Fall 2003

Migration and Counter-urbanization in the Edwards Plateau of Texas, 1985-1990

Jason Holcomb

Morehead State University, Morehead, Kentucky

Follow this and additional works at: http://digitalcommons.unl.edu/greatplainsresearch

Part of the Other International and Area Studies Commons

http://digitalcommons.unl.edu/greatplainsresearch/673

This Article is brought to you for free and open access by the Great Plains Studies, Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Great Plains Research: A Journal of Natural and Social Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
MIGRATION AND COUNTERURBANIZATION IN THE EDWARDS PLATEAU OF TEXAS, 1985-1990

Jason P. Holcomb

Department of Geography, Government, and History
350 Rader Hall
Morehead State University
Morehead, KY 40351
j.holcomb@morehead-st.edu

ABSTRACT—Unlike most of the Great Plains, Texas’s Edwards Plateau lies near large, rapidly growing metropolitan centers. County-to-county migration data for the period 1985-1990 were used to examine migration patterns in Edwards Plateau counties. Weighted standard distance and stream efficiency values were used to analyze county in-migration fields of 28 nonmetropolitan counties. A key finding was that net in-migration to counties closest to metropolitan areas was not mere “urban spillover.” There were also indications that counterurban migration extended beyond metropolitan-adjacent counties to more sparsely populated destinations. Counterurbanization was occurring from central counties of the nation’s largest metropolitan areas and some Texas metropolitan areas. In-migration from the Gulf Coast of Texas played an important role in the Edwards Plateau. The migration system of the Edwards Plateau appears to have functioned differently than non-metropolitan counties in the High Plains. Continued change is supported by data from the 2000 census.

KEY WORDS: counterurbanization, Edwards Plateau, Great Plains, migration, stream efficiencies, weighted standard distance

Introduction

The Edwards Plateau of Texas is a region at the fringe (Fig. 1). Geographically, it lies at the southern margin of the Great Plains and is perched between zones of opposing population trends. To the west and north of the Edwards Plateau are the High Plains and Rolling Plains, two areas that have had historically high out-migration rates throughout the 20th century. East of the Edwards Plateau are burgeoning metropolitan areas that line Interstate 35, including the rapidly growing cities of Austin and San Antonio. Some recognizable characteristics of the Edwards Plateau are the German
culture area of the dissected Hill Country, its history of goat and sheep production, and the invasion of grassland by woody plant species. Because of its location, the Edwards Plateau is an interesting subject of population inquiry. Caught between worlds of rural population decline and expanding metropolitan areas, the Edwards Plateau appears to be undergoing changes.
in population that are not present in most parts of the Great Plains. Evidence of this transformation can be found in recent population growth in counties with historical decline. The Edwards Plateau may be an emerging Great Plains anomaly that is an attractive destination for streams of counterurban migration. This study examines county-to-county migration flows in the region between 1985 and 1990 in order to determine whether or not counterurbanization took place during the latter half of the 1980s when nonmetropolitan counties lost population as general rule. These methods and results are a foundation for additional research when county-to-county migration data from the 2000 census become available.

Studies of “counterurbanization” (Berry 1976) and a “population turn-around” (Deavers and Brown 1980) became common themes in population research after data for the 1970s showed aggregate nonmetropolitan growth in the United States. During the 1980s nonmetropolitan counties nationwide reverted to net out-migration (Beale 1990; Frey and Speare 1992; Johnson 1993), followed by another period of aggregate growth during the 1990s (Beale 1996; Beale 1999; Johnson 1999; Johnson and Beale 1998). However, the Great Plains as a whole was synonymous with nonmetropolitan out-migration throughout most of the 20th century, even during periods of nonmetropolitan growth in other regions of the United States. Nonmetropolitan counties in the Great Plains generally maintained a more consistent trend of net out-migration from 1970 through 2000 as the aggregate trend fluctuated.

