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Abstract Lignin content of switchgrass (Panicum virgatum
L.), a bioenergy species, is a critical determinant of biomass
quality since it can negatively impact conversion of
biomass into liquid fuels via biochemical platforms.
Cinnamyl alcohol dehydrogenase (CAD) is a key enzyme
in lignin biosynthesis. Here, we have shown that cv.
Kanlow switchgrass contains at least two closely related
CAD genes (PviCAD1 and PviCAD2) that code for proteins
containing highly conserved domains and residues that
identify them as bona fide CADs. Both recombinant
proteins displayed substrate kinetics consistent with their
presumed role in cell wall lignification. Proteomic and
immunoblotting detected CAD containing spots in inter-

node protein extracts, and proteomic analyses demonstrated
that both CADs were expressed. In planta CAD activity,
CAD protein levels were observed at all stages of tiller
development. A real-time qPCR analysis of the two CADs
and one CAD-like sequence indicated that transcripts
coding for PviCAD1 were present in greater abundance
than those coding for PviCAD2. Transcripts for a third
CAD-like sequence (PviAroADH) were present at interme-
diate levels as compared to PviCAD1 and CAD2. The
predicted protein sequence of PviAroADH indicated that it
was an enzyme unrelated to lignification based on
phylogenetic and protein modeling data.

Keywords Cinnamyl alcohol dehydrogenase . Internodes .

Panicum virgatum L. . Proteomic identification .

Recombinant enzyme characterization . Tillers . Switchgrass

Introduction

Second generation biofuels, if properly developed, are
likely to play a part in alleviating carbon emissions while
at the same time improving energy security [3]. In the US,
switchgrass (Panicum virgatum L.) is being developed as a
potential feedstock for these purposes, and intensive efforts
are underway towards developing cultivars to serve as
dedicated feedstocks. Perennial plants, such as switchgrass,
have the advantage of requiring fewer chemical inputs than
row crops, enhance soil organic carbon, and can be grown
on marginal land. On-farm field research has also reported a
highly positive overall energy balance for switchgrass
grown for biomass applications [44].

Understanding the mechanisms of cell wall synthesis is
important since plants bred or engineered with easier to
digest cell walls may enhance fuel yields or ease down-
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stream processing steps resulting in reduced energy require-
ments for bioconversion [12, 40]. Although broadly similar
in composition to dicots, grass secondary cell walls have
significant amounts of lignin, ferulic, and p-coumaric acids,
which can exist freely or form ester- or ether-linkages
between lignin and cell wall polysaccharides [35, 51]. As a
major component of grass secondary cell walls, lignin has
been implicated as a key factor in the recalcitrance of
biomass towards hydrolytic enzymes used in cell wall
deconstruction [10, 17, 28].

Lignin is a complex heteropolymer whose monomers are
derived from the deamination of phenylalanine followed by
numerous side chain modifications, hydroxylations, and O-
methylations of cinnamic acid [7]. The heteropolymer has
generally been characterized as being mainly comprised of
three different phenylpropanoid subunits: p-hydroxyphenyl
(H-lignin), guaiacyl (G-lignin), and syringyl (S-lignin) [28],
although other derivatives such as acylated lignin units and
hydroxycinnamyl aldehydes were also found capable of
being incorporated [7]. Monocot and dicot lignin generally
have contained similar amounts of G and S units, but grass
lignin was also found to contain a small, but significant
amount of H units [51].

Lignin biosynthesis has been suggested to require a
suite of at least ten enzymes [28]. A key enzyme involved
in the synthesis of lignin subunits is cinnamyl alcohol
dehydrogenase (CAD). Essentially, CAD catalyzes the
conversion of cinnamyl aldehydes to their corresponding
alcohols (H, G, and S lignin monomers) which are
subsequently incorporated into the lignin polymer. CAD
is a member of the alcohol dehydrogenase superfamily and
has been characterized from a number of different species
[19, 22, 29–32, 42, 56]. The crystal structure of an
Arabidopsis CAD, AtCAD5, has been solved [55].
Disruption of CAD through natural or engineered muta-
tions can lead to plants with altered lignin levels and
differential incorporation of monolignals into lignin [2, 21,
34]. For instance, a sorghum brown midrib phenotype,
bmr6, was recently shown to be caused by a nonsense
mutation in CAD [38, 43] and plants with this mutation
had an altered lignin composition [34, 37].

