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A B S T R A C T

Conservation practitioners frequently extrapolate data from single-species investigations

when managing critically endangered populations. However, few researchers initiate work

with the intent of making findings useful to conservation efforts for other species. We pre-

sented and explored the concept of conducting conservation-oriented research for suites of

geographically separated populations with similar natural histories, resource needs, and

extinction threats. An example was provided in the form of an investigation into the pop-

ulation demography of endangered Micronesian kingfishers (Todiramphus cinnamominus).

We provided the first demographic parameter estimates for any of the 12 endangered Paci-

fic Todiramphus species, and used results to develop a population projection matrix model

for management throughout the insular Pacific. Further, we used the model for elasticity

and simulation analyses with demographic values that randomly varied across ranges that

might characterize congener populations. Results from elasticity and simulation analyses

indicated that changes in breeding adult survival exerted the greatest magnitude of influ-

ence on population dynamics. However, changes in nestling survival were more consis-

tently correlated with population dynamics as demographic rates were randomly altered.

We concluded that conservation practitioners working with endangered Pacific kingfishers

should primarily focus efforts on factors affecting nestling and breeder survival, and sec-

ondarily address fledgling juveniles and helpers. Further, we described how the generalized

base model might be changed to focus on individual populations and discussed the poten-

tial application of multi-species models to other conservation situations.

� 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Conservation biologists have long embraced the use of infor-

mation from surrogate populations for managing endangered

species (Bednarz, 1987; Sydeman, 1989; Legge, 2000; Linacre

et al., 2004; Bar-David et al., 2005; Doak et al., 2005). Surrogates

can be necessitated by a lack of knowledge about the particu-

lar population of interest, combined with time and resource

constraints that prevent thorough investigations. Some

endangered species have also been so affected that popula-

tion remnants may not reflect historic behavior as accurately

as surrogates. However, few researchers have initiated inves-

tigations or presented results with the intent of providing

conservation-oriented information useful to the management

of similar populations. We emphasize the need for conduct-

ing research and structuring results to benefit geographically
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separated populations of related organisms that share similar

natural histories, resource needs, and extinction threats.

In many regions there are suites of geographically dispa-

rate populations that are phylogenetically related and ecolog-

ically similar, but the pattern is especially prevalent among

the avifauna of oceanic islands. For example, island groups

in Pacific Oceania host resident populations of doves (Ptilin-

opus spp., Gallicolumba spp.), fantails (Rhipidura spp.), white-

eyes (Zosterops spp.), reed-warblers (Acrocephalus spp.), and

honeyeaters (Myzomela spp.). Similarly, larger islands are

characterized by kingfishers (Todirhamphus spp.), flightless

rails (Gallirallus spp.; Porzana spp.), megapodes (Megapodius

spp.), and pigeon species (Ducula spp.; Baker, 1951; Pratt

et al., 1987; Mayr and Diamond, 2001). These small pockets

of endemism are also subject to extreme extinction rates, as

over 90% of the world’s recent bird extinctions have occurred

on islands (Johnson and Stattersfield, 1990). Within the afore-

mentioned 11 genera, 76 species in Oceania are listed as vul-

nerable, threatened, or in danger of extinction (US Fish and

Wildlife Service, 1984; International Union for Conservation

and Natural Resources, 2004). Despite these dire threats, how-

ever, researchers have failed to describe even the most basic

natural history characteristics for these species.

One option for addressing the immediate need for infor-

mation is to use surrogate populations and plan research so

that results are useful to conservation efforts for suites of

ecologically similar and related taxa. Population biology is

an especially appealing arena for generalized research be-

cause population models are some of the most fundamental

tools used by those managing endangered species (Casswell,

2000; Morris and Doak, 2002; Beissinger et al., 2006), yet many

modeling attempts have been hindered by a lack of life his-

tory data (Ruggiero et al., 1994; Caughley and Gunn, 1996;

Beissinger and McCullough, 2002). We present an example

of a demographic investigation of the Pohnpei Micronesian

kingfisher (Todiramphus cinnamominus reichenbachii) that was

initiated with the intent of benefiting both the Pohnpei popu-

lation of kingfishers and related endangered Pacific island

congeners.

2. Pacific kingfishers

Twelve Pacific region Todiramphus kingfisher species are listed

as vulnerable, threatened, or endangered by federal and inter-

national conservation authorities (US Fish and Wildlife Ser-

vice, 1984; International Union for Conservation and Natural

Resources, 2004). Life histories of the birds are generally sim-

ilar across the islands, as they are terrestrial forest birds

inhabiting similar vegetation communities and climates

(Mueller-Dombois and Fosberg, 1998). The kingfishers are also

nutritional generalists that nest in cavities excavated from

the soft wood of decaying trees or the soft material of arboreal

termite nests (Marshall, 1989; Fry and Fry, 1992; Kesler and

Haig, 2004, 2005a). Nonetheless, there are critically few data

available for conservation practitioners to use in managing

these endangered birds.

