# Beringia: Intercontinental exchange and diversification of high latitude mammals and their parasites during the Pliocene and Quaternary

Joseph A. Cook<sup>1,\*</sup>, Eric P. Hoberg<sup>2</sup>, Anson Koehler<sup>1</sup>, Heikki Henttonen<sup>3</sup>, Lotta Wickström<sup>3</sup>, Voitto Haukisalmi<sup>3</sup>, Kurt Galbreath<sup>4</sup>, Felix Chernyavski<sup>5</sup>, Nikolai Dokuchaev<sup>5</sup>, Anatoli Lahzuhtkin<sup>5</sup>, Stephen O. MacDonald<sup>1</sup>, Andrew Hope<sup>1</sup>, Eric Waltari<sup>6</sup>, Amy Runck<sup>6</sup>, Alasdair Veitch<sup>7</sup>, Richard Popko<sup>7</sup>, Emily Jenkins<sup>8</sup>, Susan Kutz<sup>9</sup> and Ralph Eckerlin<sup>10</sup>

<sup>1</sup> Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA

<sup>2</sup> US National Parasite Collection & Animal Parasitic Disease Laboratory, USDA, Agricultural Research Service, Beltsville, Marvland, USA

<sup>3</sup> Vantaa Research Centre Finnish Forest Research Institute, Vantaa, Finland

<sup>4</sup> Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA

<sup>5</sup> Institute of Biological Problems of the North, Magadan, Russia

<sup>6</sup> Biology Department, Idaho State University, Pocatello, ID, USA

<sup>7</sup> Environment and Natural Resources, Government of the NWT, Norman Wells, NWT, Canada

<sup>8</sup> Canadian Wildlife Service, Saskatoon, Saskatchewan, Canada

<sup>9</sup> Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada

<sup>10</sup> Northern Virginia Community College, Annandale, VA, USA

Abstract. Beringia is the region spanning eastern Asia and northwestern North America that remained ice-free during the full glacial events of the Pleistocene. Numerous questions persist regarding the importance of this region in the evolution of northern faunas. Beringia has been implicated as both a high latitude refugium and as the crossroads (Bering Land Bridge) of the northern continents for boreal mammals. The Beringian Coevolution Project (BCP) is an international collaboration that has provided material to assess the pattern and timing of faunal exchange across the crossroads of the northern continents and the potential impact of past climatic events on differentiation. Mammals and associated parasite specimens have been collected and preserved from more than 200 field sites in eastern Russia, Alaska and northwestern Canada since 1999. Previously, fossils and taxonomic comparisons between Asia and North America mammals have shed light on these events. Molecular phylogenetics based on BCP specimens is now being used to trace the history of faunal exchange and diversification. We have found substantial phylogeographic structure in the Arctic and in Beringia in mustelid carnivores, arvicoline rodents, arctic hares and soricine shrews, including spatially concordant clades and contact zones across taxa that correspond to the edges of Beringia. Among the tapeworms of these mammalian hosts, new perspectives on diversity have also been developed. Arostrilepis horrida (Hymenolepididae) was considered to represent a single widespread and morphologically variable species occurring in a diversity of voles and lemmings in eastern and western Beringia and more broadly across the Holarctic region. The BCP has demonstrated a complex of at least 10 species that are poorly differentiated morphologically. The diversity of Paranoplocephala spp. and Anolocephaloides spp. (Anoplocephalidae) in Beringia included relatively few widespread and morphologically variable species in arvicolines. BCP collections have changed this perspective, allowing the recognition of a series of highly endemic species of Paranoplocephala that demonstrate very narrow host specificity, and additional species complexes among arvicolines. Thus, extensive, previously unrecognized, diversity for tapeworms of 2 major families characterizes the Beringian fauna. By elucidating evolutionary relationships and phylogeographic variation among populations, species and assemblages, refined views of the sequence and timing of biotic expansion, geographic colonization and impact of episodic climate change have been developed for Beringia. Ultimately, Beringia was a determining factor in the structure and biogeography of terrestrial faunas across the Nearctic and Neotropical regions during the Pliocene and Quaternary.

Key words: Alaska, biogeography, cestode, climate change, coevolution, Siberia

<sup>\*</sup>To whom correspondence should be addressed. E-mail: cookjose@unm.edu

Beringia is the region spanning eastern Asia and northwestern North America that remained ice-free during the full glacial events of the Pleistocene (Hultén 1937; Hopkins 1959; Yurtsev 1974). Beringia affords a unique opportunity for resolution of the drivers for isolation and speciation across a complex fauna in the context of a regional history over an extended time frame. The wellrefined geochronology for marine transgression and exposure of the Bering Land Bridge is critical to understanding the timing and patterns of biotic expansion, faunal exchange and isolating events for the Holarctic across two continents. We are developing a neontological approach to deciphering the complex history of this crossroads of the northern continents by examining exemplar systems representing assemblages of mammalian hosts and their parasites. Explicit hypotheses relate to climate change and environmental perturbation as a determinant of genetic structure and phylogeography of members of these host-parasite assemblages.

The Beringian Coevolution Project (BCP) is a multinational cooperative effort aimed at providing outstanding comparative material from Beringia (Fig. 1). The major objectives of the BCP are to: 1) provide a spatiallyextensive and site intensive resource of museum specimens from numerous key high latitude areas that have not yet been inventoried. An extended array of specimens is crucial for testing the drivers of isolation and diversification in this geologically dynamic system; 2) develop a comparative framework for the Arctic to examine the history of host-parasite systems that are phylogenetically and ecologically disparate providing the basis for detailed studies of associated hosts and parasites; 3) explore forces that have structured high latitude biomes, including biotic expansion and exchange across the northern continents using comparative phylogeographic analyses; 4) build a spatial and temporal foundation for biotic investigations in the Arctic by identifying and further characterizing regions of endemism and contact zones between divergent lineages; and 5) to accelerate the exploration of coevolution, cospeciation, episodic host switching and rates of diversification in associated hosts and parasites. This foundation is crucial for conservation efforts in the face of changing climate and increasing anthropogenic impacts in the Arctic (Kutz et al. 2004, 2005).

### **Field Expeditions and Results**

Field inventories were conducted during July, August,



**Fig. 1.** A relational model for the Beringian Coevolution Project emphasizes integrated biotic survey and inventory for parasites (protozoans, arthropods and helminths) and mammals. Field based collections are focused on development of biodiversity baselines and associated specimens and data that are maintained in interconnected archives and informatics resources of museums. Multifaceted data for hosts and parasites are available for analyses and synthesis focusing on historical reconstruction and the determinants of faunal structure in evolutionary and ecological time. Beringian systems serve as an historical analogue for understanding processes ranging from ecological perturbation linked to global climate change, emerging infectious diseases, invasive species and conservation.

and September (1999 to 2005) and were focused on sampling mammals and associated parasites in Beringia across remote sites in Siberia, Canada, and Alaska (Fig. 2).

## Mammals

Across all field seasons, more than 15,000 mammal specimens (>80 species, 39 genera) were acquired or captured, based on more than 150,000 trap nights of sampling effort at over 200 sites (Fig. 2); materials represent geographically extensive and site intensive collections of unprecedented depth and scope. Significant new series of specimens resulted from collaboration with trappers and state and federal agencies in Russia, Alaska and Canada. Each mammal was assigned a unique field identifier, and all tissues, parasites, and other subsamples were linked to the original voucher specimen. Thus materials on divergent pathways could be associated with a specific animal, GPS locality, and date for collection. All mammals sampled were preserved as scientific specimens (skeletal preparations, as whole bodied alcoholics or as dried study skins); survey crews preserved tissues (heart, liver, kidney, spleen, and lung), and embryos in liquid nitrogen. Specimens were deposited in the University of Alaska Museum of the North (UAM)



Fig. 2. Sites of intensive collections for hosts and parasites in the Beringian Coevolution Project, 1999–2005.

and Museum of Southwestern Biology. Searchable databases at UAM (http://www.uaf.edu/museum/) and MSB (nix.msb.unm.edu) document these collections.

# Parasites

Helminth, arthropod and protozoan parasites were a primary focus and many thousands of lots were processed, preserved and archived (a lot represents 1 to several hundreds of specimens including fleas, ticks, mites, coccidia and other protozoan parasites, cestodes, nematodes, and digeneans) from each host. Subsamples of parasites were preserved in appropriate reagents, and frozen in LN2. Protozoans, helminths and arthropods were dispersed to colleagues and collections. Specimens are archived, and information is available for components of the BCP collections through the database of the US National Parasite Collection (http://anri.barc. usda.gov).

# Discussion

# Regional endemism, intercontinental exchange and the history of Beringia

Major geologic and historical features have influenced the structure of morphological and genetic diversity in high latitude parasites and mammals. In particular, the close historical connection between eastern Asian and northwestern North American species (i.e., Beringian species) has been demonstrated by the close genetic relationships of conspecific populations on opposite sides of the Bering Land Bridge including arvicoline cestodes (Anoplocephalinae, Wickström et al. 2003), tundra voles (Microtus oeconomus, Galbreath and Cook 2004), northern red-backed vole (Clethrionomys rutilus, Cook et al. 2004), and arctic ground squirrel (Spermophilus parryii, Eddingsaas et al. 2004). A number of outstanding questions regarding sister group relationships across the Bering Strait exist, however. Classically, Beringia has been thought of as a region of intercontinental exchange. In addition, elements of the Beringian fauna and flora are highly endemic, and appear much older and diverse than previously assumed (Hoberg et al. 2003). In these instances, parasites are indicators of "cryptic events" because they have responded to either host isolation through vicariance or dispersal and peripheral isolation that were insufficient to drive divergence in host populations (Hoberg 1995, 2005a).

Beringian studies also afford an elegant system to explore the role of taxon pulses, alternating or episodic periods of biotic expansion and isolation, as determinants for patterns of diversification and distribution across a number of host and parasite clades (Halas et al. 2005). We are beginning to explore Beringia's impact on generating diversity as well as the sequence, direction, and number of colonization events between the Old World and New World for particular taxa. Questions related to micro- and macroevolution may be placed in the following framework.

### Biogeography

A) Beringia as the high latitude crossroads

The Bering Land Bridge was repeatedly exposed prior to and during the Pleistocene. This 1800 km wide connection filtered the movement of fauna and flora between Asia and North America (Hopkins 1959, 1967; Hopkins et al. 1982; Hoffmann 1985; Elias et al. 1996). BCP collections are providing opportunities to explore fundamental questions such as: What were the characteristics of invasive species (both hosts and parasites) that used this nexus and what do their ecological requirements tell us about historic environmental conditions? How have varying modes and tempos of population expansion and geographic colonization (e.g., phalanx and pioneer dispersal, sensu Hewitt 2000) served to influence host and parasite biodiversity (Hoberg 2005b)? What characteristics are associated with episodes of biotic expansion and the ability of behaviorally and phylogenetically disparate mammalian hosts and their associated parasites to invade (disperse) and establish and how does this serve as an analogue for contemporary systems that are experiencing rapid climatic shifts?

High latitude exchange across the Bering Land Bridge has been characterized as asymmetric with most taxa originating in Northeastern Asia and moving to North America. During the glacial maxima, eastern Beringia (Alaska and northwestern Canada) was effectively isolated from the rest of North America by the Laurentide Ice Sheet (Pielou 1991), while western Beringia (Siberia) had a "leaky" border with the remainder of Asia. Was the movement of colonizing species primarily east to west (Rausch 1994)? Waltari et al. (unpublished observations; ms) reviewed 34 phylogeographic studies focused on high latitude species and found a preponderance of eastward colonization (from Asia to North America); a minimum number of studies, however, have documented westward colonization (Steppan et al. 1999; Waltari et al. 2004).

Additional questions that are being addressed by high latitude phylogeographers include: What was the sequence of geographic colonization and how many events are represented for particular taxa (Runck and Cook 2005)? What are the downstream effects for multiple events of expansion and establishment for host and parasite populations? How has episodic geographic colonization influenced parasite biodiversity? Over what timeframe has the Bering Land Bridge influenced the evolution of this biota?

B) Beringia as a refugium in the diversification of high latitude fauna

Can we define a Beringian parasite and host fauna? If so, was this a primary center of endemism and diversification for the Arctic as proposed by Sher (1999)? Or did most diversification take place at southern latitudes during full glacial advances with subsequent recolonization northward, as advanced by many (e.g., Hewitt 2000). Evidence from multiple arvicoline-tapeworm systems suggests high in-situ diversification for anoplocephalines and hymenolepidids in Microtus, Clethrionomys, Lemmus, Synaptomys and Dicrostonyx (e.g., Haukisalmi and Henttonen 2000; Hoberg et al. 2003; Wickström et al. 2003; Haukisalmi et al. 2004). We also found substantial phylogeographic structure in the Arctic and in Beringia among mustelid carnivores (Fleming and Cook 2002), arvicoline rodents (Brunhoff et al. 2003; Galbreath and Cook 2004), arctic hares (Waltari et al. 2004), and soricine shrews (Demboski and Cook 2003). This geographic structure includes spatially concordant clades and contact zones across taxa that likely correspond to major vicariant events at the eastern (roughly Yukon/Alaska border) and western (Omolon/ Kolyma) borders of Beringia (Fleming and Cook 2002; Galbreath and Cook 2004; Waltari and Cook 2005).