Reduction in lignin amounts or changes in lignin
composition can have beneficial effects. In forage
grasses, decreasing lignin resulted in enhanced dry matter
digestability for grazing animals [6, 11]. These same
types of changes have also been shown to enhance sugar
release or actual ethanol yields from cellulosic biomass of
both dicots and monocots [14, 15]. CAD occupies a
central role in lignin biogenesis and alteration in its
activity often results in changing lignin content, leading
to plants with potentially improved quality. However,
plants contain a number of CAD and CAD-like proteins
which do not all participate in lignin biosynthesis [23],

and it is important to biochemically characterize those
CAD or CADs that can participate in lignin biosynthesis.
Such studies will clearly be an important part of selective
breeding of switchgrass biomass cultivars with desirable
traits for biofuel production.

Materials and Methods

Identification of PviCAD1, PviCAD2, and PviAroADH

PviCADs were identified during an initial analysis of a
switchgrass EST resource [49]. Several switchgrass cDNA
clones were identified during single pass library sequencing
as being closely related to the ZmCAD2 gene of Zea mays
encoding cinnamyl alcohol dehydrogenase. However, none
contained the entire coding region. Therefore, RT-PCR was
performed to isolate full length coding sequences using
1 μg total RNA isolated from root tissue of the cv. ‘Alamo’
or stem tissue from the cv. ‘Kanlow’. These were reverse
transcribed with Thermoscript II reverse transcriptase
(Invitrogen Corp., Carlsbad, CA, USA) according to
manufacturer’s instructions and amplified with the primers:
5′-CATATGGGCAGCCTGGCGTCG-3′ (PviCAD1 start)
and 5′-GAATTCAGTTGGCCGGCGCCC-3′ (PviCAD1
stop). Products from both reactions were then cloned into
pCR2.1 and sequenced. One isolate from cv. Alamo root
RNA (PviCAD1, GenBank accession no. GU045611) and
one from cv. Kanlow stem RNA (PviCAD2, GenBank
accession no. GU045612), which fell into two separate
clusters of sequences after alignment with existing switch-
grass EST sequences, were chosen for further analysis.
These isolates were subcloned by digestion with EcoRI and
NdeI into the corresponding sites of pET28a (EMD
Chemicals, Inc., Madison, WI, USA). Recombinant pro-
teins were produced in Escherichia coli, and purified as
described earlier [43]. A survey of the available EST
sequences and the number of clones identified for each
CAD-like sequence are shown in Table 1. We have not yet
found other unique CAD-like sequences in the available
EST collections.

The putative PviAroADH coding region was assem-
bled from available switchgrass EST sequences and
corresponds to dbEST accession number GD038270 and
NCBI Unigene assembly Pvr.3084. These sequences
were identified as potentially coding for CAD-like
proteins through a TBLASTN search, followed by
Clustal and manual assembly of overlapping sequences.
Primers based on the assembled sequence were used to
amplify a product of the expected size by RT-PCR using
internode RNA as a template. Identity of the product was
confirmed by DNA sequencing. Despite numerous
attempts, we were unable to obtain soluble, active
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recombinant protein for PviAroADH and therefore could
not document its enzymatic characteristics.