Demographic data are of particular interest to those in-

volved with conservation efforts for the Micronesian king-

fisher (US Fish and Wildlife Service, 2004), Marquesas

Kingfisher (T. godeffroyi), Niau Kingfisher (T. gambieri), and

the Pacific Kingfisher (T. tuta; A. Gouni, Société d’Ornithologie

de Polynésie, personal communication). Of these, the Guam

subspecies of Micronesian kingfisher (T. c. cinnamominus) is

in perhaps the most perilous predicament, as they are extinct

in the wild and only exist in a captive population (Marshall,

1989; Haig and Ballou, 1995; Haig et al., 1995). Plans are now

underway to reintroduce the Guam Micronesian kingfisher

back to native habitats and demographic data are vital to

the effort (US Fish and Wildlife Service, 2004). Similarly, con-

servation practitioners responsible for T. c. reichenbachii, T. c.

pelewensis, T. godeffroyi, T. gambieri, and T. tuta are faced with

the likely possibility that needed demographic information

cannot be obtained from each respective population in time

to prevent extinction. Herein, we explored the use of founda-

tional demographic data from Pohnpei Micronesian kingfish-

ers (T. c. reichenbachii) in the development of a generalized

Todiramphus kingfisher population model. We then used the

model to evaluate the potential importance of demographic

parameters to population dynamics in a range of Pacific Todi-

ramphus kingfisher species.

3. Methods

3.1. Study area

Research was conducted on the island of Pohnpei, Federated

States of Micronesia (6�52 0N, 158�13 0E). Pohnpei is a circular

island with an approximate diameter of 20 km circumscribing

the highest peak in the Micronesian chain (nearly 800 m, Eng-

bring et al., 1990). Three sites were selected for this investiga-

tion including the Ranch (6�57 0N, 158�12 0E), College of

Micronesia (COM; 6�54 0N, 158�9 0E), and Palikir (6�55 0N,

158�9 0E) study areas. The study sites have been described

extensively elsewhere (Buden, 2000; Kesler, 2002, 2006; Kesler

and Haig, 2004, 2005a,b, 2007a,b).

3.2. Study population and field methods

Pohnpei Micronesian kingfishers breed as pairs and coopera-

tive groups (Kesler, 2002; Kesler and Haig, 2005a,b). For the

purposes of this study, we followed the terminology of recent

literature by using ‘‘dominant’’ to refer to the putative breed-

ers on a territory and ‘‘helper’’ for offspring that delayed

dispersal through subsequent reproductive attempts. Addi-

tionally, we used hatch-year (HY) to describe progeny of the

most recent breeding season, and after-hatch-year (AHY) to

describe all non-juveniles.

We radio-marked and color-banded a population of Micro-

nesian kingfishers on Pohnpei study areas between 1999 and

2004. The study population was intensively observed from

January to July 1999, March to August 2000, September 2001,

September 2002 to January 2003, and October and November

2004. Micronesian kingfishers were captured in mist nets

and the age and sex of each individual was determined using

genetic analyses, plumage, and morphological characteristics

(Kesler et al., 2006). We captured 39 juveniles (16 male [M], 23

female [F]), 14 helpers (10M, 4F), and 44 dominants (23M, 21F),

and fitted each individual with a unique combination of
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colored leg-bands and a numbered aluminum US Fish and

Wildlife Service band. In 1999, 2000, and 2002, we fitted 1.8 g

telemetry packages (Holohil Systems Ltd., Ottawa, Canada)

to Micronesian kingfishers using leg-harnesses (Rappole and

Tipton, 1991). We radio-marked 16 juveniles (7M, 9F), which

were subsequently observed for 130 bird*weeks during the

first 10 months post-fledge (839 telemetry locations, 579

bird*days). Additionally, we radio-marked 13 helpers (8M, 5F)

and 35 dominants (19M, 16F), which were monitored for

128 helper bird*weeks and 443 dominant bird*weeks. Radio-

marked individuals were located using triangulation (Kesler

and Haig, 2007a,b), and birds were approached on foot to

verify mortality if movement was not detected during three

consecutive days.

3.3. Population model

We outlined a conceptual Todiramphus kingfisher population

model (Fig. 1) to guide the development of a quantitative pro-

jection matrix. Briefly, the conceptual model describes a

cooperatively breeding population that includes helpers who

delay dispersal and independent attempts at reproduction.

To translate the conceptual model into a quantitative deter-

ministic population projection matrix we used data from six

years of color-band resighting, three years of radio telemetry,

and numerous nesting and behavior observations.