Separation of Asia and North America by the Bering Strait generally is not reflected in phylogeographic analyses (Eddingsaas et al. 2004; Galbreath and Cook 2004), suggesting that this recurring vicariant barrier (most recently formed 10,000 years before present) has had a minor influence on geographic structure or divergence among many mammalian and perhaps parasite taxa. In a few instances, however, this barrier delineates significant breaks (Fedorov and Stenseth 2002; Wickström et al. 2003). Future investigations will focus on population level processes and integrate host and parasite studies to explore co-evolutionary processes.

### Coevolutionary history

Testing hypotheses for host/parasite coevolution — Parasites and hosts may be associated via coevolutionary processes involving macroevolutionary components such as cospeciation (association of host and parasite lineages by descent), or microevolutionary components such as coadaptation (e.g., Brooks and McLennan 2002; Hoberg 2005a). In contrast, ecologically-based mechanisms, particularly colonization (host switching), may represent the basis for an association, and depending on the timing of such events complex systems may be further modified by coevolutionary processes (e.g., see review in Hoberg 2005a).

Diverse parasite assemblages in Beringia, encompassing faunas associated with a range of small (insectivores and arvicoline rodents), medium (leporids and ochotonids), and large (artiodactyls, ursids) mammals constitute unique systems for exploring coevolutionary processes. Through an examination of multiple parasite clades (e.g., different parasite clades inhabiting the same hosts (or areas)) relative to host phylogenies we can develop and evaluate hypotheses for coevolutionary processes in diversification. Collectively this approach is designed to reveal fundamental insights about the Beringian fauna and contributes to a broader understanding of faunal structure and history in the Nearctic (e.g., Hoberg 2005b).

The tapeworm faunas established among arvicoline rodents provide a primary example of the potential for coevolutionary studies in Beringia. Arvicolines are hosts for 2 major groups of tapeworms, the anoplocephalines (Anoplocephaloides spp. and Paranoplocephala spp.) and hymenolepidids (Arostrilepis spp.) that differ considerably in their apparent specificity, effective populations and species diversity across the Holarctic. Radiation of arvicoline and cestode faunas appears to have occurred over a short time frame, but respective families of cestodes appear to have relatively long histories with species of Microtus, Clethrionomys, Lemmus, and Dicrostonyx (Wickström et al. 2005). Both faunas appear to harbor considerable levels of cryptic diversity that has only recently been revealed through site intensive and geographically extensive sampling in conjunc-



Fig. 3. Coevolution and historical biogeography among arvicoline rodents, anoplocephalid and hymenolepidid cestodes across Beringia and the Holarctic. Relationships for arvicolines, tapeworms, and biogeography summarized in the tanglegram are consistent with a complex mosaic of geographic colonization, host switching and cospeciation. Multiple events of vicariance for the northern fauna across Beringia and independent events of biotic expansion from the Palearctic to Nearctic are postulated. Associations for Anoplocephaloides spp. and Paranoplocephala spp. are shown by linkages between phylogenetic trees for arvicoline hosts and anoplocephalid parasites (patterned lines specific to different host genera). The most consistently supported segments of the anoplocpehaline tree are as follows: (1) Paranoplocephala s. str. (P. omphalodes s.l. + P. kalelai + P. macrocephala; (2) Anoplocephaloides s. str. (A. dentata s. sl. + A. lemmi + A. kontrimavichusi); and (3) A. cf. variabilis + P. krebsi. Regional biogeography for anoplocephalines is designated as follows: H = Holarctic, P = Palearctic, N = Nearctic. Host associations for putative lineages within the Arostrilepis horrida- complex are mapped directly onto the phylogeny for the arvicolines (Aros- 1-10). Arvicoline phylogeny is modified from Conroy and Cook (1999); anoplocephaline phylogeny is modified from Wickström et al. (2005). Data for host associations and biogeography for anoplocephaliines are summarized from Haukisalmi et al. (2001, 2002) and Wickström et al. (2005); data for Arostrilepis are from K. Galbreath and E. P. Hoberg (unpublished observations).

tion with new assessments of morphological and genetic variation (e.g., Haukisalmi et al. 2001, 2002, 2004; Hoberg et al. 2003).

Specificity among anoplocephalines (a minimum of

35 species of Paranoplocephala; 10 species of Anoplocephaloides) is often manifested as a species to species relationship, whereas patterns of host association for Arostrilepis (likely in excess of 10 species with 3 nominal taxa and 9 recognized lineages in Beringia) are demonstrated among genera of arvicolines (Fig. 3). Comparisons of host and parasite phylogenies reveal a complex history for geographic colonization, host switching and varying degrees of cospeciation (Fig. 3). Biotic expansion across Beringia, refugial effects and isolation north and south of the Laurentide and Cordilleran glaciers is further evident in these associations but, alone cannot account for the major disparity (nearly 3 fold) in diversity which may be attributable to different patterns of life history, patchy versus homogenous distributions, differential responses to local or regional habitat fragmentation and isolation, and variation in effective population sizes for respective parasites (Haukisalmi et al. 2001; Hoberg et al. 2003; Wickström et al. 2003).

Complex biogeographic and coevolutionary patterns also emerge from studies of nematodes in such mammals as ochotonids, leporids and artiodactyls (Hoberg et al. 1999; Hoberg 2005b). For example, distributions for other faunal assemblages including the nematode muscleworms in Dall's sheep and mountain goats, are compatible with rapid post-Pleistocene range expansion from the south through ice free corridors separating the Cordilleran and Laurentide ice (Jenkins 2005; Jenkins et al. 2005; E. P. Hoberg, B. Rosenthal, E. Jenkins, et al. unpublished observations).

Protostrongylid nematodes such as Parelaphostrongylus odocoilei (in Odocoileus hemionus, Oreamnos americanus and Ovis dalli) and Protostrongylus stilesi (in O. dalli, O. canadensis, and O. americanus) afford the opportunity to explore contrasting histories for complex host-parasite systems in ungulates associated with Beringia. Genetic homogeneity in nuclear ITS-2 and patterns of variation for mitochondrial COX-II for P. odocoilei across a broad geographic range occupied in the northwestern Nearctic are consistent with rapid expansion and geographic colonization for parasite populations (Jenkins 2005; Jenkins et al. 2005; E. P. Hoberg et al. unpublished observation). Host associations in conjunction with geographic distributions are further compatible with host-switching from cervids to caprines and an expansion from south to north tracking deglaciation and retraction of Cordilleran and Laurentide ice in the post-Pleistocene. A history of recent expansion and colonization contrasts with the deeper temporal associations between *P. stilesi* and *Ovis* spp. that are attributed to biotic expansion for a lungworm fauna from Eurasia into the Nearctic during the middle Pleistocene (Jenkins 2005). Thus, we would predict that phylogeography for *P. stilesi* and *P. odocoilei* will be discordant, and that populations of the former will show patterns largely congruent with a history of refugial isolation and secondary biotic expansion that has been postulated for *Ovis* spp. in Beringia (Loehr et al. 2005). The array of phylogenetically disparate nematode parasites among caprines, including potential complexes of cryptic species, further promote a powerful comparative foundation to explore determinants of biogeography, geographic colonization and faunal structure in evolutionary and ecological time (Hoberg et al. 1999; Hoberg 2005b).

### Phylogeographic models

Recently colonized areas should show reduced variation relative to areas where populations remained relatively stable. However, changes in overall genetic variation may also reflect differences in local population size and levels of genetic exchange between populations. Assessments of these alternatives lead to different predictions. Populations that have remained stable for long periods of time should have reached equilibrium between mutation and drift. In contrast, recently expanded populations should not be in equilibrium. Lessa et al. (2003) used these contrasting predictions to demonstrate that several clades of high latitude boreal mammals are not in equilibrium; rather they show the distinctive footprints of demographic expansion. Because these patterns were concordant across diverse mammalian taxa, ranging from shrews to bears, they likely reflect demographic change.

Interpretation of paleoclimatic events and prediction of future events often relies on knowledge of the identity and relationships of past and extant biotas. Examining the histories of mammals and parasites of Beringia, a region that was profoundly and repeatedly impacted by climate change, is helping to establish chronologies (e.g. Riddle 1996) and a framework for predicting future change. Hypotheses for historical biogeography and community dynamics of these parasite host assemblages are being addressed through integration of molecular, morphological, and phylogenetic approaches. Phylogeographic patterns, coupled with changes in levels of genetic variation across geography, can suggest possible areas of persistence of populations and possible directions of colonization of deglaciated areas. This is an exceptional model system for examining the influence of cyclic, episodic, and identifiable isolation events on the patterns and processes of differentiation among evolutionarily diverse groups of parasites and mammalian hosts.

The Beringian Coevolution Project also establishes significant baselines that are necessary for tracking and predicting the impacts of environmental change in ecological time. Global climate warming and concomitant perturbation in high latitude ecosystems can only be understood when examined in an historical context provided by specimens-based collections and information on geographic distribution and host association provided by museum resources. Survey and inventory feed into larger programs established for monitoring change in these dynamic systems (Hoberg et al. 2003); and survey and inventory continue to result in the discovery of considerable hidden diversity in northern systems (e.g., Hoberg et al. 1999; Haukisalmi and Henttonen 2001; Kutz et al. 2001a; Kutz et al. 2001b; Haukisalmi et al. 2002). Thus we are in a position to use insights from deep history in Beringian systems as an analogue for how complex biotic associations are structured and influenced by climate change (e.g., Kutz et al. 2004, 2005; Hoberg 2005b). Indeed potential changes in transmission dynamics in complex host-parasite systems, and altered patterns of host association and geographic colonization and emergence of disease have been documented in the context of Beringian-related field research (e.g., Hoberg et al. 2002; Kutz et al. 2005).

Acknowledgments: Many individuals have participated and enhanced the Beringian Coevolution Project. We appreciate the state and federal agency biologists that have assisted in numerous ways over the past six years. We particularly acknowledge the intellectual influence of early Beringian pioneers Robert Rausch, Vitus Kontrimavichus and David Hopkins. Personnel of the University of Alaska Museum, Museum of Southwestern Biology, and US National Parasite Laboratory archived the specimens. Funding was provided by the US National Park Service and National Science Foundation (DEB 0196095 and 0415668).

## References

- Brooks, D. R. and McLennan, D. A. 2002. The Nature of Diversity: An Evolutionary Voyage of Discovery. University of Chicago Press.
- Brunhoff, C., Galbreath, K. E., Federov, V. B., Cook, J. A. and

Jaarola, M. 2003. Holarctic phylogeography of the root vole (*Microtus oeconomus*): implications for late Quaternary biogeography of high latitudes. Molecular Ecology 12: 957–968.

- Conroy, C. J. and Cook, J. A. 1999. MtDNA evidence for repeated pulses of speciation within arvicoline and murid rodents. Journal of Mammalian Evolution 6: 221–245.
- Cook, J. A., Runck, A. M. and Conroy, C. J. 2004. Historical biogeography at the crossroads of the northern continents: Molecular phylogenetics of red-backed voles (Rodentia: Arvicolinae). Molecular Phylogenetics and Evolution 30: 767–777.
- Demboski, J. R. and Cook, J. A. 2003. Phylogenetic diversification within the *Sorex cinereus* complex (Insectivora: Soricidae). Journal of Mammalogy 84: 144–158.
- Eddingsaas, A., Jacobsen, B., Lessa, E. and Cook, J. 2004. Evolutionary history of the arctic ground squirrel (*Spermophilus parryii*) in Nearctic Beringia. Journal of Mammalogy 85: 591–600.
- Elias, S. A., Short, S. K., Hans Nelson, C. and Birks, H. A. 1996. Life and times of the Bering land bridge. Nature 382: 60–63.
- Fedorov, V. and Stenseth, N. 2002. Multiple glacial refugia in the North American Arctic: inference from Phylogeography of the collared lemming (*Dicrostonyx groenlandicus*). Proceedings of the Royal Society of London Series B 269: 2071–2077.
- Fleming, M. A. and Cook, J. A. 2002. Phylogeography of endemic ermine (*Mustela erminea*) in southeast Alaska. Molecular Ecology 11: 795–808.
- Galbreath, K. and Cook, J. 2004. Genetic consequences of Pleistocene glaciations for the tundra vole (*Microtus oeconomus*) in Beringia. Molecular Ecology 13: 135–148.
- Halas, D., Zamparo, D. and Brooks, D. R. 2005. A historical biogeographic protocol for studying diversification by taxon pulses. Journal of Biogeography 32: 249–260.
- Haukisalmi, V. and Henttonen, H. 2000. Paranoplocephala serrata sp. n. (Cestoda, Anoplocephalidae) in collared lemmings (*Dicrostonyx* spp., Arvicolinae) from Arctic Siberia and North America. Systematic Parasitology 45: 219–231.
- Haukisalmi, V., Wickström, L. M., Hantula, J. and Henttonen, H. 2001. Taxonomy, genetic differentiation and Holarctic biogeography of *Paranoplocephala* spp. (Cestoda: Anoplocephalidae) in collared lemmings (*Dicrostonyx*; Arvicolinae). Biological Journal of Linnean Society 74: 171–196.
- Haukisalmi, V., Henttonen, H., Niemimaa, J. and Rausch, R. L. 2002. Paranoplocephala etholeni n.sp. (Cestoda: Anoplocephalidae) in Microtus pennsylvanicus from Alaska, with a synopsis of Paranoplocephala-species in Holarctic rodents. Parasite 9: 305–314.
- Haukisalmi, V., Wickström, L. M., Henttonen, H., Hantula, J. and Gubányi, A. 2004. Molecular and morphological evidence for multiple species within *Paranoplocephala omphalodes* (Cestoda: Anoplocephalidae) in *Microtus* voles (Arvicolinae). Zoologica Scripta 33: 277–290.
- Hewitt, G. M. 2000. The genetic legacy of the Quaternary ice ages. Nature 405: 907–913.
- Hoberg, E. P. 1995. Historical biogeography and modes of speciation across high latitude seas of the Holarctic: concepts for host-parasite coevolution among the Phocini (Phocidae) and Tetrabothriidae (Eucestoda). Canadian Journal of Zoology 73: 45–57.
- Hoberg, E. P. 2005a. Coevolution in marine systems. Chapter 8.1. In (K. Rofde, ed.) Marine Parasitology (Chapter 8, Evolution). Pp. 329–339. CSIRO, Sydney, Australia.
- Hoberg, E. P. 2005b. Coevolution and biogeography among Nematodirinae (Nematoda: Trichostrongylina), Lagomorpha and Artiodactyla (Mammalia): exploring determinants of history and structure for the northern fauna across the Holarctic. Journal of

Parasitology 91: 358-369.

