Evaluation of Some Vulval Appendages in Nematode Taxonomy

Lynn K. Carta
United States Department of Agriculture–Agricultural Research Service, lynn.carta@ars.usda.gov

Zafar A. Handoo
United States Department of Agriculture–Agricultural Research Service, handooz@ars.usda.gov

Eric P. Hoberg
United States National Parasite Collection, ehoberg@ggpl.arsusda.gov

Eric F. Erbe
United States Department of Agriculture, weekserbe@verizon.net

William P. Wergin
United States Department of Agriculture, wwergin@msn.com

Follow this and additional works at: http://digitalcommons.unl.edu/parasitologyfacpubs

Part of the Parasitology Commons

http://digitalcommons.unl.edu/parasitologyfacpubs/639
Evaluation of Some Vulval Appendages in Nematode Taxonomy

LYNN K. CARTA,1,5 ZAFAR A. HANDOO,1 ERIC P. HOBERG,2 ERIC F. ERBE,3 AND WILLIAM P. WERGIN4

1Nematology Laboratory, United States Department of Agriculture–Agricultural Research Service, Beltsville, Maryland 20705, U.S.A. (e-mail: lynncarta@ars.usda.gov, handooz@ars.usda.gov) and
2United States National Parasite Collection, and Animal Parasitic Diseases Laboratory, United States Department of Agriculture–Agricultural Research Service, Beltsville, Maryland 20705, U.S.A. (e-mail: eric.hoberg@ars.usda.gov)

ABSTRACT: A survey of the nature and phylogenetic distribution of nematode vulval appendages revealed 3 major classes based on composition, position, and orientation that included membranes, flaps, and epitygmata. Minor classes included cuticular inflations, protruding vulvar appendages of extruded gonadal tissues, vulval ridges, and peri-vulval pits. Vulval membranes were found in Mermithida, Triplonchida, Chromadorida, Rhabditidae, Panagrolaimidae, Tylenchida, and Trichostrongylidae. Vulval flaps were found in Desmodoroidea, Mermithida, Oxyuroidea, Tylenchida, Rhabditida, and Trichostrongyloidea. Epitygmata were present within Aphelenchida, Tylenchida, Rhabditida, including the diverged Steinernematidae, and Enoplida. Within the Rhabditida, vulval ridges occurred in Cervidellidae, peri-vulval pits in Strongyloides, cuticular inflations in Trichostrongylidae, and vulval cuticular sacs in Myolaimus and Deleyia. Vulval membranes have been confused with persistent copulatory sacs deposited by males, and some putative appendages may be artifactual. Vulval appendages occurred almost exclusively in commensal or parasitic nematode taxa. Appendages were discussed based on their relative taxonomic reliability, ecological associations, and distribution in the context of recent 18S ribosomal DNA molecular phylogenetic trees for the nematodes. Characters were found to be distributed across subsets of terminal and phylogenetically distant taxa, demonstrating considerable homoplasy. Accurate definitions, terminology, and documentation of the taxonomic distribution of vulval appendages are important in evaluations of hypotheses for either parallelism and developmental constraint or convergence and adaptation.

KEY WORDS: Araeolaimida, Ascaridida, Capillariidae, character analysis, cuticle, Enoplida, functional morphology, lateral field, Oxyuroidea, phylogeny, Plectidae, Rhigonematida, Trichocephalida, Triplonchida, Spirurida.

Cuticular modifications of the external nematode vulva are frequently described in different disciplines within the nematology community by using similar terms for distinctly different morphological structures, and very different terms for what may be homologous structures or analogous features with similar cellular-histological dynamics. Morphological analyses may fail to resolve phylogeny through confusion over proper character definition, coding, or awareness of interdependence or homoplasy (Giribet, 2003). Character terminology can be critical for phylogenetic analysis and identification linked to expert systems (Diederich et al., 2000). The need to standardize terminology seems to be a universal concern among nematologists, as exemplified in surveys on the extensive variability in cuticle-layering across diverse taxa (Blaxter and Robertson, 1998; Decraemer et al., 2003). In vulval appendages, terms are often used interchangeably, so confusion occurs when images are not readily available. It is our contention that distinct structures exist that should be described and generally defined so that adjectives are not used randomly. The categories in this survey have the potential to promote the understanding of functional morphology across taxonomic disciplines. These terms can be further qualified when other studies are made to examine homology.

In nematodes the vulva is a cuticle-covered opening in the hypodermis from which eggs are laid at the ventral exterior of adult females or hermaphrodites. The shape of the opening is often a transverse slit and occasionally a longitudinal slit or symmetrical pore. Developmental biologists observed that in the Caenorhabditis elegans model system, the vulva is composed of 20 cells, epithelial cells and associated muscles essential for egg laying (Bird and Bird, 1991), that connect the hypodermis with the uterus (White, 1988). However, the division of exterior vulva and internal vagina is warranted for nematode morphology and taxonomy (Maggenti, 1981). For nematodes such as Dorylaimida, it is especially important to more precisely define the vulva as the outer cuticular region of the female invagination continuous in width with the body cuticle (De Ley et al., 1993).

Here, we describe the variations in terminology and morphology of vulval appendages with a survey of the literature and specific examples. The terms are
describe for categories based on orientation, size, and tissue location, and they are not meant to imply homology. For example, the prerectum is a repeatably recognizable structure with phylogenetically diverse occurrence (Carta and Osbrink, 2005), as are wings in very diverse animals. Therefore, the most common and stable vulval appendages defined and surveyed are mapped onto trees based on current hypotheses of nematode phylogeny. We also have refined ecological associations to compare occurrence among species and higher taxa that may support useful biological predictions. Because orthologous genes can act on homologous or analogous cells (Bolker and Raff, 1996) that generate external appendages, insight into their phylogeny, variability, coordinated occurrence, and structure are necessary before relevant developmental-genetic mechanisms for these natural vulval phenotypes using a candidate gene approach can be considered (Haag and True, 2001).