Enzyme Assays

Enzyme activity on each substrate was measured using
reaction conditions similar to those previously published
[19, 53] with adaptations for use with a microplate reader
(BioTek Synergy HT, BioTek Instruments, Winooski, VT,
USA). However, substrate levels were varied while
cofactor concentration was kept constant at 200 μM in
order to kinetically characterize the enzymes. Enzyme
dilutions were prepared immediately before their use from
100 μL aliquots that were stored at −80°C, and fresh
dilutions were prepared approximately every 30 min in
order to minimize the effects of enzyme activity loss. The
amount of protein used for each assay was 3.51 and
4.73 ng for PviCAD1 and PviCAD2, respectively. Reac-
tion rates were calculated from the first 90 s of absorbance
data using PROC GLM in SAS 9.1 (SAS Institute Inc.,
Cary, NC, USA) and Michaelis–Menten kinetic parame-
ters were estimated using nonlinear least squares whereby
multiple initial starting values were chosen for each curve
in order to ensure reliable convergence.

Plant Materials

P. virgatum cv. Kanlow N1 [52] was grown in fields at the
University of Nebraska Agricultural Research Experiment
Station near Mead, NE. Tillers were harvested at anthesis
about 4 cm above soil surface, stripped of leaves and
sheaths, separated into individual internodes, and immedi-
ately placed on dry ice for transport to the laboratory where
it was stored at −80°C until used. The internode subtending
the peduncle was labeled as internode 1 and the lowest
(most mature internode) was labeled as internode 6 [39].
Most tillers generally possessed six well-distinguishable
internodes. Tillers containing fewer than six internodes
were not used.

Preparation of Internode Extracts for CAD Activity Assays

Internodes were ground using dry ice and a coffee
grinder and the powdered material was used for further
analyses. Centrifuge tubes (2.0 mL) were filled with
approximately 300 mg of plant material, 1 mL of buffer
(100 mM Tris–HCl, pH 7.5; 5 mM DTT; 5% (v/v)
ethylene glycol) and 10 μL of a protease inhibitor mixture
(Sigma–Aldrich #P9599). Samples were placed on ice and
sonicated using a Branson Digital Sonifier 450 (Branson
Ultrasonic Corp., Danbury, CT, USA) at 20 W three times
with a 15 s pulse, with samples placed for 30 s into an ice-
ethanol bath between pulses to allow for sufficient cool-
ing. Sonicated extracts were then centrifuged for 15 min at
14,000 RPM and 4°C. Supernatant was decanted into new
tubes and kept on ice until assayed for CAD activity.
Protein content was determined using a colorimetric assay
(Pierce 660 nm Protein Assay, Pierce Biotechnology,
Rockford, IL, USA) and lysozyme was used for generating
standard curves.

One- and Two-Dimensional Gel Electrophoresis

For one-dimensional SDS-PAGE, approximately 300 mg of
ground internode materials were extracted as described
earlier [43] and proteins were separated on 12% polyacryl-
amide gels [26]. Approximately 25 μg of protein was
loaded into each well. Separated proteins were transferred
to nitrocellulose membranes for immunoblotting as de-
scribed below.

For two-dimensional gel electrophoresis, proteins were
first extracted from 1 g samples of switchgrass internodes
essentially according to a previously published method
[54]. Final protein pellets were taken up in 180 μL of
sample buffer (8 M urea, 50 mM DTT, 4% CHAPS, and
0.2% ampholytes) and used for isoelectric focusing (IEF).
IEF was performed using the ZOOM IPGRunner System
(Invitrogen Corp., Carlsbad, CA, USA) and 7.0 cm
immobilized pH gradient (IPG) strips with a pH range of

Table 1 Representation of individual cDNA clones by library

Tissue

ST AP CR FB ET LF/SD RT SL CA Total

PviCAD1 0 (0.000)a 2 (0.007) 6 (0.015) 6 (0.022) 3 (0.011) 4 (0.014) 10 (0.036) 0 (0.000) 0 (0.000) 36 (0.016)

PviCAD2 0 (0.000) 5 (0.017) 6 (0.015) 7 (0.026) 5 (0.018) 3 (0.011) 12 (0.043) 2 (0.016) 0 (0.000) 46 (0.020)

PviAroADH 6 1 3 (0.007) 2 (0.007) 0 (0.000) 2 (0.007) 5 (0.018) 1 (0.008) 0 (0.000) 22 (0.010)