Out-migration from the nonmetropolitan Great Plains was lower during the 1970s than in previous decades, and net in-migration took place in some years. In the 1980s net out-migration from the nonmetropolitan Great Plains was greater than for other regions of the country, reaching levels of 2% per year. Out-migration abated during the 1990s, and some nonmetropolitan county types had individual years of net in-migration (Cromartie 1998). However, Great Plains counties have demonstrated consistently higher levels of net out-migration when compared to aggregate trends for the United States, regardless of decade.

The Great Plains was the largest of the “emptying” areas described by Lonsdale and Archer (1998). Heaviest out-migration in the region has historically occurred in the most remote and rural counties, while stable populations have more recently been tied to counties with significant irrigated agriculture (White 1994), larger urban areas (White 1992), and a relatively small number of counties at urban fringes or with natural amenities (Cromartie 1998). From population change data for the 1980s and
1990s, it appears that the Edwards Plateau fits into the categories suggested by Cromartie (1998). A combination of natural amenities and proximity to metropolitan areas may explain why only 8 of the 28 counties in the study area lost population during the 1990s, while a significantly larger proportion of counties in the remainder of the Texas Great Plains lost population (US Bureau of the Census 2001a). Though sparsely populated, many nonmetropolitan counties in the Edwards Plateau had net in-migration during the 1990s. But did the Edwards Plateau experience counterurbanization during the 1980s when rural out-migration peaked? If so, this would be a marked contrast from other sparsely populated areas of the Great Plains and an indication of a different migration system. In particular, this study examines characteristics of county-level migration that may have contributed to greater population stability in the 1980s and may indicate future change in the region.

Methods

County-to-county migration data from the 1990 census (US Bureau of the Census 1990) were used to calculate stream efficiency and weighted standard distance values for the 28 nonmetropolitan counties in the Edwards Plateau (Fig. 1). The data reflect changes in residence that took place between 1985 and 1990 but do not include any intervening moves. Stream efficiency values for county-to-county moves demonstrate how “effective” particular migration streams were at redistributing population from one county, or in this case a cluster of counties, to another location (Plane and Rogerson 1994). Stream efficiencies were calculated as

\[e_{ij} = \frac{100(n_{ij})}{t_{ij}} \]

where \(e_{ij} \) is migration stream efficiency, \(n_{ij} \) is the net exchange between regions \(i \) and \(j \), and \(t_{ij} \) is the total migration between regions \(i \) and \(j \).

Stream efficiencies were calculated for migration between nonmetropolitan counties in the Edwards Plateau and the following sets of counties: (1) all US counties (aggregated) that lie outside the study area, (2) each of the ten county classes (ERS codes) that comprise a rural-urban continuum defined by the Economic Research Service (ERS) (Butler 1990), and (3) selected Texas metropolitan areas. In all cases, flows were aggregated for the 28 counties in order to single out net movement to and from the region. Internal flows within the study area were not included in the calcu-
lations. Thus, efficiency values reflect only the redistribution that took
place between Edwards Plateau counties as a whole and counties that lie
outside the Edwards Plateau. In the first set of calculations, for example, a
positive efficiency value would indicate the percentage of total migration
that was redistributed to the Edwards Plateau from counties outside the
study area. A negative value would indicate net redistribution from the
Edwards Plateau to counties outside the study area. For the second set of
calculations, efficiency values represent redistribution that took place be­
tween the Edwards Plateau and each of the ERS county types of the rural-
urban continuum. This second set of values more directly addresses
counterurbanization, as it reveals redistribution from more urban counties
to less urban counties, or movement down the urban hierarchy. The third set
of values is more specific yet, and is used to examine redistribution between
the study area and Texas’s metropolitan areas.