- Hoberg, E. P., Monsen, K., Kutz, S. and Blouin, M. 1999. Structure, biodiversity, and historical biogeography of nematode faunas in Holarctic ruminants: Morphological and molecular diagnoses for *Teladorsagia boreoarcticus* sp.n. (Nematoda: Ostertagiinae) a dimorphic cryptic species in muskoxen (*Ovibos moschatus*). Journal of Parasitology 85: 910–934.
- Hoberg, E. P., Kutz, S. J., Galbreath, K. E. and Cook, J. 2003. Arctic biodiversity: From discovery to faunal baselines — revealing the history of a dynamic ecosystem. Journal of Parasitology 89: S84– S95.
- Hoberg, E. P., Kutz, S., Nagy, J., Jenkins, E., Elkin, B., Branigan, M. and Cooley, D. 2002. *Protostrongylus stilesi*, ecological isolation and host switching between muskoxen and Dall's sheep in a contact zone. Comparative Parasitology 69: 1–9.
- Hoffmann, R. S. 1985. An ecological and zoogeographical analysis of animal migration across the Bering Land Bridge during the Quaternary Period. In (V. L. Kontrimavichus, ed.) Beringia in the Cenozoic. Pp. 464–481. Akademiia Nauk, SSSR, Vladivostok, Russia (English Translation, Gidison Printing Works, New Delhi, India).
- Hopkins, D. M. 1959. Cenozoic history of the Bering Land Bridge. Science 129: 1519–1528.
- Hopkins, D. M. 1967. The Bering Land Bridge. Stanford University Press, Stanford, California.
- Hopkins, D. M., Matthews, Jr., J. V., Schweger, C. E. and Young, S. B. (eds). 1982. Paleoecology of Beringia. Academic Press, New York, New York.
- Hultén, E. 1937. Outline of the History of Arctic and Boreal Biota during Quaternary Period. Bokforlags Aktiebolgaet. Thule, Stockholm.
- Jenkins, E. J. 2005. Ecological investigation of a new host-parasite relationship: *Parelaphostrongylus odocoilei* in thinhorn sheep (*Ovis dalli*). Unpublished PhD dissertation, University of Saskatchewan, Saskatoon, Canada.
- Jenkins, E. J., Appleyard, G. D., Hoberg, E. P., Rosenthal, B. M., Kutz, S. J., Veitch, A., Schwantje, H. and Polley, L. 2005. Geographic distribution of the muscle dwelling nematode *Parelaphostrongylus odocoilei* (Protostrongylidae: Elaphostrongylinae) in North America using molecular identification of first stage larvae. Journal of Parasitology 91: 574–584.
- Kutz, S., Hoberg, E. P., Nagy, J., Polley, L. and Elkin, B. 2004. Emerging parasitic infections in Arctic ungulates. Integrative and Comparative Biology 44: 109–118.
- Kutz, S., Hoberg, E. P. and Polley, L. 2001a. A new lungworm in muskoxen: an exploration in Arctic Parasitology. Trends in Parasitology 17: 276–280.
- Kutz, S., Hoberg, E. P., Polley, L. and Jenkins, E. 2005. Global warming is changing the dynamics of Arctic host-parasite systems.

Proceedings of Royal Society, B (in press).

- Kutz, S. J., Veitch, A. M., Hoberg, E. P., Elkin, B. T., Jenkins, E. J. and Polley, L. 2001b. New host and geographic records for two protostrongylids in Dall's sheep. Journal of Wildlife Diseases 37: 761–774.
- Lessa, E. P., Cook, J. A., and Patton, J. L. 2003. Genetic footprints of demographic expansion in North America, but not Amazonia, following the Late Pleistocene. Proceedings of the National Academy of Sciences of USA 100: 10331–10334.
- Loehr, J., Worley, K., Grapputo, A., Carey, J., Veitch, A. and Coltman, D. W. 2005. Evidence for cryptic glacial refugia from North American mountain sheep mitochondrial DNA. Journal of Evolutionary Biology (in press).
- Pielou, E. C. 1991. After the Ice Age: The Return of Life to Glaciated North America. University of Chicago Press, Chicago, Illinois.
- Rausch, R. L. 1994. Transberingian dispersal of cestodes in mammals. International Journal of Parasitology 24: 1203–1212.
- Riddle, B. R. 1996. The molecular phylogeographic bridge between deep and shallow history in continental biotas. Trends in Ecology and Evolution 11: 207–212.
- Runck, A. and Cook, J. 2005. Post-glacial expansion of the southern red-backed vole (*Clethrionomys gapperi*) in North America. Molecular Ecology 14: 1445–1456.
- Sher, A. V. 1999. Traffic lights at the Beringian crossroads. Nature 397: 103–104.
- Steppan, S. J., Akhverdyan, M. R., Lyapunova, E. A., Fraser, D. G., Vorontsov, N. N., Hoffmann, R. S. and Braun, M. J. 1999. Molecular phylogeny of the marmots (Rodentia: Sciuridae): tests of evolutionary and biogeographic hypotheses. Systematic Biology 48: 715–734.
- Waltari, E., Demboski, J. R., Klein, D. and Cook, J. A. 2004. A molecular perspective on the historical biogeography of the northern high latitudes. Journal of Mammalogy 85: 601–610.
- Waltari, E. and Cook, J. 2005. Historical demographics and phylogeography of arctic hares (*Lepus*): genetic signatures test glacial refugia hypotheses. Molecular Ecology 14: 3005–3016.
- Wickström, L. M., Haukisalmi, V., Varis, S., Hantula, J., Fedorov, V. B. and Henttonen, H. 2003. Phylogeography of the circumpolar *Paranoplocephala arctica* species complex (Cestoda: Anoplocephalidae) parasitizing collared lemmings (*Dicrostonyx* spp.). Molecular Ecology 12: 3359–3371.
- Wickström, L. M., Haukisalmi, V., Varis, S., Hantula, J. and Henttonen, H. 2005. Molecular phylogeny and systematics of anoplocephaline cestodes in rodents and lagomorphs. Systematic Parasitology 62: 83–99.
- Yurtsev, B. A. 1974. Problems of the Botanical Geography of Northeast Asia. Nauka, Leningrad.

Received 5 December 2005. Accepted 11 January 2006.

| Appendix 1. |
|-------------|
|-------------|

Localities sampled by the BCP from 1999–2005.

| Locale | Latitude | Longitude | Year | Country | Region       | Locality                     |
|--------|----------|-----------|------|---------|--------------|------------------------------|
| 1      | 75.49    | 143.24    | 1994 | Russia  | Yakutia      | Ostrov Faddeyevskiy          |
| 2      | 72.3     | 140.83    | 1994 | Russia  | Yakutia      | Yana R. Delta                |
| 3      | 72.18    | 148.44    | 1994 | Russia  | Yakutia      | Lopatka Peninsula            |
| 4      | 69.5     | 157       | 1991 | Russia  | Yakutia      | Bolshaya Chukochya R.        |
| 5      | 69.35    | 163.58    | 1994 | Russia  | Yakutia      | Kolyma R. Delta              |
| 6      | 68.78    | 170.5     | 1992 | Russia  | Chukotka     | Chaun                        |
| 7      | 70.96    | 179.56    | 1994 | Russia  | Chukotka     | Ostrov Vrangelya             |
| 8      | 64.467   | 141.89    | 2004 | Russia  | Yakutia      | El'gi R.                     |
| 9      | 64.545   | 143       | 2004 | Russia  | Yakutia      | 20 km NW Ust Mera            |
| 10     | 63.123   | 144.518   | 2004 | Russia  | Yakutia      | Taryn-Yuryakn R.             |
| 11     | 63.218   | 145.266   | 2004 | Russia  | Yakutia      | Upper Tymtey R.              |
| 12     | 63.873   | 145.492   | 2004 | Russia  | Yakutia      | Delyankir R.                 |
| 13     | 62.83    | 148.25    | 2000 | Russia  | Magadanskaya | 15 km E. Susuman             |
| 14     | 61.83    | 147.17    | 1992 | Russia  | Khabarovskiy | Pervy Ozero                  |
| 15     | 61.847   | 147.662   | 2004 | Russia  | Magadanskaya | Stokovo Station              |
| 16     | 60.28    | 147.62    | 1991 | Russia  | Magadanskaya | Chelomdzha                   |
| 17     | 59.98    | 148.08    | 1992 | Russia  | Magadanskaya | Chelomdzha R. Area           |
| 18     | 59.79    | 148.27    | 1994 | Russia  | Magadanskaya | Chelomdzha R.                |
| 19     | 59.76    | 149.81    | 1994 | Russia  | Magadanskaya | Oira R.                      |
| 20     | 59.69    | 150.34    | 2000 | Russia  | Magadanskaya | 40 km W. Magadan             |
| 21     | 59.5     | 150.67    | 2002 | Russia  | Magadanskaya | Chirikova Cape               |
| 22     | 59.57    | 150.83    | 1999 | Russia  | Magadanskaya | Magadan                      |
| 23     | 59.72    | 150.85    | 2002 | Russia  | Magadanskaya | 28 km N. Gertnera Bay        |
| 24     | 59.75    | 150.88    | 1994 | Russia  | Magadanskaya | Snow Valley                  |
| 25     | 59.73    | 150.87    | 1994 | Russia  | Magadanskaya | Snezhnaya Valley             |
| 26     | 60.88    | 149.91    | 2000 | Russia  | Magadanskaya | 35 km Se Ust-Omchug          |
| 27     | 60.83    | 151.7     | 2000 | Russia  | Magadanskaya | 2 km S. Atka                 |
| 28     | 60.79    | 151.73    | 2000 | Russia  | Magadanskaya | 7 km S. Atka                 |
| 29     | 60.757   | 151.784   | 2004 | Russia  | Magadanskaya | Elikchan Lakes               |
| 30     | 62.52    | 152.28    | 2000 | Russia  | Magadanskaya | Kolyma R.                    |
| 31     | 62.95    | 152.37    | 1998 | Russia  | Magadanskaya | Seimchan Area                |
| 32     | 62.86    | 152.41    | 2000 | Russia  | Magadanskaya | Elegan R.                    |
| 33     | 62.333   | 153.35    | 1998 | Russia  | Magadanskaya | Buynda R.                    |
| 34     | 63.33    | 158.58    | 2002 | Russia  | Magadanskaya | Omolon R.                    |
| 35     | 63.42    | 158.91    | 2000 | Russia  | Magadanskaya | Omolon R.                    |
| 36     | 63.63    | 159.45    | 2000 | Russia  | Magadanskaya | Omolon R.                    |
| 37     | 63.82    | 160.5     | 2000 | Russia  | Magadanskaya | Omolon R.                    |
| 38     | 64.38    | 161.03    | 2000 | Russia  | Magadanskaya | Omolon R.                    |
| 39     | 64.45    | 161.13    | 2000 | Russia  | Magadanskaya | Omolon R.                    |
| 40     | 65.31    | 160.34    | 2000 | Russia  | Magadanskaya | Omolon R.                    |
| 41     | 65.46    | 160.18    | 2000 | Russia  | Magadanskaya | Omolon R.                    |
| 42     | 65.59    | 159.68    | 2000 | Russia  | Magadanskaya | Omolon R.                    |
| 43     | 65.65    | 159.38    | 2000 | Russia  | Magadanskaya | Omolon R                     |
| 44     | 65       | 168.67    | 1992 | Russia  | Chukotka     | Upper Anadyr R.              |
| 45     | 64.68    | 170.4     | 2002 | Russia  | Chukotka     | Markovka R.                  |
| 46     | 62.7     | 170.42    | 2002 | Russia  | Chukotka     | Kamenka R.                   |
| 47     | 65.22    | 172.33    | 2002 | Russia  | Chukotka     | Getlyangen Lagoon            |
| 48     | 64.87    | 172.67    | 2002 | Russia  | Chukotka     | 10 km Sw Yanrakynnot Village |
| 49     | 64.65    | 172.53    | 2002 | Russia  | Chukotka     | Ne Side Ostrov Yttygran      |
| 50     | 64.52    | 172.75    | 2002 | Russia  | Chukotka     | 3 km Nne Tkachen Bay         |
| 51     | 64.42    | 172.53    | 2002 | Russia  | Chukotka     | Ulhum R.                     |
| 52     | 64.57    | 177.32    | 2002 | Russia  | Chukotka     | Mount Dionysus               |
| 53     | 64.81    | 177.55    | 2002 | Russia  | Chukotka     | volchya K.                   |
| 54     | 64.533   | -1/2./5   | 1998 | Russia  | Chukotka     | 6 km NE Chapline             |