ST abiotic and biotic stress (normalized cDNA library), AP apex and stem library, CR crown library, FB early floral bud library, ET etiolated
seedling library, LF/SD flowering/seed development library, RT root library, SL seedling library, CA callus (normalized cDNA library)
a Numbers in parenthesis are % of total number of clones with high-quality sequence data
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5.0–8.0. IPG strips were rehydrated overnight with
155 μL of protein extract dissolved in the sample buffer
described previously. After rehydration, IPG strips were
prepared for IEF using the manufacturer’s protocol. IEF
was conducted using a power supply (Thermo Electron
Corp. PRO-6000) with the following steps: 175 V for
30 min, 175–2,000 V linear increase over 45 min, and
2,000 V for 3 h. After IEF, IPG strips were equilibrated
in a buffer containing 6 M urea, 375 mM Tris–Cl,
pH 8.0, 2.5% SDS, and 20% glycerol. Strips were then
reduced in equilibration buffer with 65 mM DTT
followed by alkylation in equilibration buffer containing
135 mM iodoacetamide. The second dimension was run
on 12% polyacrylamide gels (C.B.S. Lite Slab Gel Kit,
C.B.S. Scientific Company, Del Mar, CA, USA) and
stained using Coomassie brilliant blue. We had con-
ducted a larger proteomic analysis (data not shown) of
several spots obtained from the two-dimensional gel
shown in Fig. 5a; however, for this study we focused on
the spots labeled 1–7 since this was the region expected to
contain CAD proteins based on the predicted pI and
molecular weights. We used the 2-D immunoblots as a
guide to narrow these analyses. Protein spots numbered 1–
7 in Fig. 5b were analyzed by mass spectrometry as
described earlier [20].

Immunoblots

Proteins separated by SDS-PAGE were blotted to nitrocel-
lulose membranes and probed with polyclonal antibodies
raised to CAD as described earlier [43]. Polyclonal anti-
bodies raised against soybean root nodule ascorbate
peroxidase (AscPx) were used as loading controls. Prelim-
inary data indicated that the signal for AscPx was relatively
consistent across many different switchgrass tissues at
similar protein loads (not shown) and could therefore serve
as a control.

Real-Time qPCR

RNA was isolated from P. virgatum internodes using a
previously published method [48]. After treating total RNA
with RQ1-RNase-free DNase (Promega, Madison WI
USA), 1 μg from each preparation was reverse transcribed
using an anchored oligo dT primer mixture along with
random hexamers and the Transcriptor First Strand cDNA
kit (Roche Diagnostics, Indianapolis, IN, USA). Real-time
PCR used an ABI Prism 7000 Sequence Detection System
(Applied Biosystems, Foster City, CA, USA) and the
SYBR Green PCR Master Mix. Primers used for these
reactions were designed using the included Primer Express
software and are given in Table 2. Reactions were
performed in quadruplicate. Delta Ct values for the target

genes were generated relative to PviCAD1 transcript level
in internode 1. Three control genes were used for
normalization: UCE1, eIF4α, and GAPDH. Normalization
factors were generated by geometric averaging of the
control genes using geNorm version 3.4 [50], and a suitable
pairwise variation (V) value indicated that the selected
combination of control genes were stable. Normalization
factors were then applied to the delta Ct values to generate
relative expression levels.

Protein Modeling

Models of PviCAD1 and PviAroADH were created with
SWISS-MODEL [4]. Both models used the published
Arabidopsis CAD5 structure [55] as a template for model
building (PDB ID 2CF6).