The other measure used in the analysis of migration flows is weighted
standard distance. It is used to examine distances moved by in-migrants to
the Edwards Plateau. Distances moved by in-migrants to the region are used
to assess whether in-migration is localized metropolitan spillover or is the
result of a more diversified migration field that includes streams from more
distant locations. If metropolitan spillover or local moves dominate a mi­
gration system, weighted standard distance values are low, whereas high
values indicate a more diversified in-migration field. Thus, the measure
gives some indication of the migration field’s spatial pattern. Weighted
standard distance values were computed for the in-migration field of each
county in the study area as follows:

\[
SD_w = \sqrt{\frac{\sum_{i=1}^{n} w_i (x_i - \bar{x})^2 + \sum_{i=1}^{n} w_i (y_i - \bar{y})^2}{\sum_{i=1}^{n} w_i + \sum_{i=1}^{n} w_i}}
\]

where \(SD_w \) is weighted standard distance, \(x_i \) and \(y_i \) are the latitude and
longitude coordinates of the centroid of county \(i \) in a county’s in-migration
field, \(\bar{x} \) and \(\bar{y} \) are coordinates of the weighted mean center of a county’s
in-migration field, and \(W_i \) is the number of migrants in the migration field at
county \(i \). Standardized \(z \)-scores were then computed for comparison of each
county’s weighted standard distance to the mean.
TABLE I

STREAM EFFICIENCIES FOR TOTAL FLOWS BETWEEN NONMETROPOLITAN EDWARDS PLATEAU COUNTIES AND ALL OTHER US COUNTIES

<table>
<thead>
<tr>
<th>Total in-migration</th>
<th>Total out-migration</th>
<th>Total migration (In + Out)</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>48,706</td>
<td>51,664</td>
<td>100,370</td>
<td>-2.9</td>
</tr>
</tbody>
</table>

Results

The stream efficiency value in Table I, for all county-to-county migration to and from the region between 1985 and 1990, simply shows that total migration in and out of the region resulted in a modest redistribution (-2.9%) of migrants to counties outside the study area. The negative value indicates a net loss of migrants from the study area. Although there was net movement out of the Edwards Plateau as a whole, the relatively low efficiency value indicates that migration flows were ineffective in redistributing population. For comparison, the same calculations for 36 nonmetropolitan counties in Texas’s High Plains yielded an efficiency value of -29.7%. Total migration for nonmetropolitan counties in the Edwards Plateau (100,370) was roughly equal to that for the High Plains (92,923), yet in-migration nearly offset out-migration in the Edwards Plateau. The migration system for nonmetropolitan High Plains counties was very effective at redistributing population to other locations and more typical of heavy rural out-migration from the middle portion of the United States during the 1980s, whereas the Edwards Plateau collectively had characteristics of a different migration system operating at the southern margin of the Great Plains.

Further details of the Edwards Plateau migration system were derived from calculation of migration efficiencies by Economic Research Service rural-urban continuum class (Table 2). After an ERS code of 0 through 9 was assigned to all counties in the United States, each county-to-county migration event could be earmarked according to its ERS classification. The ERS rural-urban continuum ranges from central counties of the largest metropolitan areas (ERS code 0) to the most rural counties that are not
TABLE 2

STREAM EFFICIENCIES FOR NONMETROPOLITAN EDWARDS PLATEAU COUNTIES, SORTED BY ECONOMIC RESEARCH SERVICE (ERS) RURAL-URBAN CONTINUUM CLASSIFICATION

<table>
<thead>
<tr>
<th>ERS code</th>
<th>Total in-migration</th>
<th>Total out-migration</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>18,793</td>
<td>16,354</td>
<td>6.9</td>
</tr>
<tr>
<td>1</td>
<td>2,061</td>
<td>2,712</td>
<td>-13.6</td>
</tr>
<tr>
<td>2</td>
<td>9,688</td>
<td>12,491</td>
<td>-12.6</td>
</tr>
<tr>
<td>3</td>
<td>5,058</td>
<td>6,901</td>
<td>-15.4</td>
</tr>
<tr>
<td>4</td>
<td>1,144</td>
<td>1,500</td>
<td>-13.5</td>
</tr>
<tr>
<td>5</td>
<td>1,932</td>
<td>2,241</td>
<td>-7.4</td>
</tr>
<tr>
<td>6</td>
<td>4,973</td>
<td>5,025</td>
<td>-0.5</td>
</tr>
<tr>
<td>7</td>
<td>3,938</td>
<td>3,364</td>
<td>7.9</td>
</tr>
<tr>
<td>8</td>
<td>437</td>
<td>441</td>
<td>-0.5</td>
</tr>
<tr>
<td>9</td>
<td>682</td>
<td>635</td>
<td>3.6</td>
</tr>
</tbody>
</table>

adjacent to a metropolitan area and have an urban population of fewer than 2,500 persons (ERS code 9).