| Locale | Latitude | Longitude | Year | Country | Region    | Locality                  |
|--------|----------|-----------|------|---------|-----------|---------------------------|
| 55     | 64.867   | -172.667  | 2002 | Russia  | Chukotka  | 10 km SW of Yanrakynnot   |
| 56     | 64.65    | -172.533  | 1998 | Russia  | Chukotka  | NE end of Yttygran Island |
| 57     | 64.417   | -172.533  | 1998 | Russia  | Chukotka  | 12 km W of Old Chapline   |
| 58     | 65.217   | -172.333  | 1998 | Russia  | Chukotka  | Gerlyangen Lagoon         |
| 59     | 53.08    | 158.83    | 1997 | Russia  | Kamchatka | Petropaulousk Kamchatskiy |
| 60     | 54.97    | 158.95    | 1997 | Russia  | Kamchatka | Elizovo                   |
| 61     | 64.87    | -166.21   | 2000 | USA     | Alaska    | Woolley Lagoon            |
| 62     | 64.9     | -166.18   | 2000 | USA     | Alaska    | Wesley Creek              |
| 63     | 64.9     | -165.11   | 2000 | USA     | Alaska    | Grand Central R           |
| 64     | 65.1     | -164.92   | 2000 | USA     | Alaska    | Pilgrim Hotsprings        |
| 65     | 65.05    | -164.83   | 2000 | USA     | Alaska    | Pilorim Hotsprings Road   |
| 66     | 64 48    | -164.63   | 2000 | USA     | Alaska    | Safety Sound              |
| 67     | 64 71    | -164.01   | 2000 | USA     | Alaska    | Skookum R                 |
| 68     | 64 78    | -163 79   | 2000 | USA     | Alaska    | Foy/Lil Creek             |
| 69     | 65.41    | -164.65   | 2000 | USA     | Alaska    | Kougarok Landing Strin    |
| 70     | 65.38    | 163.27    | 2000 |         | Alaska    | Kuzitrin Lake             |
| 70     | 65.85    | -103.27   | 2001 | USA     | Alaska    | Sorpontino Hot Springs    |
| 71     | 66.29    | -104.7    | 2001 | USA     | Alaska    | Devil Mountain Lakes      |
| 72     | 00.38    | -104.48   | 2001 | USA     | Alaska    | Devil Mountain Lakes      |
| 73     | 00.93    | -102.0    | 2000 | USA     | Alaska    | 8 km S. Kolzebue          |
| /4     | 67.07    | -103.32   | 2000 | USA     | Alaska    | Tukrok R.                 |
| 75     | 67.13    | -162.88   | 2003 | USA     | Alaska    |                           |
| /6     | 67.2     | -163.17   | 2001 | USA     | Alaska    | Situkuyok R.              |
| 77     | 67.27    | -163.67   | 2003 | USA     | Alaska    | Kakagrak Hills            |
| 78     | 67.52    | -163.58   | 2001 | USA     | Alaska    | Rabbit Creek              |
| 79     | 67.62    | -163.85   | 2001 | USA     | Alaska    | Red Dog Road              |
| 80     | 67.47    | -162.22   | 2001 | USA     | Alaska    | Asik Mountain             |
| 81     | 67.92    | -162.28   | 2000 | USA     | Alaska    | Kelly R.                  |
| 82     | 68.47    | -161.47   | 2001 | USA     | Alaska    | Copter Peak               |
| 83     | 68.2     | -159.82   | 2001 | USA     | Alaska    | Aniralik Lake             |
| 84     | 68.33    | -158.73   | 2001 | USA     | Alaska    | Desperation Lake          |
| 85     | 68.13    | -158.98   | 2001 | USA     | Alaska    | Sidik Lake                |
| 86     | 67.6     | -159.78   | 2003 | USA     | Alaska    | Baird Mountains           |
| 87     | 67.08    | -159.78   | 2001 | USA     | Alaska    | Kallarichuk R.            |
| 88     | 67.12    | -159.03   | 2000 | USA     | Alaska    | Kavet Creek               |
| 89     | 67       | -158.48   | 2003 | USA     | Alaska    | Waring Mountains          |
| 90     | 67.1     | -158.27   | 2001 | USA     | Alaska    | Onion Portage             |
| 91     | 67.48    | -158.23   | 2003 | USA     | Alaska    | Headwaters Akillik R.     |
| 92     | 67.65    | -158.18   | 2001 | USA     | Alaska    | Kaluich Creek             |
| 93     | 67.72    | -156.13   | 2002 | USA     | Alaska    | Lake Isiak                |
| 94     | 68.12    | -154.12   | 2002 | USA     | Alaska    | Lake Tulilik              |
| 95     | 68.57    | -152.95   | 2002 | USA     | Alaska    | Fortress Mountain         |
| 96     | 68.27    | -150.65   | 2002 | USA     | Alaska    | Nunushuk R.               |
| 97     | 68.455   | -149.478  | 2005 | USA     | Alaska    | Lake Galbreath            |
| 98     | 67.5     | -154.5    |      | USA     | Alaska    | Baird and Brooks M.       |
| 99     | 67.1     | -154.27   | 2002 | USA     | Alaska    | Walker Lake               |
| 100    | 67.33    | -153.67   | 2002 | USA     | Alaska    | Lake Takahula             |
| 101    | 67.07    | -152.93   | 2002 | USA     | Alaska    | Agiak Lake                |
| 102    | 67.45    | -150.85   | 2002 | USA     | Alaska    | North Fork Koyukuk R.     |
| 103    | 66.539   | -150.796  | 2005 | USA     | Alaska    | Fish Creek on Dalton Hwv  |
| 104    | 66.358   | -150.461  | 2005 | USA     | Alaska    | Finger Mtn                |
| 105    | 66.303   | -150.432  | 2005 | USA     | Alaska    | 2 mi S Finger Mtn         |
| 106    | 65.668   | -149.107  | 2005 | USA     | Alaska    | Hess Creek on Dalton Hwv  |
| 107    | 65.288   | -149.291  | 2005 | USA     | Alaska    | 10 mi N., 1 mi E Minto    |
| 108    | 65.149   | -147.387  | 2005 | USA     | Alaska    | Steese Highway            |
| 109    | 63.933   | -147.467  |      | USA     | Alaska    | Central Alaska Range      |
|        |          |           |      |         |           | -0-                       |

| Cook et al., High latitude | e exchange and | diversification |
|----------------------------|----------------|-----------------|
|----------------------------|----------------|-----------------|