3.3.1. Survival
Survival was assessed in two stages. First, we used odds ratio

tests and Cormack–Jolly–Seber modeling of color band resight

data to determine population model structure. Potential dif-

ferences in juvenile survival (fledging to first year) on cooper-

atively breeding (n = 12 fledglings) and pair-breeding (n = 19

fledglings) territories were assessed by comparing the odds

of resighting marked fledglings during subsequent years. To

determine whether survival in juveniles, helpers, and domi-

nants should be separated by class, sex, both, or neither in

the matrix model, Cormack–Jolly–Seber estimation methods

were applied to color band resight data (described above; Pol-

lock et al., 1990; Lebreton et al., 1992). We estimated both

apparent survival and the probability of resight because indi-

viduals may have been present on study areas but missed

when resighting color-bands (Anders and Marshall, 2005).

We constructed biologically reasonable survival models with

covariates for sex and life-stage, and combined parameter

estimates (Table 1). Models were ranked using Akaike’s Infor-

mation Criteria (AICc; see Burnham and Anderson, 2002) in

the live recapture module of Program Mark (White, 2005)

and the top-ranked model was used to determine whether

survival differed among social classes and sexes.

Second, radio-telemetry data were grouped in accordance

with results from Cormack–Jolly–Seber modeling, and

known-fate models (White, 2005; Kaplan and Meier, 1958)

were used to estimate survival for simulation matrices. We

used known-fate analyses rather than color-band resight re-

sults because they are less likely to be biased by birds that

were present on study areas, but that went unseen. In accor-

dance with odds ratio tests and model ranking analyses, we

made a survival estimate for the period between fledging

through the end of the first year (/juvenile), and a combined

Cooperatively Breeding Population 

Helper
( helper)

HY to Helper 
( HY-h)

Helper to Dom. 
( h-d)

Dominant
( dominant)

Hatch Year 
( nestling* juv.)

Hatch Year to 
Dominant
( HY-d)

reproduction 
(f*N)

ψ ψ

ψ

φ φ φ φ

Fig. 1 – Conceptual population model for Pacific Todiramphus kingfishers, and associated model parameters. Parameters

include survival (/) and transition (w) variables.

Table 1 – Models of annual survival (/) and recapture
probabilities (p) for color-banded Pohnpei Micronesian
Kingfishers between 1999 and 2004

Model K AICc Di wi

/j,AHY;p• 3 187.642 0.00 0.37

/j,h,d;p• 4 189.195 1.57 0.17

/j,AHY*sex; p• 4 189.687 2.06 0.13

/j*sex, h*sex, d*sex;p• 7 190.039 2.42 0.11

/j,h,d*sex;p• 5 190.664 3.04 0.08

/j,AHY; pj, h, d 5 191.204 3.56 0.06

/j,h,dpj, h, d 6 192.943 5.32 0.02

/juv,AHY*sex; pj, h, d 6 193.339 5.71 0.02

/j*sex,h*sex,d*sex; pj, h, d 9 193.873 6.25 0.01

/j,h,d*sex; pj,h,d 7 194.462 6.84 <0.01

/•;p• 2 196.892 9.27 <0.01

/•;pj,h,d 4 199.176 11.55 <0.01

Also noted for each model is the number of parameters (K), sec-

ond-order Akaike’s Information Criterion (AICc) values, AICc dif-

ferences (Di), and AICc weights (wi). Subscript indicates model

parameterization for juveniles (j), helpers (h), dominants (d),

combined estimates for helpers and dominants (AHY), and all

classes combined (•). Separate survival estimates were made for

males and females when subscripts were modified by *sex. For

example, /j,AHY* sex represents separate survival estimates for

juveniles, a combined estimate for male helpers and male domi-

nants, and a combined estimate for female helpers and female

dominants.
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estimate of after-hatch-year survival for helpers and domi-

nants of both sexes (/AHY). To estimate survival for an individ-

ual from the time that it was an egg through the first year of

life, we combined juvenile survival estimates from the known

fate analyses with previously published nestling survival esti-

mates for Micronesian kingfishers (/nestling = 0.534, Kesler,

2006). Previously published nestling survival was based on a

study of both cooperative and pair-breeding nests, which

were proportionally represented. Thus, survival for the first

year of life, or hatch-year survival (/HY) from both nestling

and juvenile stages was:

/HY ¼ /nestling � /juvenile:

3.4. Reproduction

Survival estimates (described above) included the period be-

tween laying and fledging, so parameters associated with

reproduction were limited to the number of nest attempts

by those that bred (f), the number of eggs laid during each at-

tempt, the potential for age structuring in reproductive suc-

cess, and the proportion of the population that attempted to

breed (N). We used direct observations of 10 territories to

determine the mean number of breeding attempts made by

Micronesian kingfishers during 2000 fieldwork, when observ-

ers were present on study areas throughout the breeding sea-

son. Breeding attempts were directly observed as nests with

eggs. Previously published findings indicated that Microne-

sian kingfishers were characterized by two-egg clutches (Kes-

ler, 2002, 2006), and we assumed a 1:1 sex ratio for eggs.