Stream efficiencies by ERS classification show that despite net out-migration from nonmetropolitan counties as a whole, the Edwards Plateau was the recipient of net in-migration from central counties of the largest metropolitan areas (ERS code 0). A net displacement of 6.9% took place
from the central counties of the largest metropolitan areas to the Edwards Plateau, and the amount of total in-migration was far greater than from any other county type. Counties adjacent to the Austin and San Antonio metropolitan areas would be expected to receive significant in-migration due to proximity, yet the degree of displacement that took place for the entire study area was unexpected. No other metropolitan county type had a positive value, and except for the most urbanized counties in the continuum, the Edwards Plateau had higher losses to metropolitan counties than non-metropolitan counties. A counterurban migration stream was in place during the 1980s, but only from central counties of the largest metropolitan areas.

Among nonmetropolitan counties (ERS codes 4 through 9), the highest losses were to metropolitan-adjacent counties with the largest urban populations (ERS code 4). The highest total flows among nonmetropolitan counties were with those that had an urban center between 2,500 and 20,000 persons (ERS codes 6 and 7). Of those two county types, the Edwards Plateau had a slight negative efficiency with the metropolitan adjacent counties and a positive efficiency of 7.9% with nonadjacent counties. The efficiency value with the most rural county type (ERS code 9) was positive, indicating that the Edwards Plateau was an attractive destination for in-migrants from a variety of places, including the most urban and most rural locales.

Sources of counterurban migration streams emerged from the tabulation of the specific place-to-place flows shown in Table 3. As expected, the San Antonio metropolitan area was a primary source of in-migration to the Edwards Plateau. Counties that comprise the San Antonio metropolitan area provided the highest total number of in-migrants and were the second most efficient of all positive streams. These flows resulted in redistribution of 12.5% of the stream’s total migration from the San Antonio metropolitan area to the Edwards Plateau. The other large metropolitan area adjacent to the eastern boundary of the study area, Austin-San Marcos, played the opposite role in the migration system by sending far fewer migrants than it absorbed, resulting in an efficiency value of –17%.

In addition to San Antonio, metropolitan areas of the Gulf Coast area were an important source of counterurban migration streams for the Edwards Plateau. Counties in the Houston Consolidated Metropolitan Statistical Area (CMSA), which includes the cities of Galveston and Brazoria, had the most efficient positive migration stream (20.7%) and was the source of more than 4,000 in-migrants. Considering that the Houston CMSA is more
TABLE 3

STREAM EFFICIENCIES BETWEEN NONMETROPOLITAN EDWARDS PLATEAU COUNTIES AND SELECTED TEXAS METROPOLITAN AREAS

<table>
<thead>
<tr>
<th>Metropolitan area</th>
<th>In-migration</th>
<th>Out-migration</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abilene</td>
<td>332</td>
<td>602</td>
<td>-28.9</td>
</tr>
<tr>
<td>Amarillo</td>
<td>137</td>
<td>239</td>
<td>-27.1</td>
</tr>
<tr>
<td>Austin-San Marcos</td>
<td>3,349</td>
<td>4,725</td>
<td>-17.0</td>
</tr>
<tr>
<td>Corpus Christi</td>
<td>694</td>
<td>711</td>
<td>-1.2</td>
</tr>
<tr>
<td>Dallas-Fort Worth</td>
<td>2,926</td>
<td>3,631</td>
<td>-10.8</td>
</tr>
<tr>
<td>Houston-Galveston-Brazoria</td>
<td>4,084</td>
<td>2,681</td>
<td>20.7</td>
</tr>
<tr>
<td>Killeen-Temple</td>
<td>971</td>
<td>1,134</td>
<td>-7.7</td>
</tr>
<tr>
<td>Lubbock</td>
<td>421</td>
<td>536</td>
<td>-12.0</td>
</tr>
<tr>
<td>Midland-Odessa</td>
<td>1,425</td>
<td>1,244</td>
<td>6.8</td>
</tr>
<tr>
<td>San Angelo</td>
<td>1,168</td>
<td>2,284</td>
<td>-32.3</td>
</tr>
<tr>
<td>San Antonio</td>
<td>8,950</td>
<td>6,963</td>
<td>12.5</td>
</tr>
<tr>
<td>Sherman-Denison</td>
<td>37</td>
<td>131</td>
<td>-56.0</td>
</tr>
<tr>
<td>Victoria</td>
<td>161</td>
<td>132</td>
<td>9.9</td>
</tr>
<tr>
<td>Waco</td>
<td>387</td>
<td>506</td>
<td>-13.3</td>
</tr>
<tr>
<td>Wichita Falls</td>
<td>133</td>
<td>188</td>
<td>-17.1</td>
</tr>
</tbody>
</table>