| 110     63.077     -146.221     2005     USA     Alaska     29.5 mi W Paxon       111     63.189     147.597     2005     USA     Alaska     85.6 mi W Paxon,       113     63.75     -148.372     2002     USA     Alaska     Stamped Creek       114     63.75     -150.82     2002     USA     Alaska     Stamped Creek       115     63.92     151.5     2002     USA     Alaska     Creek       116     62.356     150.82     2005     USA     Alaska     0.5 mi F Pereville       118     62.38     -150.72     2002     USA     Alaska     Perev Streek       119     62.27     -150.24     2002     USA     Alaska     Tupper Verma R.       121     61.1     -153.85     2003     USA     Alaska     Tupper Verma R.       122     60.38     153.83     2003     USA     Alaska     Mirry Lake       123     60.38     153.83     2003     USA     Alaska     Mirry Lake                                                                                                                                       | Locale | Latitude | Longitude | Year | Country | Region          | Locality                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|-----------|------|---------|-----------------|--------------------------|
| 111     63.189     -147.377     2005     USA     Alaska     85.5 mi W Passon       112     63.75     -150.32     2002     USA     Alaska     120 mi W. Passon       114     63.7     -150.32     2002     USA     Alaska     Kantshan Hills       115     63.79     -150.58     2002     USA     Alaska     Peters Creek       116     62.536     150.82     2005     USA     Alaska     Peters Creek       118     62.38     150.72     2002     USA     Alaska     Uper Versita R.       121     61.1     153.85     2003     USA     Alaska     Targore Creek       122     60.78     153.85     2003     USA     Alaska     Head of Lake Clark       123     60.18     -153.85     2003     USA     Alaska     Head of Lake Clark       124     59.98     -122.67     2003     USA     Alaska     Head of Lake Clark       125     60.17     -154.57     2003     USA     Alaska     Head of                                                                                                                        | 110    | 63.077   | -146.221  | 2005 | USA     | Alaska          | 29.5 mi W Paxson         |
| 112     63.375     148.378     2065     USA     Alaska     120 mit W rason,       113     63.75     -150.28     2002     USA     Alaska     Stampede Creek       114     63.7     -150.58     2002     USA     Alaska     Chichubane Lake       115     63.92     -151.5     2005     USA     Alaska     0.5 mit Ferrs/Hers/Hers/Hers/Hers/Hers/Hers/Hers/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 111    | 63.189   | -147.597  | 2005 | USA     | Alaska          | 85.5 mi W Paxson         |
| 113     67.7     -150.58     2002     USA     Alaska     Sumption       114     65.7     -150.58     2002     USA     Alaska     Chichtukabena Lake       115     63.92     -151.5     2002     USA     Alaska     Peters Creck       116     62.38     -150.76     2005     USA     Alaska     Peters Creck       118     62.38     -150.72     2002     USA     Alaska     Peters Creck       120     62.28     -153.85     2003     USA     Alaska     Upper Creck       121     61.1     153.85     2003     USA     Alaska     Two Lakes       122     60.78     -152.67     2003     USA     Alaska     Head of Lake Clark       124     59.98     -152.67     2003     USA     Alaska     Churke Clark       125     60.17     -154.57     2003     USA     Alaska     Churke Clark       128     58.67     -155.622     2004     USA     Alaska     Cohin                                                                                                                                                       | 112    | 63.375   | -148.378  | 2005 | USA     | Alaska          | 120 mi W. Paxson,        |
| 114     63.7     -150.8     2002     USA     Alaska     Kamilla       115     63.92     -151.5     2003     USA     Alaska     Chilchalabena Lake       117     62.49     150.768     2005     USA     Alaska     0.5 mic     Peters/Ule       118     62.33     -150.24     2002     USA     Alaska     Troper Creek       119     62.27     -150.24     2002     USA     Alaska     Troper Creek       120     62.28     -152.05     2003     USA     Alaska     Tropoise Lake       121     61.1     -153.85     2003     USA     Alaska     Tropoise Lake       123     60.38     -153.83     2003     USA     Alaska     Mead of Lake Clark       124     59.98     -152.67     2003     USA     Alaska     Mead of Lake Clark       125     60.77     -155.028     2004     USA     Alaska     Mark       126     58.77     -155.891     2004     USA     Alaska     Drerk <td>113</td> <td>63.75</td> <td>-150.32</td> <td>2002</td> <td>USA</td> <td>Alaska</td> <td>Stampede Creek</td>                        | 113    | 63.75    | -150.32   | 2002 | USA     | Alaska          | Stampede Creek           |
| 115     63.92     -151.5     2002     USA     Alaska     Chichaben Lake       116     62.536     -150.76     2005     USA     Alaska     O 5 ml E Peters/lile       117     62.49     -150.76     2002     USA     Alaska     Peters Creek       118     62.38     -150.72     2002     USA     Alaska     Upper Creek       120     62.23     -153.85     2003     USA     Alaska     Upper Creek       122     60.78     -153.85     2003     USA     Alaska     Fuero Lake       123     60.38     -153.85     2003     USA     Alaska     Fuero Lake       124     59.98     -152.67     2003     USA     Alaska     Fuero Creek       125     60.17     -154.57     2003     USA     Alaska     Fuero Creek       128     58.67     -155.429     2004     USA     Alaska     Chairs       129     58.21     -150.67     2003     USA     Alaska     Cobinin                                                                                                                                                        | 114    | 63.7     | -150.58   | 2002 | USA     | Alaska          | Kantishna Hills          |
| 116     62.336     150.82     2005     USA     Alaska     Peters Creek       117     62.49     -150.768     2002     USA     Alaska     0.5 m. Creek       119     62.27     -150.72     2002     USA     Alaska     Trapper Creek       120     62.28     152.05     2002     USA     Alaska     Trapper Creek       121     61.1     -153.85     2003     USA     Alaska     Two calosis       123     60.38     -153.85     2003     USA     Alaska     Head of Lake Clark       124     59.98     -152.67     2003     USA     Alaska     Biver Salmon       125     60.17     -154.57     2003     USA     Alaska     Chaitma Bay       126     58.773     -155.429     2004     USA     Alaska     Gortat     Creek       130     58.105     -154.527     2004     USA     Alaska     Contat     Creek       131     59.62     -150.63     2003     USA     Alaska                                                                                                                                                | 115    | 63.92    | -151.5    | 2002 | USA     | Alaska          | Chilchukabena Lake       |
| 117     62.49     -150.768     2002     USA     Alaska     0.5 mi E Petersville       118     62.27     -150.24     2002     USA     Alaska     Upper Yentus R.       120     62.28     -152.05     2002     USA     Alaska     Upper Yentus R.       121     61.1     -153.85     2003     USA     Alaska     Turopiose Lake       123     60.38     -153.85     2003     USA     Alaska     Turopiose Lake       124     59.98     -152.67     2003     USA     Alaska     Chiker Station       125     60.17     -154.57     2003     USA     Alaska     Murmy Lake       127     58.67     -155.028     2004     USA     Alaska     Murmy Lake       128     58.755     -154.527     2004     USA     Alaska     Contact Creek       130     59.02     -150.67     2003     USA     Alaska     Upper Nuka R.       131     59.25     -150.35     2003     USA     Alaska     UpitMuka R.                                                                                                                            | 116    | 62.536   | -150.82   | 2005 | USA     | Alaska          | Peters Creek             |
| 118     62.28     -150.72     2002     USA     Alaska     Peters Creek       119     62.27     -150.24     2002     USA     Alaska     Tupper Ventua R.       120     61.28     -152.05     2002     USA     Alaska     Two aloss       121     61.1     -153.85     2003     USA     Alaska     Two aloss       123     60.38     -153.85     2003     USA     Alaska     Silvergance       124     59.98     -152.67     2003     USA     Alaska     Chuitma Bay       125     60.17     -154.57     2004     USA     Alaska     Harry Lake       127     58.67     -155.429     2004     USA     Alaska     Idavia Lake       128     58.765     -155.891     2004     USA     Alaska     Idavia Lake       130     58.105     -154.527     2004     USA     Alaska     Markika       131     59.62     150.63     2003     USA     Alaska     North Arm, Nuka Bay                                                                                                                                                   | 117    | 62.49    | -150.768  | 2005 | USA     | Alaska          | 0.5 mi E Petersville     |
| 119     62.27     -150.24     2002     USA     Alaska     Trapper Creek       120     62.28     -152.05     2002     USA     Alaska     Two Lakes       121     61.1     -153.85     2003     USA     Alaska     Two Lakes       122     60.78     -153.83     2003     USA     Alaska     Fundor Flact Clark       124     59.08     -152.67     2003     USA     Alaska     Silver Salmon       125     60.17     154.57     2003     USA     Alaska     Marray Lake       127     58.67     -155.921     2004     USA     Alaska     Fure's Cabin       128     58.755     -155.891     2004     USA     Alaska     Chaina Bay       130     58.105     -154.527     2004     USA     Alaska     Cabin       131     59.62     -150.67     2003     USA     Alaska     Matk Bay       133     59.53     -150.35     2003     USA     Alaska     Delight Lake       <                                                                                                                                                 | 118    | 62.38    | -150.72   | 2002 | USA     | Alaska          | Peters Creek             |
| 120     62.28     -152.05     2002     USA     Alaska     Upper Yentna R.       121     61.1     -153.85     2003     USA     Alaska     Turquoise Lake       123     60.78     -153.85     2003     USA     Alaska     Turquoise Lake       124     59.98     -152.47     2003     USA     Alaska     Silver Salmon       125     60.17     -154.57     2003     USA     Alaska     Fure's Cabin       128     58.757     -155.429     2004     USA     Alaska     Fure's Cabin       128     58.75     -155.821     2004     USA     Alaska     Contact Creek       130     58.105     -154.527     2004     USA     Alaska     Contact Creek       133     59.55     -150.63     2003     USA     Alaska     Shelter Creek       134     59.65     -150.33     2003     USA     Alaska     Delight Shit       135     59.53     -150.33     2003     USA     Alaska     Northwesteren Lagoon </td <td>119</td> <td>62.27</td> <td>-150.24</td> <td>2002</td> <td>USA</td> <td>Alaska</td> <td>Trapper Creek</td>     | 119    | 62.27    | -150.24   | 2002 | USA     | Alaska          | Trapper Creek            |
| 121     61.1     -153.85     2003     USA     Alaska     Two Lakes       122     60.78     -153.83     2003     USA     Alaska     Irruptoise Lake       124     59.98     -152.67     2003     USA     Alaska     Chaitae Clark       125     60.17     -154.57     2003     USA     Alaska     Chaitae Bay       126     58.773     -155.028     2004     USA     Alaska     Chaitae       128     58.765     -155.891     2004     USA     Alaska     Idvaria     Iake       129     58.221     -155.892     2004     USA     Alaska     Uper Nuka R.       130     59.62     -150.67     2003     USA     Alaska     Uper Nuka R.       131     59.62     -150.63     2003     USA     Alaska     North Arm.       133     59.55     -150.35     2003     USA     Alaska     North Arm.       134     59.53     -150.35     2003     USA     Alaska     Pagma Bay                                                                                                                                                   | 120    | 62.28    | -152.05   | 2002 | USA     | Alaska          | Upper Yentna R.          |
| 122     60.78     -153.85     2003     USA     Alaska     Turquoise Lake       123     60.38     -153.85     2003     USA     Alaska     Silver Salmon       124     59.98     -152.67     2003     USA     Alaska     Silver Salmon       125     60.17     -154.57     2003     USA     Alaska     Muray Lake       126     58.707     -155.429     2004     USA     Alaska     Muray Lake       128     58.765     -155.982     2004     USA     Alaska     Contact Creek       130     58.105     -154.527     2004     USA     Alaska     Contact Creek       131     59.62     -150.63     2003     USA     Alaska     Dielpht Dake       132     59.53     -150.33     2003     USA     Alaska     Dielpht Pait       134     59.53     -150.33     2003     USA     Alaska     Paguna Bay       135     59.53     -150.3     2003     USA     Alaska     Paguna Bay <t< td=""><td>121</td><td>61.1</td><td>-153.85</td><td>2003</td><td>USA</td><td>Alaska</td><td>Two Lakes</td></t<>                          | 121    | 61.1     | -153.85   | 2003 | USA     | Alaska          | Two Lakes                |
| 123   60.38   -153.83   2003   USA   Alaska   Head of Lake Clark     124   59.98   -152.67   2003   USA   Alaska   Chuima Bay     125   60.17   -154.57   2003   USA   Alaska   Chuima Bay     126   58.73   -155.429   2004   USA   Alaska   Hurs' Lake     128   58.765   -155.891   2004   USA   Alaska   Idavain Lake     129   58.105   -154.527   2004   USA   Alaska   Contact Creek     130   58.105   -154.527   2004   USA   Alaska   Contact Creek     131   59.62   -150.67   2003   USA   Alaska   Delight Spit     133   59.55   -150.33   2003   USA   Alaska   Delight Spit     134   59.53   -150.13   2003   USA   Alaska   Delight Spit     135   59.72   -149.72   2003   USA   Alaska   Crater Bay     139   59.82   -149.63   2003   USA   Alaska   Lop                                                                                                                                                                                                                                           | 122    | 60.78    | -153.85   | 2003 | USA     | Alaska          | Turquoise Lake           |
| 124   59.98   -152.67   2003   USA   Alaska   Silver Salmon     125   60.17   -154.57   2003   USA   Alaska   Murray Lake     126   58.773   -155.289   2004   USA   Alaska   Murray Lake     127   58.67   -155.891   2004   USA   Alaska   Fure's Cabin     128   58.765   -155.982   2004   USA   Alaska   Contact Creek     130   58.105   -154.527   2004   USA   Alaska   Marka     131   59.62   -150.67   2003   USA   Alaska   Shelter Cove, Benuty Bay     133   59.55   -150.66   2003   USA   Alaska   Delight Spit     134   59.53   -150.3   2003   USA   Alaska   Delight Spit     135   59.53   -150.3   2003   USA   Alaska   Northwestern Lagoon     138   59.77   -149.77   2003   USA   Alaska   Vation     140   60.28   -149.77   2003   USA   Alaska <td< td=""><td>123</td><td>60.38</td><td>-153.83</td><td>2003</td><td>USA</td><td>Alaska</td><td>Head of Lake Clark</td></td<>                                                                                                              | 123    | 60.38    | -153.83   | 2003 | USA     | Alaska          | Head of Lake Clark       |
| 125     60.17     -154.57     2003     USA     Alaska     Chulima Bay       126     58.773     -155.028     2004     USA     Alaska     Fure's Cabin       127     58.67     -155.429     2004     USA     Alaska     Fure's Cabin       128     58.765     -155.982     2004     USA     Alaska     Contact Creek       130     58.105     -154.527     2004     USA     Alaska     Amaik Bay       131     99.62     -150.67     2003     USA     Alaska     Scheet Cove, Bauty Bay       133     59.55     -150.56     2003     USA     Alaska     Delight Pit       134     59.53     -150.33     2003     USA     Alaska     Delight Eale       135     59.53     -150.13     2003     USA     Alaska     Crater Bay       137     59.77     -149.77     2003     USA     Alaska     Crater Bay       139     59.82     -149.63     2003     USA     Alaska     Crater Bay                                                                                                                                         | 124    | 59.98    | -152.67   | 2003 | USA     | Alaska          | Silver Salmon            |
| 126   58.773   -155.028   2004   USA   Alaska   Murray Lake     127   58.67   -155.82   2004   USA   Alaska   Idavian Lake     128   58.765   -155.892   2004   USA   Alaska   Contact Creek     130   58.105   -154.527   2004   USA   Alaska   Contact Creek     131   59.62   -150.63   2003   USA   Alaska   Shelter Creek, Baury Bay     133   59.55   -150.63   2003   USA   Alaska   Delight Apit     134   59.53   -150.33   2003   USA   Alaska   Delight Apit     135   59.53   -150.3   2003   USA   Alaska   Delight Lake     136   59.68   -150.13   2003   USA   Alaska   Northwestern Lagoon     138   59.77   -149.92   2003   USA   Alaska   Crater Bay     139   59.82   -149.77   2003   USA   Alaska   Crater Bay     140   60.28   -149.71   2003   USA   Alaska                                                                                                                                                                                                                                   | 125    | 60.17    | -154.57   | 2003 | USA     | Alaska          | Chulitna Bay             |
