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Water capture and precipitation use efficiency are of great importance in dryland cropping systems because the
world's dependence on food produced in dryland areas continues to increase. Growing season evapotranspiration
potential greatly exceeds growing season precipitation rates in dryland areas, creating a water deficit for crops.
Management practices that positively impact soil physical properties increase the potential for soils to capture
water. One way to assess the ability of soils to capture water is through the measurement of sorptivity. Sorptivity
is defined as the cumulative infiltration proportionality constant and is governed by surface soil physical properties
such as texture, degree of aggregation and aggregate stability. A study was conducted to determine how
crop residue accumulation after 12 years of no-till management affects surface soil sorptivity under
semi-arid dryland conditions and how sorptivity is related to surface soil physical properties known to be
related to crop residue accumulation. Surface soil sorptivity, bulk density, porosity (total and effective)
and aggregation measurements were made across cropping systems and soil positions representing a
wide gradient of crop residue accumulation at 3 sites in eastern Colorado. Results show that increasing
crop residue accumulationwill have the indirect effect of increased sorptivity via improvements in soil aggregation,
bulk density, and porosity that are conducive to water infiltration. Management practices that result in greater
amounts of crop residue returned to the soil system lead to beneficial soil physical properties that increase water
sorptivity, greatly reducing the potential for runoff and erosion, and thereby increase the precipitation use efficiency
of the system.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Improving precipitation use efficiency in the world's dryland
agroecosystems is more critical now than ever because the world's de-
pendence on food produced in dryland areas continues to increase.
Unger et al. (2006) expressed this global challenge clearly and succinctly:

“During the next several decades, dryland agriculture will play an
increasingly important role in our efforts to maintain global food
security. How, one must ask, are they to feed those populations
when irrigation cannot keep pacewith water demand? Tomeet this
challenge, dryland cropping systems in developed and developing
countries alike must use precipitation as efficiently as possible for
food production. To realize increased efficiency requires an un-
derstanding of how crop production is related to such determining
factors as precipitation andevaporative demand,water capture,water
retention, and crop management.”

Obviously water availability is essential for plant establishment and
successful production in all agroecosystems, but especially so in dryland
systems. Dryland agroecosystems characteristically have annual growing
season evapotranspiration potentials that greatly exceed average growing
season precipitation, which creates a water deficit for the crops (Peterson
et al., 1993; Shaver et al., 2002). Precipitation events occur sporadically
and are often short in duration and high in intensity resulting in lower
and less stable plant yields with more risk to producers. Successful crop
production in dryland agroecosystems depends heavily on capturing
and storing adequate soil water to sustain the crop until the next precip-
itation event. Thus, the focal point of the soil management practices in
dryland agroecosystems is water conservation and in particular rapid
water capture (Peterson et al., 2012).

Management practices that positively affect soil physical properties
related to soil water capture increase the potential for soils to infiltrate
water below the surface thereby decreasing the potential for water loss
from runoff and surface evaporation. The physical properties of the
uppermost surface soil layer are most critical because they represent
the initial soil–precipitation interface. Crop residue retention and tillage
management have major impacts on surface soil physical properties
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that are of importance to water capture and infiltration. Practices that
cause minimal soil disturbance and leave greater quantities of crop
residue on the soil surface have the potential to decrease soil bulk
density, increase porosity, increase aggregation, create macropores,
and therefore, increase water capture and retention in the soil over
time thereby increasing the precipitation use efficiency of semiarid
dryland cropping systems.

Previous studies have shown how crop residue influences soil
physical properties related to water infiltration. Shaver et al. (2002)
found that surface soil (top 2.5 cm) bulk density, porosity (total and
effective), and macroaggregation were directly related to crop residue
accumulation over a 12 year period in western Great Plains dryland
cropping systems. Greater quantities of crop residue resulted in de-
creased bulk density, increased porosity and increased aggregation.
Dao (1996) found that increased amounts of residue decreased bulk
density in the surface 0 to 5 cm of soil. Blanco-Canqui et al. (2006)
observed that corn stover removal from no-till systems reduced aggre-
gate stability by up to 300%within 1 year of removal and several studies
have positively correlated aggregate stability with soil organic matter
concentration (Blanco-Canqui et al., 2006; Bossuyt et al., 2005; Rhoton
et al., 2002). Blanco-Canqui and Lal (2009) also reported that total
porosity increased with rate of corn stover mulch in sloping silt loam
and flat clay loam Ohio soils. These studies collectively illustrate the re-
lationship of crop residue and associated soil organic matter with soil
physical properties important for water capture in soil.