distant, it was not expected to be a more important source of counterurban migration than the Austin-San Marcos metropolitan area, yet it provided over 1,400 more migrants to the Edwards Plateau than it received. Of the two other Gulf Coast metropolitan areas, Victoria had a positive efficiency of 9.9%, while Corpus Christi had a modest negative value (-1.2%). There was a clear counterurban migration link between Gulf Coast metropolitan areas and the Edwards Plateau during the latter part of the 1980s that contributed to greater population stability in this part of the Great Plains.

Dallas-Fort Worth and other metropolitan areas that lie north of Austin along Interstate 35 had sizeable migration streams but negative efficiency values. The Dallas-Fort Worth CMSA is approximately the same distance to the Edwards Plateau as the Houston CMSA, but it had a different impact on
population redistribution. With the exception of San Antonio, the Edwards Plateau had lost population to all metropolitan areas of the Interstate 35 corridor.

The remainder of the metropolitan areas (Table 3) includes a group of six Great Plains cities located west of Interstate 35. Among these six metropolitan areas, the volume of migration streams generally lessened with distance. San Angelo had the largest migration stream, but its efficiency of −32.3% eliminated the lone internal metropolitan area as a source of counterurbanization. Midland-Odessa was the lone member of this group having a positive efficiency value. While the reasons for its positive value are unknown, the counterurban stream from Midland-Odessa may be of a very different nature than those from the Gulf Coast. Amarillo, Abilene, Lubbock, and Wichita Falls each had a negative efficiency value, although the total number of migrants involved with these metropolitan areas was relatively low.

Stream efficiency values show that counterurban migration streams were important contributors to population change between 1985 and 1990. In-migration from the central cities of the largest US metropolitan areas redistributed migrants to the Edwards Plateau, as did two types of nonmetropolitan counties. Within Texas the two greatest contributors to counterurbanization were the San Antonio metropolitan area and the Houston CMSA. Since the Gulf Coast region proved to be a source of counterurbanization, it would be inaccurate to conclude that population growth in eastern Edwards Plateau counties was solely the result of metropolitan spillover.

Returning to the Texas High Plains for perspective, the 36 nonmetropolitan counties of that region lost population to every metropolitan area listed in Table 3. Losses were ubiquitous and typically had highly negative stream efficiencies. The efficiency value for the stream between High Plains counties and the Dallas-Fort Worth CMSA was −44.4%, with a net loss of more than 4,000 residents to that CMSA alone. Stream efficiencies for the other largest metropolitan areas ranged from −35.2% (Houston) to −40.1% (Austin). Losses to smaller metropolitan areas were equally high. Efficiency values for the Amarillo and Lubbock metropolitan areas were −39.2% and −36.3%, respectively. Metropolitan areas of all sizes and locations were absorbing population from the High Plains, with no hint of sufficient counterurbanization to curtail nonmetropolitan losses during the 1980s. Relative isolation and lack of natural amenities are probable explanations for a migration system markedly different from the Edwards Plateau.
Weighted standard distance calculations (Table 4) provide additional insight to individual county migration fields in the Edwards Plateau. When standard distances are weighted, channelized in-migration from a small number of source counties can greatly affect the values. Thus, if a county’s in-migration field is dominated by metropolitan spillover from adjacent counties, the weighted standard distance values would be relatively low if
additional in-migration from more distant counties is negligible. The standardized z-scores provide a means of comparing the spatial focus of each county’s in-migration field in a manner similar to that used by Plane and Mulligan (1997) in their analysis of interstate migration. Rather than a Gini index, however, weighted standard distance is used to compare county-level in-migration fields.