| 127   58.67   -155.429   2004   USA   Alaska   Fure's Cabin     128   58.21   -155.982   2004   USA   Alaska   Idavain Lake     130   58.105   -154.527   2004   USA   Alaska   Amalik Bay     131   59.62   -150.67   2003   USA   Alaska   Shelter Cove, Benuty Bay     133   59.55   -150.56   2003   USA   Alaska   North Arm, Nuka Bay     134   59.53   -150.33   2003   USA   Alaska   Delight Spit     135   59.53   -150.13   2003   USA   Alaska   Paguna Bay     135   59.53   -160.3   2003   USA   Alaska   Northwestern Lagoon     136   59.68   -150.13   2003   USA   Alaska   Crater Bay     137   59.77   -149.92   2003   USA   Alaska   Crater Bay     139   59.82   -149.63   2003   USA   Alaska   Upper Jean Lake     141   60.53   -150.46   2003   USA   Alaska </td <td>126</td> <td>58.773</td> <td>-155.028</td> <td>2004</td> <td>USA</td> <td>Alaska</td> <td>Murray Lake</td>                                                                                                            | 126    | 58.773   | -155.028  | 2004 | USA     | Alaska          | Murray Lake              |
| 128     58.765     -155.891     2004     USA     Alaska     Idavain Lake       129     58.221     -155.982     2004     USA     Alaska     Contact Creck       130     58.105     -154.527     2004     USA     Alaska     Contact Creck       131     59.62     -150.67     2003     USA     Alaska     Upper Nuka R.       132     59.56     -150.63     2003     USA     Alaska     North Arm, Nuka Bay       133     59.53     -150.33     2003     USA     Alaska     Delight Spit       135     59.53     -150.13     2003     USA     Alaska     Delight Lake       136     59.77     -149.92     2003     USA     Alaska     Routhwestern Lagoon       138     59.72     -149.77     2003     USA     Alaska     Reutrection R.       140     60.28     -149.7     2003     USA     Alaska     Longmere Lake       142     60.54     -150.41     2003     USA     Alaska     Portage Clac                                                                                                                       | 127    | 58.67    | -155.429  | 2004 | USA     | Alaska          | Fure's Cabin             |
| 129     58.221     -155.982     2004     USA     Alaska     Contact Creek       130     58.105     -154.527     2004     USA     Alaska     Amalik Bay       131     59.62     -150.67     2003     USA     Alaska     Mpper Nuka R.       132     59.56     -150.63     2003     USA     Alaska     North Arm, Nuka Bay       133     59.55     -150.56     2003     USA     Alaska     Delight Spit       134     59.53     -150.33     2003     USA     Alaska     Delight Jake       135     59.53     -150.3     2003     USA     Alaska     Delight Jake       136     59.72     -149.77     2003     USA     Alaska     Cater Bay       140     60.28     -149.63     2003     USA     Alaska     Upper Jan Lake       141     60.53     -150.4     2003     USA     Alaska     Upper Jan Lake       142     60.49     -150.91     2003     USA     Alaska     Portage Creek Rd <                                                                                                                                | 128    | 58,765   | -155.891  | 2004 | USA     | Alaska          | Idayain Lake             |
| 130     58,105     -154,527     2004     USA     Alaska     Amalik Bay       131     59,62     -150,67     2003     USA     Alaska     Upper Nuka R.       132     59,56     -150,63     2003     USA     Alaska     North Arn, Nuka Bay       133     59,55     -150,53     2003     USA     Alaska     Delight Spit       134     59,53     -150,33     2003     USA     Alaska     Delight Lake       135     59,53     -150,13     2003     USA     Alaska     Paguna Bay       137     59,77     -149,92     2003     USA     Alaska     Crater Bay       138     59,72     -149,77     2003     USA     Alaska     Varier Bay       140     60,28     -149,7     2003     USA     Alaska     Upper Jean Lake       141     60,53     -150,4     2003     USA     Alaska     Upper Jean Lake       142     60,54     -149,73     2003     USA     Alaska     Palarer Creek Rd                                                                                                                                      | 129    | 58.221   | -155.982  | 2004 | USA     | Alaska          | Contact Creek            |
| 131     59,62     -150,67     2003     USA     Alaska     Upper Nuka R.       132     59,56     -150,63     2003     USA     Alaska     Shelter Cove, Beauty Bay       133     59,55     -150,56     2003     USA     Alaska     North Arm, Nuka Bay       134     59,53     -150,3     2003     USA     Alaska     Delight Spit       135     59,53     -150,3     2003     USA     Alaska     Delight Lake       136     59,68     -150,13     2003     USA     Alaska     Northwestern Lagoon       138     59,72     -149,77     2003     USA     Alaska     Resurcetion R.       141     60,23     -149,63     2003     USA     Alaska     Upper Jauke       142     60,54     -150,46     2003     USA     Alaska     Upper Jauke       143     60,49     -150,91     2003     USA     Alaska     Upper Jauke       144     60,831     -148,901     2005     USA     Alaska     Portage Gla                                                                                                                       | 130    | 58,105   | -154.527  | 2004 | USA     | Alaska          | Amalik Bay               |
| 132   59.56   -150.63   2003   USA   Alaska   Shelter Cove, Beauty Bay     133   59.55   -150.36   2003   USA   Alaska   North Arm, Nuka Bay     134   59.53   -150.33   2003   USA   Alaska   Delight Spit     135   59.53   -150.3   2003   USA   Alaska   Delight Spit     136   59.68   -150.13   2003   USA   Alaska   Paguna Bay     137   59.77   -149.92   2003   USA   Alaska   Crater Bay     139   59.82   -149.63   2003   USA   Alaska   Resurrection R.     141   60.54   -150.46   2003   USA   Alaska   Upper Jean Lake     142   60.54   -150.46   2003   USA   Alaska   Longmere Lake     144   60.81   -149.506   2005   USA   Alaska   Portage Creek Rd     144   60.81   -148.94   2003   USA   Alaska   Portage Creek Rd     145   60.793   -148.94   2001   USA   A                                                                                                                                                                                                                              | 131    | 59.62    | -150.67   | 2003 | USA     | Alaska          | Upper Nuka R.            |
| 133     59.55     -150.56     2003     USA     Alaska     North Arm, Nuka Bay       134     59.53     -150.33     2003     USA     Alaska     Delight Spit       135     59.53     -150.3     2003     USA     Alaska     Delight Spit       136     59.68     -150.13     2003     USA     Alaska     Paguna Bay       137     59.77     -149.92     2003     USA     Alaska     Northwestern Lagoon       138     59.72     -149.63     2003     USA     Alaska     Cater Bay       139     59.82     -149.63     2003     USA     Alaska     Resurrection R.       141     60.53     -150.4     2003     USA     Alaska     Upper Jean Lake       142     60.49     -150.91     2003     USA     Alaska     Portage Clacier Rd       144     60.831     -149.536     2005     USA     Alaska     Portage Clacier Rd       145     60.793     -148.901     2005     USA     Alaska     Summit L                                                                                                                       | 132    | 59.56    | -150.63   | 2003 | USA     | Alaska          | Shelter Cove, Beauty Bay |
| 134     59.53     -150.33     2003     USA     Alaska     Delight Spit       135     59.53     -150.13     2003     USA     Alaska     Delight Lake       136     59.68     -150.13     2003     USA     Alaska     Paguna Bay       137     59.77     -149.77     2003     USA     Alaska     Northwestern Lagoon       138     59.72     -149.77     2003     USA     Alaska     Aiaska     Northwestern Lagoon       140     60.28     -149.7     2003     USA     Alaska     Upper Jean Lake       142     60.54     -150.46     2003     USA     Alaska     Upper Jean Lake       143     60.49     -150.91     2003     USA     Alaska     Portage Creek Rd       144     60.831     -148.901     2005     USA     Alaska     Portage Creek       144     60.81     -148.94     2003     USA     Alaska     Portage Creek       147     61.31     -144.23     2001     USA     Alaska                                                                                                                             | 133    | 59.55    | -150.56   | 2003 | USA     | Alaska          | North Arm. Nuka Bay      |
| 135     59.53     -150.3     2003     USA     Alaska     Deight Lake       136     59.68     -150.13     2003     USA     Alaska     Paguna Bay       137     59.77     -149.92     2003     USA     Alaska     Northwestern Lagoon       138     59.22     -149.77     2003     USA     Alaska     Crater Bay       140     60.28     -149.7     2003     USA     Alaska     Wainet Bay       141     60.53     -150.4     2003     USA     Alaska     Wainet Creek Rd       142     60.54     -150.46     2003     USA     Alaska     Wainet Lake       143     60.49     -150.91     2003     USA     Alaska     Portage Glacier Rd       144     60.811     -148.901     2005     USA     Alaska     Portage Glacier Rd       145     60.793     -148.94     2003     USA     Alaska     Portage Creek       147     61.31     -143.78     2001     USA     Alaska     Chokona Lake                                                                                                                                 | 134    | 59.53    | -150.33   | 2003 | USA     | Alaska          | Delight Spit             |
| 136     59.68     -150.13     2003     USA     Alaska     Pagun Bay       137     59.77     -149.92     2003     USA     Alaska     Northwestern Lagoon       138     59.72     -149.77     2003     USA     Alaska     Crater Bay       139     59.82     -149.63     2003     USA     Alaska     Resurrection R.       140     60.28     -149.7     2003     USA     Alaska     Resurrection R.       141     60.53     -150.4     2003     USA     Alaska     Watson Lake       142     60.54     -150.91     2003     USA     Alaska     Pagune Bay       144     60.81     -149.536     2005     USA     Alaska     Patmer Creek Rd       145     60.793     -148.901     2005     USA     Alaska     Portage Glacier Rd       146     60.81     -148.94     2001     USA     Alaska     Harry's Guich       147     61.37     -143.44     2002     USA     Alaska     Ruby Lake </td <td>135</td> <td>59.53</td> <td>-150.3</td> <td>2003</td> <td>USA</td> <td>Alaska</td> <td>Delight Lake</td>                 | 135    | 59.53    | -150.3    | 2003 | USA     | Alaska          | Delight Lake             |
| 137     59.77     -149.92     2003     USA     Alaska     Northwestern Lagoon       138     59.72     -149.77     2003     USA     Alaska     Crater Bay       139     59.82     -149.63     2003     USA     Alaska     Crater Bay       140     60.28     -149.7     2003     USA     Alaska     Resurrection R.       141     60.53     -150.4     2003     USA     Alaska     Upper Jean Lake       142     60.54     -150.46     2003     USA     Alaska     Palmer Creck Rd       144     60.81     -148.901     2005     USA     Alaska     Portage Glacier Rd       145     60.793     -148.901     2005     USA     Alaska     Portage Glacier Rd       146     60.81     -148.94     2003     USA     Alaska     Burny's Gulch       147     61.31     -144.23     2001     USA     Alaska     Burny's Gulch       148     61.06     -143.9     2001     USA     Alaska     Ruby Lake </td <td>136</td> <td>59.68</td> <td>-150.13</td> <td>2003</td> <td>USA</td> <td>Alaska</td> <td>Paguna Bay</td>        | 136    | 59.68    | -150.13   | 2003 | USA     | Alaska          | Paguna Bay               |
| 138     59,72     -149,77     2003     USA     Alaska     Crater Bay       139     59,82     -149,63     2003     USA     Alaska     Aialik Bay       140     60,28     -149,7     2003     USA     Alaska     Resurrection R.       141     60,53     -150,4     2003     USA     Alaska     Upper Jean Lake       142     60,54     -150,46     2003     USA     Alaska     Watson Lake       143     60,49     -150,91     2003     USA     Alaska     Portage Glacier Rd       144     60,831     -149,536     2005     USA     Alaska     Portage Creek Rd       145     60,793     -148,901     2005     USA     Alaska     Portage Creek Rd       146     60,81     -148,54     2003     USA     Alaska     Nortage Glacier Rd       147     61.31     -144.23     2001     USA     Alaska     Summit Lake       148     61.06     -143.36     2001     USA     Alaska     Ruby Lake                                                                                                                             | 137    | 59.77    | -149.92   | 2003 | USA     | Alaska          | Northwestern Lagoon      |
| 139 $59.82$ $-149.63$ $2003$ USAAlaskaAlaskaAialik Bay140 $60.28$ $-149.7$ $2003$ USAAlaskaResurrection R.141 $60.53$ $-150.4$ $2003$ USAAlaskaUpper Jean Lake142 $60.54$ $-150.46$ $2003$ USAAlaskaWatson Lake143 $60.49$ $-150.91$ $2003$ USAAlaskaPalmer Creek Rd144 $60.831$ $-149.536$ $2005$ USAAlaskaPortage Glacier Rd145 $60.793$ $-148.901$ $2005$ USAAlaskaPortage Glacier Rd146 $60.81$ $-143.92$ $2001$ USAAlaskaSummit Lake148 $61.06$ $-143.78$ $2002$ USAAlaskaSummit Lake148 $61.06$ $-143.78$ $2002$ USAAlaskaRuby Lake150 $61.37$ $-143.78$ $2002$ USAAlaskaRuby Lake151 $61.06$ $-143.36$ $2001$ USAAlaskaRock Creek152 $61$ $-142.75$ $2001$ USAAlaskaRock Creek153 $61.39$ $-142.03$ $2001$ USAAlaskaGoat Creek154 $60.98$ $-142.03$ $2001$ USAAlaskaGoat Creek155 $60.75$ $-139.5$ CanadaYukon TerritoryKluane National Park156 $61.83$ $-141.2$ $2001$ USAAlaskaBraye Lakes155 </td <td>138</td> <td>59.72</td> <td>-149.77</td> <td>2003</td> <td>USA</td> <td>Alaska</td> <td>Crater Bay</td> | 138    | 59.72    | -149.77   | 2003 | USA     | Alaska          | Crater Bay               |
| 140     60.28     -149.7     2003     USA     Alaska     Resurrection R.       141     60.53     -150.4     2003     USA     Alaska     Upper Jean Lake       142     60.54     -150.46     2003     USA     Alaska     Watson Lake       143     60.49     -150.91     2003     USA     Alaska     Longmere Lake       144     60.81     -149.536     2005     USA     Alaska     Palmer Creek Rd       145     60.793     -148.901     2005     USA     Alaska     Portage Glacier Rd       146     60.81     -143.78     2001     USA     Alaska     Summit Lake       148     61.06     -143.78     2002     USA     Alaska     Chokona Lake       150     61.37     -143.44     2002     USA     Alaska     Ruby Lake       151     61.06     -143.78     2001     USA     Alaska     Chokona Lake       152     61     -142.75     2001     USA     Alaska     Goat Creek                                                                                                                                         | 139    | 59.82    | -149.63   | 2003 | USA     | Alaska          | Aialik Bay               |
| 141 $60.53$ $-150.4$ $2003$ USAAlaskaUpper Jean Lake142 $60.54$ $-150.46$ $2003$ USAAlaskaWatson Lake143 $60.49$ $-150.91$ $2003$ USAAlaskaLongmere Lake144 $60.831$ $-149.536$ $2005$ USAAlaskaPalmer Creek Rd145 $60.793$ $-148.901$ $2005$ USAAlaskaPortage Glacier Rd146 $60.81$ $-148.94$ $2005$ USAAlaskaPortage Glacier Rd147 $61.31$ $-144.23$ $2001$ USAAlaskaSummit Lake148 $61.06$ $-143.9$ $2001$ USAAlaskaHarry's Gulch149 $61.45$ $-143.78$ $2002$ USAAlaskaRuby Lake150 $61.37$ $-143.44$ $2002$ USAAlaskaRuby Lake151 $61.06$ $-142.75$ $2001$ USAAlaskaRock Creek152 $61$ $-142.75$ $2001$ USAAlaskaTana Lake153 $61.3$ $-142.03$ $2001$ USAAlaskaRock Creek154 $60.98$ $-142.03$ $2001$ USAAlaskaRock Creek155 $60.75$ $-139.5$ CanadaYukon TerritoryKluane National Park156 $61.83$ $-141.83$ $2001$ USAAlaskaRock Lake158 $62.05$ $-142.03$ $2001$ USAAlaskaRock Lake159 $62.02$                                                                                                                    | 140    | 60.28    | -149.7    | 2003 | USA     | Alaska          | Resurrection R.          |
| 142   60.54   -150.46   2003   USA   Alaska   Watson Lake     143   60.49   -150.91   2003   USA   Alaska   Longmere Lake     144   60.831   -149.536   2005   USA   Alaska   Palmer Creek Rd     145   60.793   -148.901   2005   USA   Alaska   Portage Glacier Rd     146   60.81   -148.901   2003   USA   Alaska   Portage Creek Rd     147   61.31   -144.23   2001   USA   Alaska   Summit Lake     148   61.06   -143.9   2001   USA   Alaska   Harry's Gulch     149   61.45   -143.78   2002   USA   Alaska   Ruby Lake     150   61.37   -143.44   2002   USA   Alaska   Ruby Lake     151   61.06   -143.36   2001   USA   Alaska   Tana Lake     153   61.3   -142.75   2001   USA   Alaska   Rex Creek     153   61.3   -142.03   2001   USA   Alaska   Goat Cr                                                                                                                                                                                                                                           | 141    | 60.53    | -150.4    | 2003 | USA     | Alaska          | Upper Jean Lake          |
| 14360.49-150.912003USAAlaskaLongmere Lake144 $60.831$ -149.5362005USAAlaskaPalmer Creek Rd145 $60.793$ -148.9012005USAAlaskaPortage Glacier Rd146 $60.81$ -148.942003USAAlaskaPortage Creek147 $61.31$ -144.232001USAAlaskaSummit Lake148 $61.06$ -143.92001USAAlaskaHarry's Gulch149 $61.45$ -143.782002USAAlaskaRuby Lake150 $61.37$ -143.442002USAAlaskaRuby Lake151 $61.06$ -143.362001USAAlaskaRuby Lake152 $61$ -142.752001USAAlaskaRoket Creek153 $61.3$ -142.032001USAAlaskaGoat Creek154 $60.98$ -142.032001USAAlaskaGoat Creek155 $60.75$ -139.5CanadaYukon TerritoryKluane National Park156 $61.83$ -141.832001USAAlaskaRok Lake158 $62.05$ -142.032001USAAlaskaBraye Lakes159 $62.02$ -141.122001USAAlaskaBraye Lakes159 $62.02$ -141.122001USAAlaskaBraye Lakes160 $62.23$ -140.682001CanadaYukon TerritorySn                                                                                                                                                                                              | 142    | 60.54    | -150.46   | 2003 | USA     | Alaska          | Watson Lake              |