To determine whether reproduction was age-structured

and whether all pairs attempted to breed, we compared the

odds of nesting in newly settled dominants (n = 15 male*
years; 18 female*years) with dominants observed on territo-

ries during the previous years (n = 15 male*years; 14 female*-
years). We further compared the number of young at the end

of each field season on newly settled territories with those on

previously settled territories (n = 30 male and 32 female*years)

to evaluate breeder experience.

3.5. Social class transition

We estimated the proportion of individuals transitioning

among life history stages (w) using resight observations of the

39 color-banded juvenile and 13 helper Micronesian kingfish-

ers. Transitions were directly observed when in subsequent

years juveniles became helpers or dominants, and when help-

ers became dominants (respectively, wj–h, 1 � wj–h, wh–d).

3.6. Population model structure

Following assessment of Pohnpei Micronesian kingfisher

demographic parameters, a deterministic prospective popula-

tion projection matrix model was structured to reflect a coop-

eratively breeding population of Todiramphus kingfishers. The

model included a pulse-breeding population with a time step

occurring immediately after laying, and with demographic

parameters that were consistent across time. Both sexes have

been observed as helpers and territory holders (Kesler and

Haig, 2007a,b), so the model was based on females.

3.7. Sensitivity, elasticity, and simulation analyses

The prospective population projection matrix was employed

in sensitivity and elasticity analyses, and in a simulation

analysis to identify demographic parameters key to popula-

tion dynamics and conservation (Caswell, 2001; Wisdom

et al., 2000; Williams et al., 2001; Morris and Doak, 2002). We

estimated the dominant eigenvalue (k), which represents

the asymptotic rate of population change and provides a gen-

eral measure of whether a population was projected to in-

crease or decrease in size. Sensitivity (S) and elasticity (E)

statistics were estimated by altering each parameter by 0.01

and using a ‘‘brute force’’ method to assess change in k (Hepp-

ell et al., 2000; Morris and Doak, 2002, p. 330). Sensitivity for

each demographic parameter represents the amount of

change in k associated with small changes in h, where h was

the demographic parameter of interest, or

Sh ¼ ok=oh

(Williams et al., 2001, p. 151). Elasticity is a metric scaled to re-

flect the proportional change in k that was brought about by a

similarly proportioned change in h, which facilitates compar-

isons among h (Williams et al., 2001, p. 152):

Eh ¼
ok=oh
k=h

To provide insight into how demographic parameters

influenced model behavior across populations of Todiramphus

kingfishers that were characterized by demographic rates dif-

ferent from those on Pohnpei, we simulated 10,000 combina-

tions of randomly varied parameters. As a guideline for

survival variation we used an interval that was equal in width

to the 95% confidence intervals from the Cormack–Jolly–Seber

estimates (Morris and Doak, 2002, p. 348), which were cen-

tered on mean survival estimates derived from the known

fate analyses. The proportion of helpers transitioning to

dominants varied between 0.25 and 0.75, and juvenile to

helper transition rates varied between 0 and 0.5 to represent

a pair-breeding population of kingfishers and a population

with a higher proportion of helpers than we observed in

Pohnpei. Nestling survival ranged from 0.24 to 0.74, which

were previously published estimates for nestlings on pair-

breeding and cooperatively breeding territories (Kesler,

2006). Annual nest attempts were varied from 1.4 to 2.0, and

the proportion of the population that bred ranged from 0.75

to 1.00. Rates varied independently and they were randomly

selected from a uniform distribution (Wisdom and Mills,

1997) generated by SAS (SAS Institute, 1999). We then recalcu-

lated k, S, and E for each simulated set of values. Microsoft Ex-

cel (Microsoft Corporation, Seattle) and Matrix and Linear

Algebra adding for Excel (Fox’s Team, 2005) were used to sim-

ulate value combinations, calculate and rank sensitivity and

elasticity values for each, and summarize results.

As a second method of evaluating the influence of demo-

graphic parameters on k across combinations of demographic

rates likely to characterize multiple Todiramphus kingfisher

species, we used SAS (PROC REG). For simulated values, k

was regressed against each parameter using linear regression.