Numerous studies have also been conducted to determine the effects
of crop residue on water infiltration. Dao (1993) found (using double
ring infiltrometers) that in a no-till soil with surface residues, ponded
infiltration was increased when compared with traditional tillage
resulting in bare soil. Blanco-Canqui and Lal (2007) reported that soil
water storage from rains decreased with increased stover removal in
Ohio soils under no-till management. They reported that stover removal
increased soil surface sealing, crusting, and consolidation which was the
primary cause of reduction in water infiltration rate (Blanco-Canqui and
Lal, 2009). These studies show that as crop residue is removed, water in-
filtration rates decrease, illustrating the importance of crop residue for
water capture.

Anothermeans of assessing a soil's ability to rapidly capturewater is
through a sorptivity measurement. Sorptivity is defined as the cumula-
tive infiltration proportionality constant (Philip, 1957) and is governed
by surface soil physical properties such as texture, degree of aggregation
and aggregate stability (Taylor and Ashcroft, 1972). Some macropores
(decayed root channels, worm holes) created in a no-till soil may also
increase ponded water sorptivity. Sorptivity is the dominant parameter
governing the early stages of infiltration,which is of great importance to
water capture in semiarid dryland systems due to the large potential for
water loss from runoff or evaporation (Shaver et al., 2003). Increased
crop residue additions have the potential to increase soil organicmatter
which in turn strengthens soil structure and soil aggregation, thereby
increasing potential sorptivity and water capture. Thus, we used
sorptivity in our study to determine the effects of crop residue on poten-
tial water capture.

Our objectives were the following:

1. To relate crop residue accumulation over a 12 year period to surface
soil sorptivity under semiarid dryland no-till conditions.

2. To relate sorptivity to surface soil (2.5 cm) physical properties (bulk
density, total porosity, effective porosity, and macroaggregation).

We hypothesized that management practices and locations that
produced and returned the highest quantities of crop residue to the
soil surface would result in the highest (fastest) sorptivity levels. We
also hypothesized that higher sorptivity levels would be associated
with decreased bulk density, increased porosity (total and effective),
and increased aggregation. Previous work in dryland water conserva-
tion in the Great Plains has concentrated on water capture differences
created by different management practices such as tillage. There are

few papers published comparing water capture across different crop
residue accumulation regimes related to cropping system. Additionally
our study was unique in that it examined sorptivity in relation to soil
physical properties that have been proven to be directly related to
crop residue accumulation over time. This affords us the opportunity
to examine the direct and indirect relationships of sorptivity with
crop residue accumulation and soil physical properties and gauge the
importance of crop residue in terms of water capture under semiarid
dryland no-till conditions.

2. Materials and methods

2.1. Sites

Sites, located near Sterling, Stratton, andWalsh, in eastern Colorado
were sampled in the summer of 1998 after 12 years of dryland no-till
management. Sorptivity measurements were also collected at this
time. These sites represent an evaporation gradient from the northern
site (Sterling) to the southern site (Walsh) (Table 1). Sterling expe-
riences the least amount of open pan evaporation with 1600 mm
during the cropping season (May–September). Walsh experiences
the greatest with 1975 mm, and Stratton is intermediate with
1725 mm (Peterson et al., 1993, 1999). Average annual precipitation
ranges from 440 mm yr−1 in northeastern Colorado to 395 mm yr−1

in southeastern Colorado (Peterson et al., 1993). All sites had been
managed with tillage in either wheat (Triticum aestivum) fallow or
sorghum (Sorghum bicolor) fallow systems for more than 50 years
until no-till management was established in 1985. Each site is located
on a soil catena consisting of a summit slope, side slope, and toe slope
positions. For this study only the summit and toe slopes of each site
were sampled. Site coordinates and soil classifications are listed in
Table 1.

Each site had three distinct cropping systems inplace over the 12 year
period. These cropping systems ranged from low intensity (1 crop in
2 years) to medium intensity (2 crops in 3 years) to high intensity
(3 crops in 3 years). The low intensity cropping system was wheat
fallow (WF), the medium intensity system was wheat corn (Zea mays)
fallow (WCF), and the high intensity system was continuous cropping
(CC) (Table 2 contains cropping history of each site). AtWalsh, sorghum
is used in the three-year system instead of corn due to the high evapo-
ration potential in that area (Peterson et al., 1993). Each site had 2 rep-
lications of each cropping system and each replication had each phase
of every cropping system each year. Cropping systems were set up as
strips that go along each slope on the soil catena. Each strip was
6.1 meters wide and varied by site in length from 225 to 325 meters.