| 144   60.831   -149.536   2005   USA   Alaska   Palmer Creek Rd     145   60.793   -148.901   2005   USA   Alaska   Portage Glacier Rd     146   60.81   -148.94   2003   USA   Alaska   Portage Creek     147   61.31   -144.23   2001   USA   Alaska   Summit Lake     148   61.06   -143.9   2001   USA   Alaska   Harry's Gulch     149   61.45   -143.78   2002   USA   Alaska   Ruby Lake     150   61.37   -143.44   2002   USA   Alaska   Ruby Lake     151   61.06   -143.36   2001   USA   Alaska   Rock Creek     152   61   -142.75   2001   USA   Alaska   Goat Creek     152   61.3   -142.03   2001   USA   Alaska   Goat Creek     155   60.75   -139.5   Canada   Yukon Territory   Kluane National Park     156   61.83   -141.83   2001   USA   Alaska   Braye Lakes <td>143</td> <td>60.49</td> <td>-150.91</td> <td>2003</td> <td>USA</td> <td>Alaska</td> <td>Longmere Lake</td>                                                                                                                  | 143    | 60.49    | -150.91   | 2003 | USA     | Alaska          | Longmere Lake            |
| 145   60.793   -148.901   2005   USA   Alaska   Portage Glacier Rd     146   60.81   -148.94   2003   USA   Alaska   Portage Creck     147   61.31   -144.23   2001   USA   Alaska   Summit Lake     148   61.06   -143.9   2001   USA   Alaska   Harry's Gulch     149   61.45   -143.78   2002   USA   Alaska   Chokosna Lake     150   61.37   -143.44   2002   USA   Alaska   Ruby Lake     151   61.06   -143.36   2001   USA   Alaska   Rock Creek     152   61   -142.75   2001   USA   Alaska   Rex Creek     153   61.3   -142.52   2001   USA   Alaska   Goat Creek     154   60.98   -142.03   2001   USA   Alaska   Goat Creek     155   60.75   -139.5   Canada   Yukon Territory   Kluane National Park     155   60.75   -141.2   2001   USA   Alaska   Rock Lake                                                                                                                                                                                                                                        | 144    | 60.831   | -149.536  | 2005 | USA     | Alaska          | Palmer Creek Rd          |
| 14660.81-148.942003USAAlaskaPortage Creek147 $61.31$ -144.232001USAAlaskaSummit Lake148 $61.06$ -143.92001USAAlaskaHarry's Gulch149 $61.45$ -143.782002USAAlaskaRuby Lake150 $61.37$ -143.442002USAAlaskaRuby Lake151 $61.06$ -143.362001USAAlaskaPocket Creek152 $61$ -142.752001USAAlaskaTana Lake153 $61.3$ -142.522001USAAlaskaGoat Creek154 $60.98$ -142.032001USAAlaskaGoat Creek155 $60.75$ -139.5CanadaYukon TerritoryKluane National Park156 $61.83$ -141.832001USAAlaskaRock Lake158 $62.05$ -142.032001USAAlaskaRock Lake158 $62.05$ -142.032001USAAlaskaRock Lake158 $62.02$ -141.122001USAAlaskaBraye Lakes160 $62.23$ -140.682001CanadaYukon TerritorySnag Junction161 $62.34$ -141.062001USAAlaskaScottic Creek162 $62.3$ -141.172001USAAlaskaCarden Hills163 $62.53$ -143.252002USAAlaskaCarden Hills                                                                                                                                                                                                   | 145    | 60.793   | -148,901  | 2005 | USA     | Alaska          | Portage Glacier Rd       |
| 14761.31-144.232001USAAlaskaSummit Lake14861.06-143.92001USAAlaskaHarry's Gulch14961.45-143.782002USAAlaskaChokosna Lake15061.37-143.442002USAAlaskaRuby Lake15161.06-143.362001USAAlaskaPocket Creek15261-142.752001USAAlaskaTana Lake15361.3-142.522001USAAlaskaGoat Creek15460.98-142.032001USAAlaskaGoat Creek15560.75-139.5CanadaYukon TerritoryKluane National Park15661.83-141.832001USAAlaskaSolo Mountain15761.78-142.032001USAAlaskaRock Lake15862.05-142.032001USAAlaskaRock Lake15862.02-141.122001USAAlaskaBraye Lakes16062.23-140.682001CanadaYukon TerritorySnag Junction16162.34-141.062001USAAlaskaCarden Hills16362.53-143.252002USAAlaskaCarden Hills16463.678-144.1562005USAAlaska2 mi W Dot Lake                                                                                                                                                                                                                                                                                                   | 146    | 60.81    | -148.94   | 2003 | USA     | Alaska          | Portage Creek            |
| 14861.06 $-143.9$ 2001USAAlaskaHarry's Gulch14961.45 $-143.78$ 2002USAAlaskaChokosna Lake15061.37 $-143.44$ 2002USAAlaskaRuby Lake15161.06 $-143.36$ 2001USAAlaskaPocket Creek15261 $-142.75$ 2001USAAlaskaTana Lake15361.3 $-142.52$ 2001USAAlaskaGoat Creek15460.98 $-142.03$ 2001USAAlaskaGoat Creek15560.75 $-139.5$ CanadaYukon TerritoryKluane National Park15661.83 $-141.83$ 2001USAAlaskaRock Lake15761.78 $-141.2$ 2001USAAlaskaRock Lake15862.05 $-142.03$ 2001USAAlaskaRock Lake15862.02 $-141.12$ 2001USAAlaskaBraye Lakes16062.23 $-140.68$ 2001CanadaYukon TerritorySnag Junction16162.34 $-141.06$ 2001USAAlaskaCarden Hills16362.53 $-143.25$ 2002USAAlaskaCarden Hills16463.678 $-144.156$ 2005USAAlaska2 mi W Dot Lake                                                                                                                                                                                                                                                                               | 147    | 61.31    | -144.23   | 2001 | USA     | Alaska          | Summit Lake              |
| 149   61.45   -143.78   2002   USA   Alaska   Chokosna Lake     150   61.37   -143.44   2002   USA   Alaska   Ruby Lake     151   61.06   -143.36   2001   USA   Alaska   Pocket Creek     152   61   -142.75   2001   USA   Alaska   Tana Lake     153   61.3   -142.75   2001   USA   Alaska   Goat Creek     154   60.98   -142.03   2001   USA   Alaska   Goat Creek     155   60.75   -139.5   Canada   Yukon Territory   Kluane National Park     156   61.83   -141.2   2001   USA   Alaska   Solo Mountain     157   61.78   -141.2   2001   USA   Alaska   Rock Lake     158   62.05   -142.03   2001   USA   Alaska   Braye Lakes     158   62.02   -141.12   2001   USA   Alaska   Braye Lakes     160   62.23   -140.68   2001   Canada   Yukon Territory   Snag Junction                                                                                                                                                                                                                                   | 148    | 61.06    | -143.9    | 2001 | USA     | Alaska          | Harry's Gulch            |
| 150   61.37   -143.44   2002   USA   Alaska   Ruby Lake     151   61.06   -143.36   2001   USA   Alaska   Pocket Creek     152   61   -142.75   2001   USA   Alaska   Tana Lake     153   61.3   -142.52   2001   USA   Alaska   Rex Creek     154   60.98   -142.03   2001   USA   Alaska   Goat Creek     155   60.75   -139.5   Canada   Yukon Territory   Kluane National Park     156   61.83   -141.2   2001   USA   Alaska   Boot Creek     156   61.78   -141.2   2001   USA   Alaska   Solo Mountain     157   61.78   -141.2   2001   USA   Alaska   Rock Lake     158   62.05   -142.03   2001   USA   Alaska   Braye Lakes     159   62.02   -141.12   2001   USA   Alaska   Braye Lakes     160   62.23   -140.68   2001   Canada   Yukon Territory   Snag Junction                                                                                                                                                                                                                                        | 149    | 61.45    | -143.78   | 2002 | USA     | Alaska          | Chokosna Lake            |
| 151   61.06   -143.36   2001   USA   Alaska   Pocket Creek     152   61   -142.75   2001   USA   Alaska   Tana Lake     153   61.3   -142.52   2001   USA   Alaska   Rex Creek     154   60.98   -142.03   2001   USA   Alaska   Goat Creek     155   60.75   -139.5   Canada   Yukon Territory   Kluane National Park     156   61.83   -141.83   2001   USA   Alaska   Book Lake     156   61.83   -141.2   2001   USA   Alaska   Solo Mountain     157   61.78   -141.2   2001   USA   Alaska   Rock Lake     158   62.05   -142.03   2001   USA   Alaska   Braye Lakes     159   62.02   -141.12   2001   USA   Alaska   Braye Lakes     160   62.23   -140.68   2001   Canada   Yukon Territory   Snag Junction     161   62.34   -141.06   2001   USA   Alaska   Carden Hills                                                                                                                                                                                                                                     | 150    | 61.37    | -143.44   | 2002 | USA     | Alaska          | Ruby Lake                |
| 15261 $-142.75$ 2001USAAlaskaTana Lake15361.3 $-142.52$ 2001USAAlaskaRex Creek15460.98 $-142.03$ 2001USAAlaskaGoat Creek15560.75 $-139.5$ CanadaYukon TerritoryKluane National Park15661.83 $-141.83$ 2001USAAlaskaSolo Mountain15761.78 $-141.2$ 2001USAAlaskaRock Lake15862.05 $-142.03$ 2001USAAlaskaBraye Lakes15962.02 $-141.12$ 2001USAAlaskaBraye Lakes16062.23 $-140.68$ 2001CanadaYukon TerritorySnag Junction16162.34 $-141.06$ 2001USAAlaskaCorteek16262.3 $-141.17$ 2001USAAlaskaCarden Hills16362.53 $-143.25$ 2002USAAlaskaCarden Hills16463.678 $-144.156$ 2005USAAlaska2 mi W Dot Lake                                                                                                                                                                                                                                                                                                                                                                                                                  | 151    | 61.06    | -143.36   | 2001 | USA     | Alaska          | Pocket Creek             |
| 151111101101101101101101153 $61.3$ $-142.52$ $2001$ USAAlaskaRex Creek154 $60.98$ $-142.03$ $2001$ USAAlaskaGoat Creek155 $60.75$ $-139.5$ CanadaYukon TerritoryKluane National Park156 $61.83$ $-141.83$ $2001$ USAAlaskaSolo Mountain157 $61.78$ $-141.2$ $2001$ USAAlaskaRock Lake158 $62.05$ $-142.03$ $2001$ USAAlaskaRock Lake159 $62.02$ $-141.12$ $2001$ USAAlaskaBraye Lakes160 $62.23$ $-140.68$ $2001$ CanadaYukon TerritorySnag Junction161 $62.34$ $-141.06$ $2001$ USAAlaskaCarden Hills162 $62.3$ $-141.17$ $2001$ USAAlaskaCarden Hills163 $62.53$ $-143.25$ $2002$ USAAlaskaTwin Lakes164 $63.678$ $-144.156$ $2005$ USAAlaska $2$ mi W Dot Lake                                                                                                                                                                                                                                                                                                                                                       | 152    | 61       | -142.75   | 2001 | USA     | Alaska          | Tana Lake                |
| 152   60.75   -142.03   2001   USA   Alaska   Goat Creek     155   60.75   -139.5   Canada   Yukon Territory   Kluane National Park     156   61.83   -141.83   2001   USA   Alaska   Solo Mountain     157   61.78   -141.2   2001   USA   Alaska   Rock Lake     158   62.05   -142.03   2001   USA   Alaska   Rock Lake     159   62.02   -141.12   2001   USA   Alaska   Braye Lakes     160   62.23   -140.68   2001   Canada   Yukon Territory   Snag Junction     161   62.34   -141.06   2001   USA   Alaska   Scottie Creek     162   62.3   -141.17   2001   USA   Alaska   Carden Hills     163   62.53   -141.17   2001   USA   Alaska   Carden Hills     163   62.53   -141.166   2002   USA   Alaska   Carden Hills     164   63.678   -144.156   2005   USA   Alaska   2 mi                                                                                                                                                                                                                              | 153    | 61.3     | -142.52   | 2001 | USA     | Alaska          | Rex Creek                |
| 151   6075   -139.5   Canada   Yukon Territory   Kluane National Park     156   61.83   -141.83   2001   USA   Alaska   Solo Mountain     157   61.78   -141.2   2001   USA   Alaska   Rock Lake     158   62.05   -142.03   2001   USA   Alaska   Braye Lakes     159   62.02   -141.12   2001   USA   Alaska   Braye Lakes     160   62.23   -140.68   2001   Canada   Yukon Territory   Snag Junction     161   62.34   -141.06   2001   USA   Alaska   Scottie Creek     162   62.3   -141.17   2001   USA   Alaska   Carden Hills     163   62.53   -141.17   2001   USA   Alaska   Carden Hills     163   62.53   -143.25   2002   USA   Alaska   Twin Lakes     164   63.678   -144.156   2005   USA   Alaska   2 mi W Dot Lake                                                                                                                                                                                                                                                                                  | 154    | 60.98    | -142.03   | 2001 | USA     | Alaska          | Goat Creek               |
| 156   61.83   -141.83   2001   USA   Alaska   Solo Mountain     157   61.78   -141.2   2001   USA   Alaska   Rock Lake     158   62.05   -142.03   2001   USA   Alaska   Rock Lake     159   62.02   -141.12   2001   USA   Alaska   Braye Lakes     160   62.23   -140.68   2001   Canada   Yukon Territory   Snag Junction     161   62.34   -141.06   2001   USA   Alaska   Scottie Creek     162   62.3   -141.17   2001   USA   Alaska   Carden Hills     163   62.53   -143.25   2002   USA   Alaska   Twin Lakes     164   63.678   -144.156   2005   USA   Alaska   2 mi W Dot Lake                                                                                                                                                                                                                                                                                                                                                                                                                             | 155    | 60.75    | -139.5    | 2001 | Canada  | Yukon Territory | Kluane National Park     |
| 157   61.78   -141.2   2001   USA   Alaska   Rock Lake     158   62.05   -142.03   2001   USA   Alaska   Chisana     159   62.02   -141.12   2001   USA   Alaska   Braye Lakes     160   62.23   -140.68   2001   Canada   Yukon Territory   Snag Junction     161   62.34   -141.06   2001   USA   Alaska   Carden Hills     162   62.3   -141.17   2001   USA   Alaska   Carden Hills     163   62.53   -143.25   2002   USA   Alaska   Twin Lakes     164   63.678   -144.156   2005   USA   Alaska   2 mi W Dot Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 156    | 61.83    | -141.83   | 2001 | USA     | Alaska          | Solo Mountain            |
| 158   62.05   -142.03   2001   USA   Alaska   Chisana     159   62.02   -141.12   2001   USA   Alaska   Braye Lakes     160   62.23   -140.68   2001   Canada   Yukon Territory   Snag Junction     161   62.34   -141.06   2001   USA   Alaska   Scottie Creek     162   62.3   -141.17   2001   USA   Alaska   Carden Hills     163   62.53   -143.25   2002   USA   Alaska   Twin Lakes     164   63.678   -144.156   2005   USA   Alaska   2 mi W Dot Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 157    | 61.78    | -141.2    | 2001 | USA     | Alaska          | Rock Lake                |
| 159   62.02   -141.12   2001   USA   Alaska   Braye Lakes     160   62.23   -140.68   2001   Canada   Yukon Territory   Snag Junction     161   62.34   -141.06   2001   USA   Alaska   Scottie Creek     162   62.3   -141.17   2001   USA   Alaska   Carden Hills     163   62.53   -143.25   2002   USA   Alaska   Twin Lakes     164   63.678   -144.156   2005   USA   Alaska   2 mi W Dot Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 158    | 62.05    | -142.03   | 2001 | USA     | Alaska          | Chisana                  |
| 160   62.23   -140.68   2001   Canada   Yukon Territory   Snag Junction     161   62.34   -141.06   2001   USA   Alaska   Scottie Creek     162   62.3   -141.17   2001   USA   Alaska   Carden Hills     163   62.53   -143.25   2002   USA   Alaska   Twin Lakes     164   63.678   -144.156   2005   USA   Alaska   2 mi W Dot Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 159    | 62.02    | -141.12   | 2001 | USA     | Alaska          | Brave Lakes              |
| 161   62.34   -141.06   2001   USA   Alaska   Scottie Creek     162   62.3   -141.17   2001   USA   Alaska   Carden Hills     163   62.53   -143.25   2002   USA   Alaska   Twin Lakes     164   63.678   -144.156   2005   USA   Alaska   2 mi W Dot Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 160    | 62.23    | -140.68   | 2001 | Canada  | Yukon Territory | Snag Junction            |
| 162 62.3 -141.17 2001 USA Alaska Carden Hills   163 62.53 -143.25 2002 USA Alaska Twin Lakes   164 63.678 -144.156 2005 USA Alaska 2 mi W Dot Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 161    | 62.34    | -141.06   | 2001 | USA     | Alaska          | Scottie Creek            |
| 163 62.53 -143.25 2002 USA Alaska Carden Inits   164 63.678 -144.156 2005 USA Alaska 2 mi W Dot Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 162    | 62.3     | -141 17   | 2001 | USA     | Alaska          | Carden Hills             |
| 164 63.678 -144.156 2005 USA Alaska 2 mi W Dot Lake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 163    | 62.5     | -143 25   | 2002 | USA     | Alaska          | Twin Lakes               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 164    | 63.678   | -144.156  | 2005 | USA     | Alaska          | 2 mi W Dot Lake          |