MATERIALS AND METHODS

An extensive literature search was undertaken from comprehensive reviews (Chitwood and Chitwood, 1950; Maggenti, 1981; Malakhov, 1994) describing Adenophoran nematodes (Hope, 1974; Platt and Warwick, 1983, 1988; Lorenzen, 1994; Warwick et al., 1998), animal-parasitic nematodes (Skrjabin, 1949, 1951, 1952, 1954), plant-parasitic and insect-parasitic nematodes (Hunt, 1993; Siddiqi, 2000), terrestrial free-living nematodes (Goodey and Goodey, 1963; Sudhaus and Fitch, 2001; Andrássy, 1983), as well as numerous individual articles on specific taxa. When a statement is derived from taxa within taxonomic compendia such as those of Siddiqi or Skrjabin, the citation is prefaced with "in." The online database at www.cabi.org, email: for Nematological and Helminthological Abstracts from PESTCABWeb, CABI Publishing, Wallingford, U.K., also was searched through monthly updates by DialogAlertServices@di dialog.com through the National Agricultural Library, Beltsville, Maryland, U.S.A., for the following terms through September 2008: lateral vulval membrane, vulval membrane, vulval fan, vulval flap, vulval dike, vulval alae, and epitygma(ta).

Microscopy

Some nematodes were processed for differential interference light microscopy as either heat-relaxed, live specimens (Distolabrellus vecchi Anderson, 1983) or 3.2% formaldehyde-fixed specimens (Aphecithoenechus sp. and an undescribed species of Mermithidae). Other nematodes (Distolabrellus vecchi, C. elegans) were processed for low temperature scanning electron microscopy (LTSEM) in distilled water according to standard procedures (Wergin et al., 1993; Carta et al., 2003). Photomicrographs were oriented with ventral side facing the top of the plates. Line figures from previous publications were traced and modified or scanned from published drawings.

Phylogeny

Three comprehensive alternative trees of nematodes were recently constructed with 18S small subunit (SSU) rDNA sequences of a large number of similar taxa (Holterman et al., 2006; Smythe et al., 2006; Meldal et al., 2007). Trees of Holterman et al. (2006) and Meldal et al. (2007) were chosen as character frameworks for this study based on taxonomic coverage, secondary alignment strategies, Bayesian tree-making methods, and better tree resolution. The topology of 1 tree was abstracted from a Bayesian Inference tree created with 339 taxa having 2,471 aligned SSU rDNA positions from a ClustalW alignment manually edited in accordance with arthropod sequences aligned by secondary structure (Holterman et al., 2006). The topology of a second tree was abstracted from a Bayesian Inference tree created with 212 taxa having 1,167/1,884 aligned SSU rDNA characters created from a profile alignment built upon some European RNA database sequences aligned according to secondary structure; this alignment was then culled of the most ambiguously aligned positions (Meldal et al., 2007). The Holterman tree was supplemented with information on the placement of Brevibacca Goodey, 1935 and a new sequence of membrane-bearing Cuticomena Sanwal, 1959 from more ribosomal and nuclear gene characters (Kiontke et al., 2007) that demanded independent placement from the Cephalobidae, and taxonomic categories were based on pre-2002 taxonomic groupings. The Meldal tree was labelled with newer taxonomic categories (De Ley and Blaxter, 2002, 2004; based in part on Blaxter et al., 1998 and Aleshin et al., 1998) and older, lower level categories as appropriate. The current trees were made with MacClade version 4.05 software (Maddison and Maddison, 1992; Sinauer Associates, Inc., Sunderland, Massachusetts, U.S.A.) in which characters were traced on 2 different tree topologies to demonstrate the distribution of 3 of the most common vulval appendages of membranes, flaps, and epitygma(ta) in higher taxa. Life history associations were included in branches on trees to include 0, free-living: 1, invertebrate commensal (an important but overlooked category); 2, invertebrate parasitic; 3, animal parasitic; and 4, plant parasitic.

RESULTS AND DISCUSSION

Nomenclature and distribution

The names “vulval membrane” and “vulval flap” are based on the precedent set by Siddiqi (2000), where “membranes” have a primarily lateral orientation and “flaps” have a primarily parallel orientation relative to the vulval slit. An early general approach to terminology for vulval appendages was ambiguous because lateral membrane was defined as “a cuticular flap situated on both sides of the vulval slit in some nematodes. See epitygma, “vulval flap” (Caveness, 1964). Vulval flaps were defined as “cuticular membranes situated at both ends of the vulva. See epitygma, lateral membrane” (Caveness, 1964). Another general description blurred the distinction among what we consider three separate structures of vulval membranes, vulval flaps, and epitygma(ta)— “Vulval membranes (vulval flaps) occur in some
plant-parasitic Secernentea (Paratylenchus and Hoploaimus)” (Hirschmann, 1971). A recent compilation of designations for nematode morphological structures for identification by expert systems includes various names for 3 vulval appendages: anterior lip of vulva = (ventral vulval flap); epitygymata = epitygymata = (lateral membrane); lateral vulval flaps = vulval membranes = vulval dikes = vulval alae. These authors acknowledge a right to be “wrong” about the nature and naming of a structure, and the continuing need to resolve contradictory character concepts for identification and phylogeny (Diederich et al., 2000).

Vulval appendages have been studied in some detail among animal-parasitic Strongylida. Sections through the vulval region of these nematodes reveal 3 distinct types of structures (Hoberg et al., 1993b). The first includes consistent, symmetrical, lateral cuticular “fans” internally supported by hypertrophied struts, and arising from specific regions within the lateral field. They are designated here as vulval membranes. The second comprise inconsistent, irregular, asymmetrical, body wall and cuticular “flaps” with a primary anterior to posterior orientation parallel to the vulval slit, designated here as vulval flaps. The third includes inconsistent, irregular, often lateral asymmetrical cuticular “inflations” of amorphous orientation without organized strut support, similar to vulval membranes, and probably unique to the Ostertaginiae, designated as “cuticular inflations” (Chitwood and Chitwood, 1950). Examples of these types of appendages in other taxa are discussed below and illustrated (Figs. 1–19), and some are mapped onto phylogenetic trees (Figs. 20, 21).