2.2. Residue accumulation

Residue was collected within each cropping system at each soil
position (summit and toeslope) on an annual basis from 1986 to 1997
using a 1 meter quadrant. Cumulative residue placement by slope posi-
tion and cropping system over the 12 year period was then calculated
and is reported in Shaver et al. (2002). More intensive cropping systems

Table 1
Research site location (latitude and longitude) and soil classification (summit and toe
slope).

Site Latitude Longitude Soil Classification

Summit Slope Toe Slope

Sterling 40.37 N 103.13 W Fine, montmorillonitic,
mesic, Aridic Paleustoll

Fine, montmorillonitic,
mesic, Pachic Argiustoll

Stratton 39.18 N 102.26 W Fine-silty, mixed, mesic,
Aridic Argiustoll

Fine-silty, mixed,
mesic, Pachic Argiustoll

Walsh 37.23 N 102.17 W Fine, montmorillonitic,
mesic, Ustollic
Haplargid

Fine, montmorillonitic,
mesic, Ustollic
Paleargid
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in lower evaporation environments placed larger amounts of crop
residue on the soil surface over the 12 year period, and toe slope posi-
tions acquired more residue than the summit slope (Shaver et al.,
2002). The three site locations, three cropping systems, and two slope
positions resulted in a wide gradient of crop residue accumulation that
directly affected surface soil physical properties such as bulk density,
porosity (total and effective), and aggregation (Shaver et al., 2002).

2.3. Sorptivity

Sorptivity measurements were collected within each cropping
system at the summit and toe slope positions across all replications at
all three site locations. Sorptivity measurements were made using
methods reported by Smith (1999), with one alteration. Only the com-
plete infiltration time was recorded; the 50% infiltration measurement
was not taken as this measurement is subjective and prone to error.
Rings 10.5 cm in height and 9.8 cm in diameter were pushed into the
soil surface between plant rows by hand. Any debris or plant material
that could be removed without disturbing the surface was removed. If
the surface cracked when the ring was placed in the soil, the ring
was removed and placed in another position. Each ring was pushed
into the soil to a depth of approximately 2.5 cm to prevent lateral
flow. Thirty-nine measurements were taken at each soil position in
an attempt to account for spatial variability.

Water was poured into the ring to a depth of 1 cm (75 ml). The
water was poured along the inside wall of the ring to dissipate energy
that could have disrupted the soil surface. A stopwatch was used to
measure the time it took for the water to infiltrate. Sorptivity was
then calculated using the following equation (Smith, 1999):

sorptivity Sð Þ ¼ 1=
ffiffi

t
p

where : 1 ¼ head of water cmð Þ
t ¼ time secondsð Þ

Four random soil samples were taken at each soil position to de-
termine the initial soil water content on the day the sorptivity mea-
surements were collected. Measured sorptivities were adjusted to
correspond to the average initial water deficit (Os−Oi) of all posi-
tions for comparisons within site. Here Os equals the porosity esti-
mated from bulk density and Oi is the initial soil water content. The
relationship S2=2GKs (Os−Oi) (Eq. [1] of Smith, 1999) was used for
this purpose, with parametersG (capillary length scale) andKs (saturated
conductivity) assumed constantwith a given cropping systemand slope
position. Thus, Si measured at initial Oi was adjusted to Si mean at Oi

mean as Si mean=Si×sqrt ((Os−Oi,mean)/(Os−Oi)).

2.4. Bulk density, total and effective porosity

Bulk density, total porosity, and effective porosity were determined
on the surface 2.5 cm of soil. Bulk density was determined using a
modified version of the coremethod (Shaver et al., 2002). Total porosity
was calculated using the equation and relationships developed by
Danielson and Sutherland (1986). Effective porosity was determined
using methods developed by Ahuja et al. (1984), and was defined as
total porosity minus volumetric water content at −10 kPa suction
(Shaver et al., 2002).

2.5. Aggregates

Water-stable aggregates were determined following procedures
developed by Kemper and Rosenau (1986). Fifty-gram surface soil
samples (top 2.5 cm) were placed in a stack of sieves of progressively
smaller size attached to a dipping mechanism. The sieves were cycled
through a column of water for 10 minutes (30 times per minute, 3.8 cm
stroke) yielding a delineated size fraction of water stable aggregates. The
percentage of aggregates as a fraction of the total soil sample was then
calculated. Aggregates were then fractionated into macro (>0.25 mm)
andmicro (b0.25 mm) categories. All aggregate fractionswere corrected
for sand content by dispersion with Na-hexametaphosphate (HMP).