A high positive z-score indicates less spatial focus, as in-migration included a higher volume of moves beyond neighboring counties. A low weighted standard distance value and negative z-score indicates greater spatial focus as a result of in-migration dominated by local moves. Since in-migration weighted standard distance values were computed for a larger pool of Texas counties that included those in the High Plains and Rolling Plains (Fig. 1), a total of 105 counties, standardized z-scores in Table 4 reflect the standard deviation of each county’s value relative to all nonmetropolitan counties in the Great Plains portion of Texas.

The effect of high spillover from neighboring San Antonio can be seen in Medina County, which had a z-score of only 0.3, despite a moderately diversified in-migration field that included significant nationwide in-migration. Bandera County, also adjacent to San Antonio, had a z-score closer to 1 standard deviation from the mean, suggesting an in-migration field with greater balance between local spillover and moves from greater distances. Blanco County had the third highest z-score, despite being adjacent to Austin’s Travis County and having a relatively small total population of 5,972 in 1990, indicating influence from more distant places. Real County, not adjacent to a metropolitan area, also had a high z-score despite having a total population of fewer than 2,500 persons in 1990. Sparsely populated and more remote counties that had higher z-scores are of special interest, since lightly populated counties generally would be expected to draw in-migrants from their immediate area. A high z-score for such counties during the 1980s may represent the emergence of a population turnaround, perhaps led by counterurban migration.

Eastern Edwards Plateau counties generally had higher z-scores, suggesting in-migration fields of a more regional or national scope. Eastern counties include Hill Country locations such as Kerrville (Kerr County) and Fredericksburg (Gillespie County). Neither county is adjacent to a metropolitan area, but each is within a two-hour drive of San Antonio and among the most amenity-rich destinations in the study area. Other counties that had high weighted standard distance values include Lampasas County at the northeastern edge of the study area, Val Verde County along the border with
Mexico, and Concho County. Concho County is adjacent to the San Angelo metropolitan area and the westernmost county that had a z-score greater than 1 standard deviation. The overall pattern shows significantly higher weighted standard distances in the eastern portion of the Edwards Plateau, where in-migration fields demonstrated greater diversity and less distance decay.

Conclusions

More diversified in-migration fields and positive stream efficiencies for selected metropolitan areas indicate that some degree of counterurbanization took place in the Edwards Plateau between 1985 and 1990, particularly in the eastern half of the study area. Metropolitan spillover undoubtedly contributed to net displacement of population from the central counties of the largest metropolitan areas, but migration links with the Gulf Coast area and other metropolitan areas contributed to counterurbanization. The link between the Houston area and the Edwards Plateau is a connection that may be an important driving force in future population change in more remote counties of the region. Migration from the Gulf Coast area has been noted in popular literature (Graves 1999) and is confirmed by census data.

The Hill Country, specifically in the vicinity of Kerrville and Fredericksburg, likely accounted for much of the counterurban migration and brought in-migrants from distant places. Both cities have become popular retirement destinations and appear to be turning into cosmopolitan enclaves that attract a variety of in-migrants. A map of Kerr County’s in-migration field (Fig. 2) shows a county that was a magnet for source areas within Texas and across the United States. Significant nodes of in-migration are seen in southern California, the Chicago area, and the northeastern United States. Although similar patterns are seen in other eastern Edwards Plateau counties, Kerr County had a larger total population and the pattern is more palpable. This area, along with counties that are adjacent to major metropolitan areas, fits the conclusions of Cromartie (1998), who suggested that net in-migration to the Great Plains has been most likely to occur in suburban and high-amenity counties.