Vulval membranes

As used here, vulval membranes are semioval, approximately symmetrical, cuticular outgrowths lateral and perpendicular to the vulval slit. Annulation or longitudinal indentations are visible on their edges. Vulval membranes are described (Figs. 1, 7–9) with various terms in different taxa in plant parasites as “lateral vulval membranes,” “lateral vulval flaps,” “vulval sheaths” or “advulval flaps”; in bacterial-feeding rhabditids as “opercula,” “ridge-like sculptures” or “flaps”; in insect parasitic mermithids as “wide lips flanking the vulva”; in animal-parasitic Strongylida as “bilateral vulval fans” or “fin-like processes”; and in animal-parasitic Trichocephalida as “lateral alate membranes.” Among the Rhabditida, vulval membranes visible with the light microscope (LM) have been described in Cuticenoma vivipara Sanwal, 1959 (Sanwal, 1959) (Panagrolaimoidea); Opercurorhabditis longespiculosa Khera, 1969 (Khera, 1969) (Mesorhabditiniae) (Fig. 8); and all species of Caenorhabditis. They are quite large in Caenorhabditis sonorae Kiontke, 1997 and Caenorhabditis drosophilae Kiontke, 1997 (Kiontke, 1997). Much smaller vulval membranes in C. elegans N2 had visible annulations viewed with LTSEM (Fig. 9). Small vulval membranes also were observed with the SEM in Rhabditis (Oscheius) guentheri Sudhaus and Hooper, 1994, described as “longitudinal cuticular flaps 8–10 μm long … at each end of the vulval slit,” (Sudhaus and Hooper, 1994). An SEM view of a related free-living rhabditid nematode, Pellioditis pellio (Schneider, 1866) Timm, 1960, showed no vulval appendages (Eveland et al., 1990). Vulval membranes also are seen in the relatively primitive Tylenchina such as in Tylodorinae (Siddiqi, 2000), e.g., Coslenchus Siddiqi, 1978 (Siddiqi, 1980); Cephalenchus Goody, 1962 (Golden, 1971) (Siddiqi, 2000); Pterotylenchus Siddiqi and Lenné, 1984 (Siddiqi and Lenné, 1984); and in one species of insect-parasitic Deladenus Thorne, 1941 out of 15 species in the genus (Shahina and Maqbool, 1992). Dolichodorus longicaudatus Doucet, 1981 is illustrated with a lateral vulval membrane (Doucet, 1981), and South American species in the related genus Belonolaimus Steiner, 1949 (syn. Ibipora), have vulval membranes (Doucet and Filisetti, 2000; Siddiqi, 2000). Vulval membranes may be found in the Criconematina, in Paratylenchus Micoletzky, 1922 (Raski, 1975a, b; Dolinski et al., 1996), and in Hemicriconemoides Chitwood and Birchfield, 1957 as “vulval sheaths” (Dasgupta et al., 1969), where they are prominent in Hemicriconemoides cocophilus (Loos, 1949) Chitwood and Birchfield, 1957 and Hemicriconemoides wessoni Chitwood and Birchfield, 1957 (Esser and Vovlas, 1990). The vulval membranes of Pratylenchus roseus Zarina and Maqbool, 1998 are unique within this genus (Zarina and Maqbool, 1998). In the adenhophoran terrestrial mermithid Tunicamermis melelonthae Schuurmans-Stekhoven, Mawson, Couturier, 1963, they are described as wide lips that flank the vulva (Poinar, 1975b).

Vulval flaps

The word “flap” in the literature is the most ambiguous term of all, because it has been used to describe what is designated here as vulval membrane, vulval flap, or epitygyma. As used here, vulval flaps
are mild-to-extreme modifications of the anterior vulval lip that show up as overhanging extensions of cuticle oriented parallel and anterior to the vulval slit (Figs. 6, 10–12). Vulval flaps were described as such among the primarily plant- or insect-parasitic Tylenchida and Aphelenchida, including the prominent structures of *Rhadinaphelenchus* J. B. Goodey, 1960 (Nickle, 1970); a sclerotized, jointed flap in *Aphelenchoïdes vigor* Thorne and Malek, 1968 (Thorne and Malek, 1968); and variably sized flaps in *Bursaphelenchus* Fuchs, 1937 (Nickle et al., 1981), where they exist in approximately one third of the known species (in Yin et al., 1998; Braasch, 2001). A small vulval flap has sometimes been observed in the tylenchid weevil parasite *Elaeolenchus partheno- nema* Poinar, Jackson, Bell, and Wahid, 2002 after it enters the insect but not in the infective female (Poinar et al., 2002). Vulval flaps are found in some
aquatic genera of insect parasitic Mermithidae that include *Hydromermis* Corti, 1902; *Lanceimermis* Daday, 1911; *Amphimermis* Kaburaki & Imamura, 1932; and *Diximermis* Nickle, 1972 (Nickle, 1972). Vulval flaps also were noted in a free-living marine nematode, *Epsilonema espeeli* Verschelde and Vincx, 1994 (Desmodoroidea) (Verschelde and Vincx, 1994). In plant parasites (Tylenchoidea), the vulval flap was described as a “vulval sleeve” in *Hemicycliophora penetrans* Brzeski, 1974 (Brzeski, 1974), and “lip flap” in the Ecphyadophoridae (Tylenchidae) (Siddiqi, 2000), such as *Ecphyadophora sheri* Raski, Koshy and Sosamma, 1982 (Raski et al., 1982).

Among animal parasites, vulval flaps are present in some Trichostrongyloidea, such as *Ostertagia ostertagi* (Stiles, 1892), in which the degree of bovine immune response influences the presence, size and symmetry of the flap (Michel and Sinclair, 1969; Michel et al., 1972). Vulval flaps also are found among other species and genera of the Ostertaginae, including other species of *Ostertagia Ransom, 1907* (Fig. 6) and species of *Spiculoptertagia* (Orloff, 1933), *Mazamastrongylus* Cameron, 1935, and *Teladorsagia* Andreeva and Satulbadin, 1954 (Hoberg et al., 1993b). Among Haemonchinae, the putative sister-group of Ostertaginae (Hoberg and Lichtenfels, 1994; Durette-Desset et al., 1999), a considerable amount of body wall occurs in the flaps characteristic of *Haemonchus contortus* (Rudolph, 1802), *H. placei* (Place, 1893), and *H. similis* Travassos, 1914 (e.g., Das and Whitlock, 1960; Gibbons, 1979; Lichtenfels et al., 1994).