Results

Phylogenetic Analyses of Three Switchgrass CAD-Like
Protein Sequences

ClustalW2 was used to align PviCAD1, PviCAD2, and
PviAroADH protein sequences (Fig. 1). The results
indicated that PviCAD1 and PviCAD2 share a very high
degree of identity (95%) to each other, but only 45%
identity to PviAroADH. In order to compare the protein
sequences with other plant CADs, sequence data was
obtained from publicly available databases and used to
construct a phylogenetic tree (Fig. 2). The tree included a
number of CAD and CAD-like proteins identified in
different species including CADs from Arabidopsis
(AtCAD1-9) as well as CADs from sorghum (Sorghum
bicolor, SbCAD1-7). Other CADs utilized in this analysis
have either been shown or suggested to directly impact
lignification in sorghum (S. bicolor, bmr6 [43]), rice
(Oryza sativa, OsCAD2 [56]), perennial ryegrass (Lolium
perenne L., LpeCad1 [32]), corn (Z. mays, ZmCAD2
[18]), and sugarcane (Saccharum officinarum, SoCAD
[45]). All of the CADs that have been shown to be
involved in lignin biosynthesis clustered into a single
clade. In turn, this clade further subdivided into monocot

Table 2 Primer sequences

PviCAD1 FWD 5′-AGGCCAACGTTGAGCAGTA

RVS 5′-CGATCCCTGCTGGTCTGG

PviCAD2 FWD 5′-GCGAGGTGGTGGAGGTC

RVS 5′-CGATCCCGGCAGGCCT

PviAroADH FWD 5′-CAGCCCCATGAAGTACCA

RVS 5′-TTCATTGTCAGCAAGAGCG

Bioenerg. Res. (2011) 4:120–133 123



and dicot CADs, with PviCAD1 and PviCAD2 being most
closely related to the other grass CADs, namely,
ZmCAD2, SoCAD, and bmr6. In contrast, PviAroADH
showed significant homology to a putative corn aromatic
alcohol dehydrogenase and clustered with CAD-like
sequences including AtCAD8 (ELI3) that have been
associated with the reduction of aromatic aldehydes and
not with cell wall lignification [47].

Biochemical Characterization of Recombinant PviCAD1
and PviCAD2

Recombinant enzyme activity of PviCAD1 and PviCAD2
were assayed on a variety of substrates in order to examine
substrate preferences and enzyme kinetics. Both forward
(aldehyde-to-alcohol) and reverse (alcohol-to-aldehyde)
reaction rates were characterized using coniferaldehyde,
sinapaldehyde, coniferyl alcohol, sinapyl alcohol, and
coumaryl alcohol as substrates. Results from the enzyme
assays followed Michaelis–Menten kinetics for all of the
tested substrates. Estimates for kinetic constants Km, Vmax,
and kcat, and kcat/Km are provided in Table 3. For the
alcohol substrates, PviCAD1 had the lowest Km at 0.98 μM

for coniferyl alcohol followed by coumaryl (4.2 μM) and
sinapyl alcohols (15.6 μM), respectively; Vmax values were
170 nkat mg−1 for coniferyl alcohol, 320 nkat mg−1 for
coumaryl alcohol, and 600 nkat mg−1 for sinapyl alcohol,
respectively. On aldehyde substrates, PviCAD1 displayed
the lowest Km for coniferaldehyde at 10.9 μM while the Km

for sinapaldehyde was 14.5 μM. Also, PviCAD1 had
significantly higher Vmax values on both aldehyde sub-
strates when compared to alcohol substrates. The Vmax of
2,530 nkat mg−1 for sinapaldehyde was significantly higher
than a Vmax of 1,280 nkat mg−1 when coniferaldehyde was
used as a substrate. Because PviCAD2 shared a highly
similar sequence to PviCAD1, it was only tested on the
aldehyde substrates. The results were similar to PviCAD1,
although the calculated Km values for PviCAD2 were
slightly lower. Both enzymes consistently exhibited higher
activity on sinapaldehyde than on coniferaldehyde. A table
of CAD kinetic parameters was collected from the
published literature and is presented in Table 5. The results
for PviCAD1 and PviCAD2 kinetics fall within the range of
CAD kinetic data that were reported. PviAroADH was not
analyzed because we could not obtain active soluble
protein.