The resulting regression slopes (m) reflected the predicted

magnitude of each parameter’s influence on k and the coeffi-

cient of determination (r2) values indicated the amount of
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variation in k accounted for by each parameter (Wisdom and

Mills, 1997). Thus, m represented the magnitude of each

parameter’s influence on k, while r2 provided insight into

the stability of a parameter’s effect within the range of demo-

graphic values likely to characterize multiple Pacific Todiram-

phus kingfishers. Unless otherwise noted, estimates were

reported as means with 95% confidence intervals (95% CI) in

parentheses and differences were considered statistically sig-

nificant at a < 0.05.

4. Results

4.1. Demographic parameter estimation

4.1.1. Survival
We used color-band resight data, odds ratio tests, and Cor-

mack–Jolly–Seber methods to determine the population pro-

jection matrix model structure. Odds ratio tests indicated

that separate parameters were not warranted for juvenile sur-

vival on cooperative and pair-breeding territories because

there was no difference in the odds of resighting individuals

fledged from cooperative (three resighted) and pair-breeding

territories during subsequent years (two resighted; P > 0.05;

log odds ratio = 0.87; 95% CI 2.80 to �1.06). The top-ranked

model in the Cormack–Jolly–Seber analysis of color band re-

sight data indicated that the population projection matrix

should include separate survival estimates for juveniles and

after-hatch-year individuals, but that further structuring

was not necessary (Table 1). Thus, radio telemetry data for

dominant and helper birds were pooled in accordance with

results from the model ranking procedure, and known-fate

analyses indicated an estimated /̂AHY of 0.577

(95%CI = 0.326–0.794). Known-fate analysis of juvenile radio

telemetry data yielded an estimated weekly survival rate of

0.977 (95% CI 0.931–0.993) and /̂juvenile estimate of 0.366 (95%

CI 0.088–0.777). When estimated juvenile survival was com-

bined with previously published survival rates from laying

to hatch (0.534; Kesler, 2006), the estimated probability that

an individual survives from the time of laying through the

next breeding season was 0.195 (/̂HY ¼0.534*0.366).

4.1.2. Reproduction
Nest observations and plumage characteristics suggested that

breeding pairs initiated multiple nests each year. Renesting

occurred on 70% of territories in 2000, so we used 1.7 nesting

attempts per year (N) in the matrix model. When territories

with newly settled dominants were compared to territories

with dominants that had previously been observed, results

showed no differences in either the odds of nesting (P> 0.05;

log odds ratio = 0.38, 0.87 SE for males; 0.18, 0.99 SE for fe-

males) or in the number of offspring on territories at the

end of each breeding season (t-tests; for males P = 0.452,

mean offspring = 1.20 on newly settled territories and 1.53

on previously settled territories; for females P = 0.948, mean

offspring = 1.33 on newly settled territories and 1.36 on previ-

ously settled territories). Thus, results did not indicate strong

age structuring in Micronesian kingfisher reproduction and

suggested that an age-structured matrix model was not nec-

essary. Failure to breed was primarily linked to anthropogenic

activities (e.g. deforestation and fires), so we assumed that all

birds attempted to breed for the point estimate model and

that attempts ranged from 0.75 to 1 for simulation models.

4.1.3. Social classes transition
Observations of transitions among social classes were rare.

One female marked as a juvenile was subsequently observed

as a helper and four females were later observed as breeders.

Additionally, four helpers (3M, 1F) remained as such during

subsequent observations and five (2M, 3F) transitioned to

dominant status. Estimated transition rates were therefore

0.2, 0.8, and 0.6 for ŵj�h; 1� ŵj�h, and ŵh�d , respectively.

4.1.4. Model structure
Using information from the survival, reproduction, and transi-

tion analyses, we developed the following cooperative breeding

population projection matrix model:

A¼
a11a12 a13

a21 a22 a23

a31 a32 a33

2
64

3
75

¼
ð/̂HY � f �N � ½1� ŵj�h�Þ ð/̂AHY �wh�d � f �BÞ ð/̂AHY � f �BÞ
ð/̂HY � ŵj�hÞ ð/̂AHY � ½1� ŵh�d�Þ 0

ð/̂HY � ½1� ŵj�h�Þ ð/̂AHY � ŵh�dÞ ð/̂AHYÞ

2
664

3
775

¼
0:2658 0:549 0:9809

0:0391 0:2564 0

0:1564 0:3206 0:5770

2
64

3
75

ð1Þ

The matrix element aij represents the number of individuals in

class i at the next time step that will arise from those currently

in class j (Caswell, 2001; Morris and Doak, 2002). From left to

right, columns represent hatch year, helper, and dominant

classes. Elements in the top row were functions of survival

and fecundity whereas those below were elements of survival

and transition. The second matrix illustrates how elements

were calculated from demographic parameter data presented

above, and the third includes base-value point estimates. The

k value for the cooperative breeding population projection ma-

trix was 0.877, which represents a declining population.