Epiptyg mata

Epiptyg mata (singular epiptygma) (Figs. 13–17) are cuticular protrusions on 1 or both vulval lips or the vaginal wall (Siddiqi, 2000). The smallest epiptyg mata seem to be strictly cuticular, but larger epiptyg mata as currently defined (Baujard et al., 1991a, b) seem to involve cuticle and 1 or more protruding cells. Within plant-parasitic Tylenchida, epiptyg mata are generally small and common as in most Hoplolaimoidea and Merliniinae, and some Dolichodoroida (5 species in *Belonolaimus* Siddiqi, 2000). However, large double epiptyg mata are described in many populations of *Plesiorotylenchus striaticeps* Elekçioglu, 2000 (Tylenchina, Tylenchida) (Elekçioglu, 2000) and in *Scutellonema cavernessi* Sher, 1964 (Hoplolaimina, Tylenchina) (Baujard et al., 1990). These protruding lips were described previously with an inner and outer, double epiptygma composed of exocuticle and mesocuticle, but not endocuticle (DeGrisse and Roose, 1975). Double epiptyg mata also are seen in more distantly related Steinernematida within multiple species of *Steinernema* (in De Doucet and Doucet, 1990; Stock et al., 2001). Steinernematids were classified under Rhabditida, but more recently they were placed within Tylenchina under new infraorder Panagrolaimomorpha based on 18S rDNA phylogeny (De Ley and Blaxter, 2002, 2004).
It is sometimes difficult to determine from taxonomic descriptions whether hypertrophy of the body wall has occurred within overhanging, asymmetrical vulval lips, so the distinction between flaps and epiptygmas can be subtle. Within non-Secernentean nematodes, the exceptional presence of a small epiptygma-like structure is found in *Deontostoma californicum* Hope, 1974 (Enoplida), which has a small vulval groove and lip (Hope, 1974). Although the structure is asymmetric and seals the vulval opening, it would not be large or superficial enough to be considered a flap. Epiptygmas and vulval membranes may be present in the same nematode, as in *Coslenchus costatus*; *Antarctenchus hooperi* Siddiqi, 1980 (Siddiqi, 1980); or *Rhabditis (Oscheius) guentheri* (Sudhaus and Hooper, 1994). However, epiptygmas do not seem to coexist with vulval flaps, at least nominally in published descriptions. We are also unaware of any studies demonstrating a transformation between epiptygma and flaps in individual nematodes. Although small cuticular epiptygmas are oriented parallel to the slit, like vulval flaps, their size and presence in a nematode population also may be inconsistent within a population as with projecting and nonprojecting epiptygmas in *Scutelonema Andrássy, 1958* (Mekete et al., 2008), but details of this variability were not given. The vulva, vagina, and uterus seem to be stretched in an individual in which an epiptygma is not projecting, so it is unclear whether a proportion of the population did not possess epiptygmas (Mekete et al., 2008). Ambiguity also is especially apparent within structures of Hoplolaimidae and Telotylenchidae.

Vulval cuticular inflations

Irregular “cuticular inflations” (Chitwood and Chitwood, 1950) of variable orientation around the vulva exist in some individuals within species of *Hyostrongylus* Hall, 1921 such as *Hyostrongylus rubidus* (Hassall and Stiles, 1892) Hall, 1921 (Fig. 5) (Hoberg et al., 1993a). They also occur in species of *Longistrongylus* Le Roux, 1931, *Mazamastrongylus*, and *Camelostrongylus mentulatus* (Railliet and Henry, 1909) (Hoberg et al., 1999c). Within certain species of Spirurida, vulval inflations of the anterior lip (Digiani, 1999) or of both lips occur, but this feature was not included in a species-level parsimony character analysis (Zhang et al., 2003). Cuticular inflations due to fluid expansion in the medial cuticle layer near the bacillary bands in capillariid whipworms (Wright, 1975) are not generally associated with the vulva, although some of these species have everted vulvae (Lanfredi et al., 1995).

Protruding vulvar appendages

These are nonartifactual vulval elaborations in which part of the female reproductive system evaginates, with different degrees of exposure of the vulva, vagina, or uterus, depending on species.

![Figure 21](image-url). Phylogenetic trees for nematodes with vulval appendages (left, vulval membranes; center, vulval flaps; right, epiptygmas; Appendix 1) mapped onto one topology based on 18S SSU-rDNA molecular-based trees (after Meldal et al., 2007). Numbers before taxa signify presence but not necessarily predominance of the following life history characters: 0, free living; 1, invertebrate commensal; 2, invertebrate parasitic; 3, vertebrate parasitic; and 4, plant parasitic.
(Lanfredi et al., 1995). They may have variable shapes, including funnel-shaped, tubular (Lanfredi et al., 1995), or globular (Ching, 1990). These structures also are known as "protruding vulvar folds" (Kalia and Gupta, 1984), or even "noncuticular, transparent formations" (terminology used in Skrjabin, 1954). These structures that represent partially or fully everted gonadal tissue are described in adenophorean capillarid Trichocephalida as large toroidally "protruding membranes" as in *Capillaria caudinflata* Molin, 1858 (Fig. 18) (Skrjabin, 1954). The vulvar appendage in *Capillaria ohbayashi* Justine, 1992 was variably present and may not exist in some individuals within the species (Justine, 1992), probably due to their generation on oviposition (Lanfredi et al., 1995). In secernentean pinworms (Heteroxygenematidae, Oxyuroidea) there are "beak-like" structures composed of uterus and surrounding, hypertrophied vulval lips that protrude from the body that are not artifacts of fixation (Hoberg and Pilitt, unpublished data).

Highly protruding vulval lips were described in proposed new genera *Eminensia* Mahajan, 1980 and *Evaginorhabditis* Sultan, Kaul and Chhabra, 1985, but they were more likely artifacts of fixation in a relatively weak morphological structure (De Ley, 1995). Vulval lips also protrude normally even before egg laying in *Distolabrellus vecchi* Anderson, 1983 (Fig. 2), but they often protrude with age in many rhabditids and some tylenchids, e.g., insect-parasitic *Deladenus* (Chitambar, 1991). The thickness and protrusion actually seemed to be characteristic of species such as *Aphelenchus avenae* Bastian, 1865 but not of the related *Aphelenchus isomerus* Anderson and Hooper, 1980 (Anderson and Hooper, 1980). Unusual evaginated uteri, in which vulval and body cuticle were left behind, were found in secernentean tylenchid *Sphaerularioidea* (Siddiqi, 2000) and would be distinct from all structures mentioned above.

Miscellaneous cuticular vulval appendages

In females of *Cervidellus baujardi* Mounport, Bostrom and Villenave, 2002 (Rhabditida: Cephalobidae), protruding tessellate ridges along the body had a concave modification perpendicular to each side of the vulval slit for the length of 16 annules to form a lateral cuticular ridge. This delimited a spindle-shaped window above a sunken vulva region (Fig. 19). This structure was unique among species in the genus (Mounport et al., 2002) and is here denoted a "lateral vulval ridge."