|        |          |           |      | ~       |                  |                           |
|--------|----------|-----------|------|---------|------------------|---------------------------|
| Locale | Latitude | Longitude | Year | Country | Region           | Locality                  |
| 165    | 63.7     | -142.25   | 2002 | USA     | Alaska           | Mount Fairplay            |
| 166    | 63.886   | -142.242  | 2005 | USA     | Alaska           | Taylor Highway            |
| 167    | 64.61    | -143.1    | 2001 | USA     | Alaska           | Copper Mountain           |
| 168    | 64.81    | -143.77   | 2001 | USA     | Alaska           | Upper Crescent Creek      |
| 169    | 64.97    | -143.05   | 2001 | USA     | Alaska           | Mount Sorenson            |
| 170    | 65.17    | -143.55   | 2001 | USA     | Alaska           | Mount Kathryn             |
| 171    | 65.35    | -143.12   | 2001 | USA     | Alaska           | Yukon R.: Slaven Cabin    |
| 172    | 65.37    | -142.51   | 2001 | USA     | Alaska           | Mouth of Kandik R.        |
| 173    | 65.3     | -142.08   | 2001 | USA     | Alaska           | Yukon R.: Glenn Creek     |
| 174    | 65.37    | -142.02   | 2001 | USA     | Alaska           | Kathul Mountain           |
| 175    | 65.44    | -142.01   | 2001 | USA     | Alaska           | Upper Kandik R.           |
| 176    | 65.06    | -141      | 2001 | USA     | Alaska           | Squaw Mountain            |
| 177    | 64.753   | -141.23   | 2005 | USA     | Alaska           | 3 mi SW Eagle             |
| 178    | 69.2     | -140.25   |      | Canada  | NWT              | Ivvavik National Park     |
| 179    | 67.917   | -136      |      | Canada  | NWT              | Richardson Mountains      |
| 180    | 66.886   | -136.338  | 2005 | Canada  | Yukon Territory  | 2 mi S Rock R.            |
| 181    | 64.084   | -139.442  | 2005 | Canada  | Yukon Territory  | Dawson City               |
| 182    | 64.026   | -138.579  | 2005 | Canada  | Yukon Territory  | North Fork of Klondike R  |
| 183    | 63 555   | -137 412  | 2005 | Canada  | Yukon Territory  | McQuesten R               |
| 184    | 63 543   | -137 195  | 2005 | Canada  | Yukon Territory  | 15 mi W Stewart Crossing  |
| 185    | 63 696   | -136 137  | 2005 | Canada  | Yukon Territory  | Minto Lake                |
| 186    | 63 841   | 135.461   | 2005 | Canada  | Yukon Territory  | 7 mi S Keno               |
| 187    | 62 200   | 126 555   | 2005 | Canada  | Yukon Territory  | 27.5 mi S Pally Crossing  |
| 107    | 61.1     | -130.333  | 2005 | Canada  | Yukon Territory  | Eav Creak                 |
| 100    | 50.582   | -133.293  | 2003 | Canada  | Pritich Columbia | Atlin Laka                |
| 100    | 59.585   | -133.785  | 2000 | Canada  | British Columbia | Aun Lake                  |
| 190    | 62.25    | -133.25   |      | Canada  | Yukon Territory  | Anvii Mountains           |
| 191    | 62.3     | -128.967  |      | Canada  | NW I             | Ramnead                   |
| 192    | 64.467   | -129.4    |      | Canada  | NW1              | Palmer Lake               |
| 193    | 65.017   | -127.583  |      | Canada  | NWT              | Katherine Creek           |
| 194    | 64.867   | -127.1    |      | Canada  | NWT              | Sheep Mountain            |
| 195    | 64.317   | -126.8    |      | Canada  | NW1              | Keele R.                  |
| 196    | 62.633   | -124.483  |      | Canada  | NWT              | Trench Lake               |
| 197    | 61.467   | -123.333  |      | Canada  | NWT              | Nahanni Range             |
| 198    | 61.117   | -124.533  |      | Canada  | NWT              | Tlogotscho Plateau        |
| 199    | 61.028   | -117.328  | 2005 | Canada  | NWT              | Kakisa R.                 |
| 200    | 60.897   | -116.792  | 2005 | Canada  | NWT              |                           |
| 201    | 60.75    | -116.633  |      | Canada  | NWT              | Hay R.                    |
| 202    | 60.56    | -116.122  | 2005 | Canada  | NWT              | Hay R.                    |
| 203    | 58.75    | -125.167  |      | Canada  | British Columbia | Muskwa–Kechika Mountains  |
| 204    | 56.5     | -123.917  |      | Canada  | British Columbia | Ospika R.                 |
| 205    | 56.083   | -122.5    |      | Canada  | British Columbia | Williston Reservoir       |
| 206    | 55.1     | -122.95   | 2000 | Canada  | British Columbia | Misinchinka R.            |
| 207    | 58.885   | -130.029  | 2001 | Canada  | British Columbia | Cassiar Highway           |
| 208    | 57.683   | -129.883  |      | Canada  | British Columbia | Spatsizi Plateau          |
| 209    | 56.358   | -129.342  | 2001 | Canada  | British Columbia | Bowser and Bell-Irving R. |
| 210    | 56.115   | -129.283  | 2001 | Canada  | British Columbia | Meziadin Junction         |
| 211    | 55.69    | -128.765  | 2001 | Canada  | British Columbia | Cassiar Highway           |
| 212    | 56.668   | -134.265  | 2005 | USA     | Alaska           | Kuiu Island, Rowan Bay    |
| 213    | 56.644   | -133.721  | 2005 | USA     | Alaska           | Kuiu Island, Rocky Pass   |
| 214    | 56.643   | -133.698  | 2005 | USA     | Alaska           | Kupreanof Island          |
| 215    | 55.104   | -131.365  | 2005 | USA     | Alaska           | Annette Island, Crab Bay  |
| 216    | 53.783   | -126.617  | 2000 | Canada  | British Columbia | Andrew's Bay              |
| 217    | 53.85    | -126.433  | 2000 | Canada  | British Columbia | Shelford Creek            |
| 218    | 53.783   | -126.25   | 2000 | Canada  | British Columbia | Ootsa Lake                |
| 219    | 53.917   | -125.617  | 2000 | Canada  | British Columbia | Uncha Lake                |