4.1.5. Sensitivity, elasticity, and simulation analyses
We evaluated the influence of demographic parameters on

population dynamics using sensitivity and elasticity analyses

(Table 2). Results from the point-estimate model indicated

that survival of dominant breeders had the strongest influ-

ence on population dynamics (E = 0.623). Changes in the num-

ber of nests attempted per year, nestling and juvenile

survival, and the proportion of the population breeding also

substantially influenced k. Changes in helper-associated

parameters had relatively little influence on k, which was

likely a result of their minor contribution to reproduction

within the model. The model also included transition param-

eters for the proportion of birds moving between social clas-

ses, but transitions did not remove individuals from the

population entirely, so it follows that their elasticities were

lower than other demographic parameters.

Simulations were used to gain insight into the population

dynamics of Todiramphus kingfisher populations with demo-

graphic parameters different from those identified on the
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Pohnpei study areas (Table 2). Results for k ranged from values

indicating severe population declines to values associated

with growing populations (Fig. 2). Results further suggested

that the overall ranking of elasticities did not differ from

the point-estimate model, because adult survival had the

highest proportional influence on population dynamics. Sim-

ulated demographic parameters were regressed against

resulting k estimates to assess the potential importance of

each parameter to multiple Pacific Todiramphus kingfisher

populations (Table 2; Fig. 3). Adult survival rates had the high-

est slope (m = 0.94), indicating that changes in annual adult

survival have greater proportional influence on k than other

demographic parameters. However, the correlation coefficient

for nestling survival was substantially higher than adult sur-

vival (r2 = 0.40 vs. 0.26), which indicated that the parameter’s

influence on k was more predictable across the simulated

combinations of varied demographic parameters. Regression

results further indicated that juvenile survival had substan-

tial influence on population dynamics (m = 0.62), whereas

the number of nesting attempts, social class transitions and

the breeding proportion of the population did not (Fig. 3).

5. Discussion

5.1. Demographic parameter estimates

We assessed population demographic characteristics in Pohn-

pei Micronesian kingfishers and used those data to develop a

population projection matrix model that could be generalized

to other Pacific island Todiramphus kingfishers. To our knowl-

edge no other investigations of demography have been

reported for any Pacific Todiramphus kingfisher. When com-

pared to a range of bird species presented by Sæther and

Bakke (2000), our estimated survival rate in juvenile Microne-

sian kingfishers (0.37) was similar to a mean rate in 39 other

species (0.40), and survival in after-hatch-year kingfishers

(0.58) was lower than the mean reported for 49 adult species

(0.72). However, most previous demographic studies focused

on species that differ drastically from the year-round resi-

dent, territorial, and forest kingfishers of tropical Pacific is-

lands (Oring et al., 1983; Reed and Oring, 1993; Heppell

et al., 1994; Anders et al., 1997; Porneluzi and Faaborg, 1999;

Daniels and Walters, 2000).

Demographic parameters are often similar among species

with like phylogenies, ecologies, and life history patterns.

Estimated survival for juvenile and adult Micronesian king-

fishers was higher than rates for European kingfishers (Alcedo

atthis; 0.22 and 0.28 for juvenile and adult; Bunzel and Drüke,

Fig. 2 – Distribution of k values from 10,000 population

projection matrix model simulations with varying

demographic parameters for cooperatively breeding

Micronesian kingfishers.

Table 2 – Elasticity (E) and sensitivity (S) results from the point-estimate model, and r2 values for demographic parameter
regressions with k in the simulation of randomly varied demographic parameters for Todiramphus kingfishers

Parameter Point estimate Simulation

Base value S/E Range 90% E intervalc r2d

Reproduction

Nests (N) 1.7 0.191/0.325 1.4–2.0 0.184–0.359 0.05

Breeding adults (f) 1 0.321/0.321 0.75–1.00 0.184–0.359 0.03

Survival (/)a

/nestling 0.534 0.607/ 0.325 0.240–0.740 0.184–0.359 0.40

/juvenile 0.366 0.887/ 0.325 0.232–0.500 0.184–0.359 0.21

/helper 0.577 0.091/0.052 0.479–0.675 0.019–0.120 <0.01

/dominant 0.577 1.080/0.623 0.479–0.675 0.573–0.762 0.26

Transitions (w)b

whatch-year to helper 1/5 = 0.2 �0.174/�0.035 0.000–0.500 �0.070 to �0.009 0.02

whelper to dominant 5/9 = 0.6 0.032/0.018 0.250–0.750 �0.005–0.033 <0.01

a Base value estimates for /i resulted in known-fate analyses of radio telemetry data, and were structured in accordance with the top-ranked

model from color-band resight analyses.

b Base values for wi were derived from observations of color-banded Pohnpei Micronesian kingfishers that moved among social classes on the

study areas.

c The 90% E interval represents the observed range of elasticity values with the most extreme 10% removed.

d The r2 value represents the amount of variation in k accounted for by each demographic parameter.
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1989 in Sæther and Bakke (2000)). Among cooperatively breed-

ing species, survival estimates for Micronesian kingfishers

were nearly identical to those for juvenile (0.39) and adult

(0.58) Acorn Woodpeckers (Melanerpes formicivorus; Stacey

and Taper, 1992; Kendall, 1998 in Sæther and Bakke (2000)).