Another peri-vulval cuticle modification of villi-filled pits occurred in parasitic females of *Strongyloides fuelleborni kelley* von Linstow, 1905 (species in Viney et al., 1991). This species caused potentially fatal human infections in New Guinea and was distinguished from the less pathogenic *Strongyloides fuelleborni fuelleborni* von Linstow, 1905 (species in Viney et al., 1991) in African primates by their presence. The paired pits were 90 degrees lateral to the vulva, extending the length of 12 distorted annules (Viney et al., 1991). Small subunit18S rDNA sequences demonstrated that the morpho-"subspecies" from New Guinea actually resided in a separate tree clade, close to *Strongyloides papillosus* Chang and Graham, 1957 from various domestic animals (Dorris et al., 2002). Thus, the pits seemed to be convergences associated with primate hosts. Host immunity is associated with reduced body and gonad size in *Strongyloides ratti* Nigon and Roman, 1952 and damage to *Strongyloides stercoralis* (Bayv, 1876) Stiles and Hassall, 1902 (Wilkes et al., 2004).

Another vulva-associated structure is a cuticular saccate protrusion that acts like a spermatophore-like capsule to catch sperm from males that lack spicules (Fürst von Lieven et al., 2005). This was described as a vulval cuticular sac in related *Deleyia* Holovachov and Boström, 2006 (Holovachov and Boström, 2006).

Copulatory sacs or plugs

The copulatory sac (Chitwood, 1929), more recently designated as the copulatory plug (Barker, 1994) is a translucent to opaque protrusion around the vulva deposited by males during copulation via male cement glands. This plug secretion is often confused with a cuticular vulval membrane (Figs. 3, 4). However, upon more extensive survey, multiple sacs may be found (Chitwood, 1929); the margins are often irregular (Gerber and Giblin-Davis, 1990); no cuticular markings are evident; and the sac is sticky to bacteria, sperm, or a needle. Spicules and eggs can move through an obscure canal or punctum within the sac (Chitwood, 1929). The sacs were observed without bacteria and compared with unmated females with many bacteria around the vulva. The caudal alae of *Pelodera strongyloides* (Schneider, 1860) Schneider, 1866 also shaped the final form of the plug (Wagner and Seitz, 1983). The ability of *P. strongyloides* to dissolve a tunnel within the sac to reinseminate the female (Chitwood, 1929) led to speculation that the male may have release glands allowing separation (Sarr et al., 1987). Plugs were variably present in some strains of *C. elegans* (Maupas, 1900) Dougherty, 1953 (Barker, 1994) and a few other rhabditids, but they may not be as
obvious at the LM level as in the larger genera. A yellow liquid accumulates in the seminal vesicle of mating males and is secreted after insemination (Barker, 1994). Copulatory sacs may be viewed with various stains such as those used for plant-parasitic nematode egg matrices (Southey, 1986). Persistent copulatory sacs are prominent in rhabditids Teratorhabditis (Osche, 1952) Dougherty, 1955 (Gerber and Giblin-Davis, 1990), Cruzema Artigas, 1927 (Andrassy, 1983), Distolabrellus (Anderson, 1983), Pelodera Schneider, 1866, Cephalobus Bastian, 1865 (Chitwood, 1929), Acrobeles (Cobb, 1924) (Jairajpuri and Azmi, 1977), Acrobeles von Linstow, 1877 (Steiner, 1929), and in the female generation of Heterorhabditis Poinar, 1975 (Poinar, 1975a). Such structures, occurring as amorphous, irregular, darkly pigmented accumulations capping the vulva also are noted among some Strongylida, including species of Oesophagostomum Molin, 1861. Copulatory sacs also have been noted (Sarr et al., 1987) in plant-parasitic Scutellonema caenusii Sher, 1964 (De meure et al., 1980), and the marine nematode Desmodora schulzi Vinck, 1983 (Vinck, 1983).

The ambiguity of cuticular and secreted vulval appendages is partly due to the often-symmetric shape and refractive edge of the copulatory sac. The confusion also may be due to the close phylogenetic relationship of nematodes with both structures. One putative vulval membrane of the monotypic genus Opercularhabditis Khera, 1969 (Rhabditida) that is briefly described in the literature (Khera, 1969) can be confused even by seasoned taxonomists with the copulatory sac of the rhabditids mentioned above (Fig. 8). Similarly, within the Aphelenchina, in which true vulval flaps also occur, an Aphelechoides Fischer, 1894 species has a copulatory sac similar in appearance to a vulval membrane except for the punctum and lack of annulation (Fig. 4). Copulatory sacs or plugs are common within some females of Rhabgonematida in which they may anchor ephemeral spermatophores from the male and exclude other males. Vulval flaps in some species seemed to aid in the protective function proposed for the plugs (Hunt, 2001).

Phylogenetic utility

Due to morphological and nomenclatural variability, vulval appendages must be described carefully in nematode taxonomy. Among Trichostrongylidae, occurrence of flaps exhibits homoplasy with some representation among distantly related Cooperiinae and in the putative sister-groups Ostertaginiae + Haemonchinae (Hoberg and Lichtfens, 1994; Durette-Desset et al., 1999). Vulval flaps are variable among haemonchines and considered unreliable for separating species in Haemonchus Cobb, 1898 and Ashworthinus Le Roux, 1933 (e.g., Lichtfens et al., 1994; Drózdz et al., 1998), or among the diversity of ostertagines nematodes in which they are observed. Similarly, vulval membrane-like structures described as cuticular inflations also are unreliable in the species Hyastrongylus rubidus (Fig. 5) and Hyastrongylus kigeziensis Durette-Desset, Ashford, Butynski, and Reid, 1992 (Hoberg et al., 1993a). Vulval flaps and vulval membrane-cuticular inflations are occasionally characteristic of these species, often in different proportions within populations (Gibbons, 1987), but they are not reliable characters. Not only are the vulval flaps variable in Haemonchus, and the ostertagines Hyastrongylus, Ostertagia, Spiculopteragia, and Teladorsagia, they are generally variable in occurrence within genera and among conspecifics across the Ostertaginae. Thus, they are considered unreliable even for species-level identification. However, their variable phenotypes have been used to characterize ecotype populations that may represent incipient species (Whitlock and Le Jambre, 1981).

Vulval membranes seem to be consistently present in a few species within the animal-parasitic Cooperiinae (Strongylida), as well as some primitive plant-parasitic species within the Tylenchina. Vulval membranes (described as “bilateral vulval fans”) are consistent features easily seen with the LM in the related animal parasites Parostertagia heterospicularis Schwartz and Alicata, 1933; Cooperia neitzi Mönning, 1932 (Fig. 7); Cooperia verrucosa Mönning, 1932; and Cooperia okapi Leiper, 1935 (Hoberg et al., 1993c); and in bacterial-feeding facultative or phoretic parasites Rhabditis (Choriorhabditis) dubia Bovien, 1937 (Osche, 1952) (Sudhaus and Kühne, 1989) and Rhabditis (Caenorhabditis) sonorae (Sudhaus and Kiontke, 1996). In Rhabditis (Oschelius) guentheri (Sudhaus and Hooper, 1994) and Caenorhabditis elegans, they are only easily seen with the SEM. However, in the monotypic genus Opercularhabditis Khera, 1969 membranes are described as deciduous, an exceptional condition for cuticular membranes in the literature. These may not be cuticular structures, because annular incisures are not included on the drawing. In addition, variability among the 7 collected females is unknown because original material was not available, and the species has not been found again. In face view, there also seems to be an exceptional ventral extension connecting the “membranes” (Khera, 1969) that
could be persistent copulatory sacs. Sometimes deciduous copulatory sacs are present in the morphologically similar genus *Teratorhabditis*.