2.6. Aggregate organic carbon

Aggregate organic carbon (C) concentration was determined for
each aggregate fraction. The separated aggregates from each treatment
were randomly sampled and analyzed for total C (TC) in a LECO CHN
1000 Auto-Analyzer. Total C was corrected for inorganic C (IC), by
using a modified pressure calcimeter method (Sherrod et al., 2002).

2.7. Statistical analysis

All statistical analysis was performed using the Statistical Analysis
System(SAS Institute, 2011). All regression relationshipswereperformed
using the Regression Procedure and all means calculations were
performed using the Means Procedure. The stepwise multiple regression
was performed using the MaxR Stepwise Procedure.

3. Results and discussion

3.1. Crop residue

Previous research has shown that cropping systems and soil positions
that produce and return higher quantities of crop residue to the soil
surface decrease surface soil bulk density while increasing porosity
(total and effective) and soil aggregation (Shaver et al., 2002). Therefore,
it is reasonable to hypothesize that crop residue accumulation would
also increase soil sorptivity. Increased porosity should lead to an in-
creased absorption of water into the soil. Our data indicate a trend for
increased sorptivity with increased crop residue accumulation (Fig. 1),
which supports our hypothesis. However, the sorptivity data are highly
variable, and subsequently the r2 for this relationship was only 0.50.
Obviously residue accumulation alone was not highly related to soil
sorptivity. The variability in sorptivity can be explained by spatial
variability of residue cover and other factors that also affect water
absorption and movement into the soil, such as soil texture. However,
when the relationship of sorptivity with soil physical properties such
as bulk density, porosity and aggregation (properties affected by soil
texture and crop residue accumulation) is examined, surface soil
sorptivity has an important indirect relationship with crop residue ac-
cumulation. The following sections will document these relationships.

Table 2
Continuous cropping history from 1985 to 1998 at Sterling, Stratton, andWalsh Colorado.

Year Sterling Stratton Walsh

Crop

1985 Wheat Fallow Sorghum
1986 Wheat Wheat Sorghum
1987 Corn Sorghum Proso Millet
1988 Corn Sorghum Sudex
1989 Attempted hay millet Attempted hay millet Sorghum
1990 Wheat Wheat Attempted hay millet
1991 Corn Corn Wheat
1992 Hay millet Hay millet Corn
1993 Corn Corn Fallow
1994 Sunflower Sunflower Wheat
1995 Wheat Wheat Wheat
1996 Corn Corn Fallow
1997 Hay millet Hay millet Corn
1998 Wheat Wheat Sorghum
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3.2. Bulk density and porosity

As crop residue accumulation increases, surface soil bulk density
decreases (Shaver et al., 2002). Total porosity is inversely related to
bulk density, and increases with decreased bulk density. Our hypothesis
that sorptivity is directly related to surface soil bulk density (and there-
fore total porosity) is supported by the data in Figs. 2 (bulk density)
and 3 (total porosity). As surface soil bulk density decreases (and total
porosity increases) sorptivity increases. Seventy seven percent of the
variability in sorptivity (r2=0.77) can be explained by either bulk density
or porosity. Bulk density alters sorptivity andwater infiltration because it
is directly related to soil porosity. Systems that producemore crop residue
reduce surface bulk density because under no-till conditions the residue
accumulates in the surface soil layer. Accumulation in the surface soil
layer does three things: 1) residue is lighter than mineral matter, and
therefore bulk density decreases by dilution; 2) residue decomposition
products promote more aggregation and thus reduces bulk density; and
3) the root activity in the surface increases because of the improved
water conditions and the increased root activity in turn favors aggrega-
tion. All of these factors increase potential water infiltration and clearly
demonstrate that sorptivity is directly related to bulk density (and total
porosity) and is therefore indirectly related to crop residue accumulation.

Effective porosity is a calculated value based on air-filled porosity
at −10 kPa water potential. The effective porosity represents larger
pores that absorb and primarily conduct water, whereas the smaller
pores absorb and essentially holdwater. The effective porosity is related
to Ks in the equation S2=2GKs (Os−Oi). Hence the sorptivity should
also be related to effective porosity. While the results show that there
is a positive relationship between sorptivity and effective porosity the
variability in the data was large; only 52% (r2=0.52) of the variability
in sorptivity was explained by effective porosity (Fig. 4). This suggests
that the absorption of water into all pores dominates in early stages of
infiltration.