Juvenile survival in the cooperative Florida Scrub Jay (Aphelo-

coma coerulescen) was also similar to Micronesian kingfishers

(0.35), but woodpecker adult survival was higher (0.83; Wool-

fenden and Fitzpatrick, 1984 in Sæther and Bakke (2000)).

Micronesian kingfisher survival was lower than cooperatively

Fig. 3 – Regression of demographic parameters against k values resulting from 10,000 population projection matrix model

simulations with varying parameter values. Regression slope values (m) indicate magnitude effects and r2 values represent

the concordance between demographic parameters and k.
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breeding Red-cockaded woodpeckers (Picoides borealis), at both

the juvenile (0.50M, 0.42F) and breeder stages (0.77M, 0.71F;

Walters et al., 1988; Letcher et al., 1998).

Some have characterized demography through meta anal-

yses of broad ranges of species (Sæther, 1988; Heppell et al.,

2000). For example, population models have classified organ-

isms along a ‘‘slow-fast’’ continuum used to describe life his-

tory patterns (Sæther, 1988; Silvertown et al., 1993; Heppell

et al., 2000; Sæther and Bakke, 2000). Avian species on the

‘‘slow’’ end of the continuum were long-lived, with small

clutches, long maturation periods, and high contributions

from adult survival to k (i.e., high elasticity values). Those

on the ‘‘fast’’ end exhibited a high contribution of fecundity

to k, low adult survival, and large clutch sizes (Sæther, 1988;

Sæther and Bakke, 2000). Micronesian kingfishers fell toward

the slow end of this fast-slow spectrum because they were

characterized by higher adult survival contribution to k,

which were illustrated herein by elevated elasticity estimates.

However, the kingfishers were also toward the middle of the

spectrum because they matured quickly, as they bred during

the first year after hatching, they laid two eggs in each of

two clutches, and overall survival estimates were neither ex-

tremely high nor low. Accordingly, elasticity estimates from

the matrix population models also fell toward the middle of

the fast-slow spectrum of elasticities presented by Sæther

and Bakke (2000).

5.2. Population model and analyses

Estimates for k indicated a declining population of Microne-

sian kingfishers on Pohnpei. While kingfisher densities re-

mained relatively stable on the study areas throughout the

duration of this project (Kesler, personal observation), results

from surveys indicated an island-wide decline of as much as

63% during the last two decades (Buden, 2000; Kesler and

Haig, 2007a). Together, these suggested that study areas may

have been localized population sinks, and that immigration

of individuals from other areas of the island may have been

subsidizing study area kingfisher populations.

Elasticity rankings and demographic parameter correla-

tions with k were made to assess the relative influence of

demographic parameters on population dynamics across a

range of values that might characterize multiple Pacific Todi-

ramphus kingfishers. Parameters with higher elasticity esti-

mates and regression slopes had comparatively greater

magnitudinal effects on k, whereas the effects of parameters

with higher correlation coefficients were more predictable

across the range of simulated populations. Both metrics are

thought to be of conservation importance (Wisdom and Mills,

1997; Wisdom et al., 2000; Beissinger et al., 2006). Elasticity

rankings and regression slopes indicated that changes in

adult breeder survival had greater magnitudinal influence

on k, but correlation coefficient values from simulation anal-

yses indicated that nestling survival was most closely corre-

lated with k across the range of randomly altered parameter

estimates. The k estimates presented in Fig. 2 also indicated

that there was potential for population growth within the

range of parameters used in our simulation. Therefore, re-

sults suggested that conservation management for multiple

Pacific kingfisher populations has the potential to increase

population sizes, and that strategies aimed at increasing both

nestling survival and adult survival are most likely to be effec-

tive. Furthermore, we believe that these results broadly ex-

tend to other Pacific Todiramphus populations because

similar results were identified in the point-estimate model

and throughout simulation analyses.

The population projection matrix model presented here

can be altered to more accurately reflect localized conditions

for other congeners. For example, cooperation may not char-

acterize all Pacific Todiramphus species or it may characterize

some species but only during times with specific resource

conditions. Cooperation is commonly thought to be a re-

sponse to limited resources (Emlen, 1982), so the occurrence

of cooperative behaviors can be influenced by population

densities and resource characteristics (Walters et al., 1992;

Komdeur, 1994). Thus, conservation practitioners attempting

to generalize the projection matrix model to other popula-

tions would be best served by adjusting transition parameters

toward a pair-breeding model for populations with ample re-

sources, such as reintroduced or translocated populations (i.e.

reducing juvenile to helper transition rate).