Although the presence of an epiptygma-like vuval flap in *Epsilonema espeili* Verschelde and Vinex, 1994 (Chromadorida) is constant, the shape is not (Verschelde and Vinex, 1994). Epiptyg mata are fairly common and reliable in some groups of nematodes with a central vulva and two-armed gonads such as in the Dolichodoroida, Hoplolaimidae, Psilenchidae (Siddiqi, 1986), and Steinerematida (De Doucet and Doucet, 1990). However, the dolichodoroid nematode *Melinius adakensis* Bernard, 1984 (Telotylenchidae) has considerable shape variation of epiptygma either on the dorsal or ventral lip (Bernard, 1984). In Dolichodoroida such as *Ibipora* Monteiro and Lordello, 1977 (Belonolaimidae), epiptygma coexist with vuval membranes (in Siddiqi, 2000). In Rhabditidae (Sudhaus and Hooper, 1994) epiptygma are less common, but here they also may coexist with membranes. However, it was noted that epiptygma on the posterior lip (exceptionally on the anterior lip) of *Rhabditis* (Oschetus) *guentheri* were not apparent in live, but only fixed material (Sudhaus and Hooper, 1994). This observation also might apply to some live parasitic nematodes for which observations and measurements are often not made until material is fixed.

Phylogenetic patterns of individual and combined characters

Associations of vuval appendages of different nematode taxa can be visualized through the mapping of characters on phylogenetic trees as depicted in Figs. 20 and 21. It was not appropriate to use the “concentrated changes” test for character correlation of MacClade because this phylogeny was not fully resolved to reflect the frequent character reversals at the species level. These trees are descriptive; the true incidence of any character correlations may be possible in the future when more detailed phylogenies become available among all the relevant taxa.

There is a unique acquisition of vuval membranes occurring 5 (Fig. 20) to 7 (Fig. 21) times in the listed higher level taxonomic categories, of vuval flaps occurring 5 (Fig. 20) to 6 (21) times, and epiptygma 5 times (Figs. 20, 21). These structures occur most often in terminal taxa where phylogenetic resolution is generally not available. Examples of exceptional vuval membranes include 1 insect-parasitic tylenchid *Deladenus* species among 15 (Shahina and Maqbool, 1992); 1 plant-parasitic *Pratylenchus* Filipjev, 1936 (Zarina and Maqbool, 1998) species among more than 60 species (Ebsary, 1991); and 1 *Cuticonema* (Rhabditida) among the entire Panagrolaimoidea (Sanwal, 1959). The relatively shallow branching pattern of vuval appendages also was also seen in recent species—and generic—level phylogenies. Among species of *Steinerema* Travassos, 1927, epiptygma arose at least 4 times (Stock et al., 2001). Vuval membranes arose in Rhabditidae at least 3 times (Sudhaus and Kiontke, 1996).

Cuticle ridges and lateral field

Well-developed vuval appendages in some species may sometimes be associated with a recognizable pattern of cuticular features such as lateral field incisures or lateral ridges. Among the 28 species of plant-parasitic and insect-phoretic *Bursaphelenchus* (Apheelenchina) in European conifers, 4 groups are distinguished in part by 2 to 4, or 6 lateral incisures associated with presence and size of vuval flaps. The largest flaps occur in taxa having 3 lateral lines (Braasch, 2001). The 6 genera within plant-parasitic Merlininiinae (Tylenchina) have 6 lateral incisures and epiptygma, but epiptygma are generally lacking in related genera with fewer incisures (in Siddiqi, 2000). Among the other genera of Tylenchorrhynchinae with prominent longitudinal lines and ridges, *Mulkorhynchus* Jairajpuri, 1988 (syn. *Dolichorhynchus* Mulk and Jairapuri, 1974) has vuval membranes and 4 incisures, but there are no membranes in related *Prodolichorhynchus* Jairajpuri, 1985 with 2 incisures (in Jairajpuri and Hunt, 1984).

Cuticular ridges are strongly associated with appendages in some taxa, in which case appendages may be inversely associated with lateral field incisures. *Eutylenchus* Cobb, 1913 (Tylenchina) has vuval membranes, with lateral, mid-dorsal, and mid-ventral ridges and no lateral incisures (Brzeski, 1996), but related *Atylenchus* Cobb, 1913 lacks vuval appendages and ridges but has lateral incisures (Siddiqi, 2000). In South American species of *Belonolaimus* (syn. *Ibipora*, Tylenchina), 6 incisures occur with lateral membranes and small epiptygma, whereas in species lacking membranes but having small epiptygma, only 1 incisure exists (Siddiqi, 2000). Within a recent phylogeny of *Caenorhabditis*, *Caenorhabditis sonorae* Kiontke, 1997 had a smooth lateral field without incisures and moderately developed vuval membranes (Kiontke, 1997), both of which were unusual in this genus (Sudhaus and Kiontke, 1996). In trichostrongyloid animal parasites, there are more midbody synlophe ridges and larger vuval membranes in *Cooperia nietzi* and *C.*
verrucosa than in C. okapi (Hoberg et al., 1993c). In
distantly related trichostrongylid stomach worms
(Haemonchuschinae) possessing large, irregular flaps,
Haemonchus similis has 4 more nonlateral ridges at
midbody that extend more posteriorly than in related
H. placei and *H. contortus*. These more extensive
ridges are associated with a more complex vulval
structure in which the vulval slit actually resides
within the flap. In contrast, *H. placei* and *H. contortus*
have less elaborate flap lobes anterior to the
vulval slit, and synlophe ridges do not extend
very far posterior to the cervical zone (Lichtenfels
et al., 1994). Variation among haemonchines is
apparent, however, because both *Haemonchus horaki*
Lichtenfels, Gibbons and Boomker, 2001 and
Ashworthius patriciapilitae Hoberg, Abrams, Carreno
and Lichtenfels, 2002 have a synlophe extending
near to the caudal extremity, and relatively simple
vulval flaps (Lichtenfels et al., 2001; Hoberg et al.,
2002). The exceptional vulval membranes in *Aulo-
laimus* (Chromadorida) are associated with a fairly
high number of longitudinal ridges within the genus
(38 within a range of 12–50) (in Shahina et al., 1996).
These associated ridge, lateral field, and appendage
features seem to indicate some type of structural
coordination within all these diverse taxa.

