action was long ago (1979) and repeat-
edly (1987, 1998) mandated by court order: permanently remove
introduced browsing ungulates from Palila Critical Habitat (Juvik
and Juvik, 1984; U.S. Fish and Wildlife Service, 2006). To help
accomplish this goal, the original fence built in 1936 to protect
Mauna Kea Forest Reserve from introduced ungulates is being re-
placed by an 82-km, ungulate-proof fence around most of Critical
Habitat and a draft plan to eradicate sheep and goats has been
completed.

5. Conclusion

The disappearance of specialist feeders, most recently the
0akiapōlā0au, and the sharp decline in palila numbers underscore
the urgency of protecting the forest bird community of Mauna
Kea. Without informed, effective management, conservation op-
tions diminish as threatened populations decline and habitat con-
ditions deteriorate. Long-term and continuing damage to habitat
by ungulate browsing is being compounded by severe, prolonged
drought that may be a consequence of climate change. Despite
their rate of decline and imposing threats to their survival, the pal-
ila is a species for which long-term persistence, if not recovery, is a
realistic goal, but only if habitat carrying capacity can be increased
in time and over a sufficiently large area. Management will also
benefit other native forest bird species affected by drought, and
the effectiveness of measures taken should be observed first in
the trends of generalist species, which will likely respond relatively
quickly to improving conditions. Our results point to the value of
long-term ecological studies and population monitoring in areas
where climate change is exacerbating the impacts of invasive spe-
cies on endangered species and bird communities generally.
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