The observed effect of helper-associated parameters on

population dynamics in Micronesian kingfishers was congru-

ent with observations of other cooperative breeders. Heppell

et al. (1994) suggested that changes in the proportion of the

population serving as helpers in Red-cockaded Woodpeckers

(Picoides borealis) had the potential to cause lower k estimates,

even if there were no changes in fecundity or survival among

dominants. To the contrary, however, previous investigations

of behavior suggested that helpers are individuals prevented

from breeding and that they would likely transition to a dom-

inant status if opportunities arose (Emlen, 1982; Brown, 1987;

Ligon, 1999; Koenig and Dickinson, 2004). Such an interaction

would result in a positive influence of helpers on population

dynamics, and it could potentially be incorporated into future

modeling efforts.

In some cooperatively breeding species, helpers enhance

reproductive success (Innes and Johnson, 1994; Langen and

Vehrencamp, 1999), whereas they apparently have little or no

effect in other species (Bednarz, 1987; Sydeman, 1989; Legge,

2000). Previous investigations of Micronesian kingfishers sug-

gested that there were differences in nestling survival on coop-

erative and pair-breeding territories (Kesler, 2006), so we used

nestling survival rates that spanned the gap for simulations.

Coupled with results illustrating that the changes in nestling

survival were strongly correlated with k, the broad difference

between nestling survival on cooperative and pair breeding ter-

ritories (Kesler, 2006) indicated that there were likely substan-

tial benefits to sociality among Todiramphus kingfishers.

6. Conclusion

The goal of this investigation was to provide population eval-

uation tools for multiple Todiramphus kingfisher populations.

These were the first estimates of demographic parameters

for any of the 12 endangered Pacific Todiramphus kingfishers

and this is one of the first attempts to summarize information

into a population demographic model for application to a

suite of endangered species. The deterministic model pre-

sented here should be viewed as a plastic and foundational
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model that can be enhanced as additional data become avail-

able. Enhancements to the generalized model might be imple-

mented within an adaptive management framework, through

a flexible Bayesian approach (Frigessi et al., 2005) or through

other methods of incorporating data from multiple sources

and of varying reliability (Linacre et al., 2004). The generalized

population matrix also provides a foundation for localized

models directed toward managing single species in specific

situations, which might incorporate collateral data, local

environmental variation, stochastic environmental events

(Lande, 1993), and population-specific demographic parame-

ters (Dugger et al., 2004; LaHaye et al., 2004; Mazerolle et al.,

2005). Similarly, the demographic parameters and error esti-

mates presented above might be used singularly or in sets

to enhance single species vital-rate based simulation models

or population viability analyses.

Population models based on surrogates may provide an

appropriate and accurate means of managing translocated

and reintroduced populations. Some have suggested that use-

ful population models can be developed after studying a rein-

troduced population for five years (Armstrong et al., 2002).

However, model accuracy and utility might be improved even

more rapidly if managers were armed with generalized popu-

lation models based on surrogates prior to release. Then,

post-release monitoring could enhance preexisting models

by honing parameter precision and variance estimates, recog-

nizing and correcting biases, and including stochastic and

density dependent algorithms. Our model might be employed

in exactly such a way during the reintroduction of T. c. cinna-

mominus to its native habitats on Guam (US Fish and Wildlife

Service, 2004), or during the translocation of T. gambieri from

Niau to another island in the Tuamotu archipelago, and sim-

ilar approaches could be used for many other groups (Thiba-

ult et al., 2002; Tweed et al., 2003).

Despite their utility, surrogate species data should be used

with caution. The problem of bias takes on a new dimension

when information from one population is generalized to other

populations in regions with different resource and environ-

mental conditions. Although demographic patterns are not al-

ways closely correlatedwith taxonomic distance (Heppell et al.,

2000), demography is likely similar among congeners with sim-

ilar ecologies and that diverged primarily because of isolation

by distance. Perhaps one way to mitigate effects of bias is to

use a level of caution that is directly related to both taxonomic

and ecological distance from the source population.

Future conservation efforts will benefit from research

aimed at suites of species. In addition to the 11 genera of birds

mentioned above, suites of insular birds in other regions

(Grant et al., 2000; Thibault et al., 2002), and anadromous

fishes that spawn in similar but disparate watersheds might

make good candidates for generalized investigations. Finally,

conservation biologists should make a concerted effort to

present the potential applications of their data to other popu-

lations when publishing.
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