Besides well-developed cuticular longitudinal ridg-
es, a tendency toward cuticle loosening is notable
especially among plant-parasitic Tylenchidae, Crico-
nematidae, and Trichodoridae that possess vulval
membranes. In *Hemicriconemoides*, 7/46 species have
membranes (designated “lateral cuticular flaps” in
Siddiqi, 2000), and a sheath composed of a second
cuticular layer; both males and females have lateral
fields (Esser and Vovlas, 1990). However, there are no
membranes in related species within the Criconemat-
inae and Macroposthominae in which females lack
lateral fields and sheaths (Brzeski et al., 2002a, b).

Vulva position

Within plant-parasitic *Paratylenchus* Micoletzky,
1922, the position of the vulva is associated with the
degree of development of vulval membranes. A survey
(Appendix 2) based on a comprehensive compendium
of species (Esser, 1992) showed 64/71 *Paratylenchus*
species with vulval membranes, and 23/41 of related
Species that lacked membranes with morphometric
values for vulval distance from anterior body lengths of
Vulva% less than 80%, and those with ranges more
than 80% had well developed appendages. A compre-
hensive phylogeny of these genera based on indepen-
dent characters is not yet available to assess possible
vulval membrane reversals within this group.

For most other taxa, vulval position and appendage
presence is not so closely linked, especially at higher
taxonomic levels. Although *Cutictonema* (Panagrolai-
midae) and many primitive Tylenchina with vulval
membranes have posterior vulval positions, more
phylogenetically derived species in *Antarctenchus*
(Psilenchidae), *Neodolichorhynchus* (Mulkorhynchus),
and *Scutylrench* (Dolichodoridae, Tylenchorhynchid-
da) have vulval membranes with approximately
medial vulvas (in Siddiqi, 2000). Vulval membranes
in animal-parasitic Trichostrongyloidea are associated
with posterior vulvas (in Skrjabin, 1952), whereas in
related insect-associated *Rhabditida*, the 4 species with
cuticular membranes have medial vulvas. Vulvae are
often anteriorly positioned in parasitic *Ascarida*,
Spirurida, and *Bunostominae* (*Strongylida, Ancylos-
tomoidea*) that consistently lack vulcular appendages.
In animal-parasitic Oxyuroidea (Oxyur-
ata) in which vulvae may reside in any region of the
body, the single instance of a vulval flap was on a
posterior vulva (Skrjabin, 1951). In other oxyurids as
well as capillarids with protruding vulval folds, the
vulva is in the anterior part of the body (in Skrjabin,
1954). Where epitygmata exist in Tylenchida and
Rhinonematida, the vulva is slightly posterior to
midbody. Although animal parasitic *Strongyloides
stercoralis* (Bavay, 1876) Stiles and Hassall, 1902
does not possess the primary vulval appendages, the
peri-vulval pits associated with the parasitic female are
associated with a more posterior vulva than the free-
living form (Speare, 1989).

Parasitism and ecology

Based on mapping of parasitism onto the small
subunit (18S) rDNA phylogenetic tree for nematodes,
associations with plants arose independently at least 3
times, and animal parasitism arose at least 6 times
(Dorris et al., 1999). When vulval appendages are
superimposed onto updated trees of related taxa
(Fig. 20, 21 based on Holterman et al., 2006), they
seem closely associated with parasitism, phoresis, or
commensalism. In some cases, it has not been clearly
established that vulval appendages are consistent
features of a species because of limited sampling and
inability to place specimens in culture. Because some
vulval appendages represent inconsistent responses to a
host immune challenge, and most are species-level
phenomena of parasites, host factors are hypothetical
inducers and selectors of those characters that do
become fixed. Environmental estrogens in particular
may be involved in fixation of epigenetic characters in vertebrates (Guerrero-Bosagna et al., 2005) and also may be important in invertebrates. Both Caenorhabditis and Panagrellus have estrogen receptors (Hood et al., 2000). Although bacterial-feeding Rhabditida are not strict parasites, nearly all have dauer larvae, and like other invertebrate symbionts “they face the same transmission problems and other pressures as those acting on parasites” (Poulin, 1998). In Rhabditida, the greatest development of vulval membranes is seen in 2 species with a relatively unique preparasitic adaptation: Caenorhabditis drosophilae and Choriorhabditis dubia (Rhabditida, Rhabditoidea) have dauer larvae requiring fly contact to mature (Kiontke, 1997). These prominent membranes may have evolved in response to their photoreceptor/facultative host. Host factors modulate the degree of flap size in Ostertagia ostertagi (Rhabditida, Trichostrongylidae) (Michel et al., 1972). The capacity of nematode cuticle to expand between molts (Lee, 2002), in contrast to the rigid cuticle and saltatorial growth of insects (Knight et al., 2002) is well suited to localized expansion in an immune response. Nematode cuticle also facilitates parasitism in its ability to shed and quickly repair the surface coat after immune assault (Blaxter et al., 1992).

Caenorhabditis species with the largest vulval membranes have a phoretic association with insects, and those with the smallest are associated with mollusks (Sudhaus and Kiontke, 1996). Besides possible host influence, environmental factors also may be important. Reports of fungi parasitic or commensal with snails are limited (Porter, 1986), whereas insects and plants (Alexopoulos et al., 1996; Blackwell, 2000) have many reported fungal associates. Where vulval appendages are common among aphelenchoid nematodes, most species are free-living on fungi, aside from their associations with plants or insects (Hunt, 1993). Interference with thigmotropism, or contact-guidance, of fungi toward host surface vulnerabilities (Gow, 2004) might be one benefit of these appendages toward competing fungi in the environment.

Definitions for specific characters and the taxonomic distribution of vulval appendages could be useful for testing hypotheses of parallelism reflecting developmental constraint, or convergence resulting from adaptation (Yoon and Baum, 2004) such as might occur in nematode–microorganism, host–parasite, or male mating interactions. Details of the genetic and histological basis of vulval morphogenesis continue to accumulate in membrane-bearing C. elegans (Sharma-Kishore et al., 1999; Dalpé et al., 2005) and appendage-free Pristionchus pacificus (Kolotnev and Podbiwicz, 2004). With this background, relevant developmental, behavioral, and ecological factors might be evaluated in taxa with vulval appendages for testing hypotheses.