3.3. Aggregation

Aggregation is a soil physical property long recognized as critical to
maintaining water infiltration, control of wind and water erosion, and
ultimately crop yields. As aggregates form they consolidate soil particles
reducing bulk density and increasing total porosity allowing greater po-
tential for water to move into the soil. Therefore, we hypothesized that
as aggregation increased, so should sorptivity. Data presented in Fig. 5
support this hypothesis; as macroaggregation increased, sorptivity
increased (Fig. 5). Macroaggregation explained 73% (r2=0.73) of
the variability observed in sorptivity measurements.

Macroaggregation is affected bymany factors, but most importantly
by organic matter (from crop residue and roots) and soil texture.
Macroaggregate stability has been correlated with sterols, lipids, organic
carbon and many other organic matter characteristics (Monreal et al.,
1995) that bind and stabilize macroaggregates. Thus, macroaggregates
increase as these binding agents increase with increased crop residue
accumulation. Our macroaggregate and sorptivity data indicate that in-
creased macroaggregation leads to increased sorptivity, again demon-
strating that crop residue accumulation and sorptivity are highly
related, although indirectly by modifying soil aggregation, bulk density,
and total porosity resulting in favorable conditions for water infiltration
into the soil.

3.4. Macroaggregate organic carbon content

As mentioned above macroaggregate formation and stability are
correlated with sterols, lipids, organic carbon and many other organic
matter characteristics that bind and stabilize the macroaggregates
(Monreal et al., 1995). Shaver et al. (2003) demonstrated that soil
macroaggregate quantity and macroaggregate organic C content are
highly related (r2=0.89), showing that crop residue additions are

Fig. 2. Sorptivity as affected by surface soil bulk density after 12 years of dryland no-till
management.

Fig. 3. Sorptivity as affected by surface soil total porosity after 12 years of dryland
no-till management.

Fig. 4. Sorptivity as affected by surface soil effective porosity after 12 years of dryland
no-till management.

Fig. 1. Sorptivity as affected by crop residue accumulation over a period of 12 years
under dryland no-till management.
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important in the formation of macroaggregates. Therefore, we hypoth-
esized that increased macroaggregate organic C content would lead to
greater sorptivity. Note in Fig. 6 that macroaggregate organic C content
explained 85% (r2=0.85) of the variability observed in sorptivity. This
relationship tended to be stronger than that of soilmacroaggregate con-
tent with sorptivity (r2=0.73) and demonstrates how closely related
macroaggregate formation and macroaggregate organic C content are.
Increased organic C content led to increased macroaggregation and
therefore increased soil porosity and sorptivity.

3.5. Multiple regression

We co-evaluated the relationship of total porosity, macroaggregation
andmacroaggregate organic C content (the three soil physical properties
found to be most associated with sorptivity) with sorptivity using a
stepwise multiple regression. The three variable combination yielded
a significant R2 value (R2=0.86), which was basically the same as the
relationship between sorptivity and macroaggregate organic C content
(r2=0.85). This indicates that the organic C content of themacroaggre-
gates is the key factor in the relationship of sorptivity and physical prop-
erties. Obviously cropping systems that produce more biomass that is
returned to the soil surface are highly likely to have positive effects on
soil sorptivity.

4. Conclusions

We hypothesized that crop residue accumulation would increase
sorptivity because crop residue is known to positively impact soil
physical properties beneficial to water absorption and infiltration.
While the direct relationship of sorptivity with crop residue accumula-
tion was weak, other soil physical properties such as bulk density, total
porosity and macroaggregation were highly related to sorptivity.
Sorptivity increased with decreasing bulk density and increased with
increasing total porosity andmacroaggregation. Increasing cropping in-
tensity in our systems produced and returned higher quantities of crop
residue to the soil surface which decreased bulk density and increased
total porosity and macroaggregation. Our data clearly show that in-
creasing crop residue accumulation will increase sorptivity indirectly
via improvements in soil physical properties that are conducive to
water infiltration. All management practices that result in greater
amounts of crop residue returned to the soil system lead to beneficial
soil physical properties that increase water sorptivity, greatly reducing
the potential for runoff and erosion, and thereby increase the precipita-
tion use efficiency of the system.
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