The significance of in-migration fields such as those found in the Hill Country is that the 2000 census shows net in-migration extending deeper into the Edwards Plateau, including several sparsely populated counties that would historically be candidates for population loss (US Bureau of the Census 2001b). Circumstances driving in-migration to Kerr and Gillespie
Figure 2. Kerr County's in-migration field for moves that took place between 1985 and 1990. Kerr County is shown in inset at bottom left.
Counties may be creeping westward. Numerous counties in the tier west of Kerr and Gillespie Counties had net in-migration during the 1990s after experiencing net out-migration during the 1980s. Meanwhile, counties in the High Plains of the Texas Panhandle continued a more general trend of out-migration. Real County, southwest of Kerrville, experienced a net in-migration rate of 28.6% during the 1990s, following net out-migration during the 1980s (US Bureau of the Census 2001b). The influence of major metropolitan areas in the vicinity appears to be impacting migration in more remote counties that have a history of population decline.

Net in-migration has been accompanied by increasing land values and greater demand for recreational land. Especially true in the Hill Country, this trend appears to be spreading westward as well. Of rural land in the Hill Country, Gilliland et al. (2000) noted:

Buyers continued to flock to the Texas hills in 1999 in search of a place to hunt or a weekend retreat. The thriving economy expanded purchasers’ incomes, leaving them with flush pocketbooks and the desire to own Texas land. This rising tide of prosperity overshadowed woes in the agricultural economy, including prolonged drought and low commodity prices.

Such change in rural property demand can be linked to adjustments in the migration system and land use, signifying a transformation akin to that taking place in the Rocky Mountain West (Cromartie and Wardwell 1999; Rudzitas 1999).

In this scenario, the southernmost part of the Great Plains is emerging as something unlike the Great Plains that is synonymous with rural out-migration. The core of the Great Plains that is linked with population loss and community decline appears to be shrinking in the south as a result of the influence of Texas’s major metropolitan areas. Land in the Edwards Plateau is dominated by rangeland, has far less farmland than the High Plains of the Panhandle, and is more accessible to urban residents, even if not immediately adjacent. More abundant natural amenities and relatively inexpensive rangeland make this area attractive to urban dwellers such as those moving to the Rocky Mountain West and other high-amenity areas. In short, more of the Edwards Plateau appears to be emerging as a landscape of in-migration and urban consumption, replacing a landscape of agricultural production.

The methods and conclusions presented are groundwork for continued observation of migration patterns in the southern Great Plains. When county-
to-county migration data from the 2000 census become available, further analyses may determine the validity of these generalizations. If the findings from the 1980s are to be supported, investigations of more recent county-to-county migration data will need to address two questions. First, is the most recent population increase found in more remote and sparsely populated counties of the Edwards Plateau linked to counterurbanization and diversified in-migration fields? Secondly, do the preliminary conclusions presented in this study reflect trends found predominantly in the eastern Hill Country, or do they reflect a front of more diversified migration activity that is gradually working its way westward to areas of historical population decline?

References

The Nature of Lewis & Clark on the Great Plains
A Symposium
June 3-5, 2004

Symposium Chair
Gary E. Moulton
University of Nebraska-Lincoln

Keynote Speakers
John Logan Allen
University of Wyoming
James L. Reveal
University of Maryland

Presentation Topics
Botany
Climatology
Geology
Hydrology
Ornithology
Zoology

The University of Nebraska-Lincoln’s Center for Great Plains Studies will hold its 28th annual interdisciplinary symposium at the Lied Conference Center, Nebraska City, Nebraska.

This symposium will recognize the naturalist work of the expedition by focusing on the areas in which the captains and other members of the party concentrated their scientific studies and naturalist observations.

Registration begins January 2004.

CENTER FOR GREAT PLAINS STUDIES
University of Nebraska-Lincoln
PO Box 880214
Lincoln, NE 68588-0214

Telephone: (402) 472-3082
E-mail: cgps@unl.edu
Webpage: www.unl.edu/plains/events/2004/index.html

An equal opportunity educator and employer with a comprehensive plan for diversity.