ACKNOWLEDGMENTS

We thank Donna Ellington and Sharon Ochs of the Nematology Laboratory, and Christopher Pooley, Soybean Genomics and Improvement Lab, USDA–ARS for technical help. Special thanks are extended to Maureen Barr and Paul Sternberg for sharing unpublished visual information on C. elegans. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.

LITERATURE CITED

Sudhaus, W., and D. J. Hooper. 1994. *Rhabditis* (Oscheius) guentheri sp. n. an unusual species with reduced posterior ovary, with observations on the *Dolichura* and *Insectivora* groups (Nematoda: Rhabditidae). Nematologica 40:508–533.

Sudhaus, W., and K. Kiontke. 1996. Phylogeny of *Rhabditis* subgenus *Caenorhabditis* (Rhabditidae,

Yoon, H.-S., and D. A. Baum. 2004. Transgenic study of parallelism in plant morphological evolution. Proceed-

ings of the National Academy of Sciences U.S.A. 101: 6524–6529.

APPENDIX 1

Supplemental listing of vulval appendages represented on Figs. 20 and 21; vulval flap (f), vulval membrane (m), epiptygma (e)

Adenophorea

Trichocephalida, m: “lateral alate membranes” Capillaria bursata Freitas and Almeida, 1934 (after Skrjavin, 1984 after Gagarin, 1952)

Enoplida, e: Deontostoma californicum (Hope, 1974)

Desmodorida, f-e: Epsilonema espeei Verschelde and Vinex, 1994 -moderately post vulva, 1 testis

Monhysterida, f-e: Diplolaimella dievengatensis Jacobs, Van de Velde, Geraert and Vranken, 1990, “flap,” (the order has some commensal species)

Secernentea

Oxyurida, f: Avilandros avis Mapleton, 1940

Rhigonomatida, e: Rhigonema Cobb, 1898

f: Ecphyadophora espeeli; *Elaeolenchus parthenonema* Poinar, Jackson, Bell and Wahid, 2002

Steinernematida, e: Steinernema (some)

Rhabditida-Panagrolaimidae, m: *Cuticonema vivipara* Sanwal, 1959

Strongylida. f: Ostertagia, Haemonchus, Paracooperia spp.; Inflation (irregular): Longiostrongylus, Mazamastrongylus, Camelostrongylus m: Cooperia spp. (3 in Hoberg et al., 1993), Allintoshius nycticeius Chitwood, 1937

Paratylenchus
APPENDIX 2

Membrane size and vulval position after Esser (1992), p. 12

<table>
<thead>
<tr>
<th>Paratylenchus (Paratylenchus)</th>
<th>V%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior, no membrane</td>
<td></td>
</tr>
<tr>
<td>P. (P.) aciculus Brown 1959</td>
<td>68–74</td>
</tr>
<tr>
<td>P. (P.) aci Eroshenko, 1978</td>
<td>69–73</td>
</tr>
<tr>
<td>P. (P.) aculentus Brown 1959</td>
<td>71–73</td>
</tr>
<tr>
<td>P. (P.) costatus (Raski, 1976) Siddiqi, 1986</td>
<td>68–72</td>
</tr>
<tr>
<td>P. (P.) laocatenus Nguyen et al., 2004</td>
<td>65–67</td>
</tr>
<tr>
<td>P. (P.) miniscus Tarjan, 1960</td>
<td>69–81</td>
</tr>
<tr>
<td>P. (P.) macrodorus Brzeski, 1963</td>
<td>74–81</td>
</tr>
<tr>
<td>P. (P.) pandatus Raski, 1976</td>
<td>70–78</td>
</tr>
<tr>
<td>P. (P.) steineri Golden, 1961</td>
<td>75–78</td>
</tr>
<tr>
<td>Intermediate, small membranes</td>
<td></td>
</tr>
<tr>
<td>P. (P.) corbetti (Ganguly and Khan, 1990) Brzeski, 1998 75–81 m not prominent</td>
<td></td>
</tr>
<tr>
<td>P. (P.) discocephalus Siddiqi, Khan and Ganguly, 1990 73–80 m indistinct</td>
<td></td>
</tr>
<tr>
<td>Posterior, large membranes</td>
<td></td>
</tr>
<tr>
<td>P. (P.) arculatus Luc and de Guiran, 1962</td>
<td>78–84</td>
</tr>
<tr>
<td>P. (P.) dianthus Jenkins and Taylor, 1956</td>
<td>80–88 m large, 4–6 annules</td>
</tr>
<tr>
<td>P. (P.) elachistus Steiner, 1949</td>
<td>82–87</td>
</tr>
<tr>
<td>P. (P.) flectospiculus Huang and Raski, 1987</td>
<td>81–86</td>
</tr>
<tr>
<td>P. (P.) holdemani Raski, 1975</td>
<td>84–86</td>
</tr>
<tr>
<td>P. (P.) microdorus Andrissy, 1959</td>
<td>79–86</td>
</tr>
<tr>
<td>P. (P.) perlatus Raski, 1975</td>
<td>79–86</td>
</tr>
<tr>
<td>P. (P.) projectus Jenkins, 1956</td>
<td>83–87</td>
</tr>
<tr>
<td>Paratylenchus (Gracilacus)</td>
<td></td>
</tr>
<tr>
<td>Anterior</td>
<td></td>
</tr>
<tr>
<td>P. (G.) costatus Raski, 1986</td>
<td>67–72</td>
</tr>
<tr>
<td>P. (G.) elegans Raski, 1962</td>
<td>70–74</td>
</tr>
<tr>
<td>P. (G.) idalima Raski, 1962</td>
<td>71–76</td>
</tr>
<tr>
<td>P. (G.) latescens Huang and Raski, 1986</td>
<td>68–73</td>
</tr>
<tr>
<td>P. (G.) oostenbrinki Misra and Edwards, 1971</td>
<td>70–73</td>
</tr>
<tr>
<td>P. (G.) raskii Phukan and Sanwal, 1979</td>
<td>70–74</td>
</tr>
<tr>
<td>Posterior</td>
<td></td>
</tr>
<tr>
<td>P. (G.) epacris Raski, 1962</td>
<td>82–87</td>
</tr>
<tr>
<td>P. (G.) mirus Raski, 1962</td>
<td>80–86</td>
</tr>
</tbody>
</table>