Fig. 1 Alignment of PviCAD1, PviCAD2, and PviAroDH protein sequences using ClustalW2
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CAD Activity in Switchgrass Internodes

Native CAD activity in switchgrass internodes and leaves
was analyzed in clarified tissue homogenates. Individual
internodes were analyzed because they give insight into
CAD activity across different phases of stem development.
In all internodes there was significantly greater activity
when sinapaldehyde was used as a substrate (Fig. 3),
suggesting that the CAD or CADs present in these extracts
shared similar substrate preferences. Leaf and sheath
extracts showed little or no activity (data not shown).
CAD activity was highest in extracts from internode 1
(3.43 nmol sinapaldehyde reduced per milligram of protein
per minute) and lower in all other internodes.

CAD Protein Levels in Internodes

Immunoblot results of protein extracts from Kanlow N1
internodes are shown in Fig. 4 and revealed that immuno-

reactive bands at the expected size of CAD were present in
all internode extracts at approximately similar levels.

Proteomic Identification of PviCAD1 and PviCAD2
and Other Proteins

Two-dimensional gel electrophoresis followed by immuno-
blotting and mass spectrometry of selected spots was
performed using protein extracts from internode 3. The

Fig. 2 Phylogenetic analysis of CAD sequences. This tree contains
both putative and biochemically characterized CADs. The tree was
constructed as indicated previously [43]. GenBank accession numbers
are provided except for Arabidopsis, Chlamydomonas, Phsycomi-
trella, Selaginella, and Sorghum sequences; in these cases, numbers
from their corresponding genome projects were used. Arabidopsis
AtCAD1 (At1g72680), AtCAD2 (At2g21730), AtCAD3
(At2g21890), AtCAD4 (At3g19450), AtCAD5 (At4g34230),
AtCAD6 (At4g37970), AtCAD7 (At4g37980), AtCAD8
(At4g37990), and AtCAD9 (At4g39330); C. reinhardtii CrCAD
(CHLREDRAFT_190510); E. gunnii EgCAD1 (CAA61275) and
EgCAD2 (CAA46585); L. perenne LpeCAD1 (AF010290.1) and
LpCAD2 (AF472592.1); N. tabacum NtCAD19 (CAA44217); O.
sativa FC1 (Os04g52280) and OsCAD2 (Os02g0187800); P. patens
PpCAD (87951 scaffold_163:497997..49922); P. taeda PtCAD
(CAA86073); P. tremuloides PotCAD (AAF43140) and PotSAD
(AAK58693); P. trichocarpa PoptrCAD4 (estExt_Genewise1_v1.
C_LG_IX2359) and PoptrCAD10 (grail3.0004034803); S. officina-
rum (CAA13177); S. moellendorffii SmCAD (estExt_fgenesh2_pg.
C_390191); S. bicolor SbCAD1 (Sb06g001430.1), SbCAD3
(Sb02g024210.1) , SbCAD4 (Sb02g024190.1) , SbCAD5
(Sb07g006090.1) , SbCAD6 (Sb06g028240.1) , SbCAD7
(Sb02g024220.1), and Bmr6 (Sb04g005950.1); and Z. mays
ZmCAD2 (BM1 locus; NM_001112184). The dashed line indicates
CADs that are likely to be involved in monolignol biosynthesis and
corresponds to the Class I CADs identified by Barakat et al. [5]

�

Enzyme Substrate Km (μM) Vmax (nkat mg−1) kcat (s
−1) kcat/Km (μM−1 s−1)

PviCAD1 Sinapyl alcohol 15.6±2.5 600±30 46.4 2.98

Coumaryl alcohol 4.2±1.1 320±18 24.7 5.88

Coniferaldehyde 10.9±1.8 1,280±60 99.6 10.2

Sinapaldehyde 14.5±1.8 2,530±100 196 13.6

Coniferyl alcohol 0.98±0.1 170±2.6 13.2 13.4

PviCAD2 Coniferaldehyde 3.83±0.8 1,760±70 138 35.8

Sinapaldehyde 9.5±2.0 2,500±140 195 20.5

Table 3 Estimated kinetic
constants
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immunoreactive region of the 2-D blots were used a guide
to identify putative protein spots that could contain CAD
proteins. A representative gel stained with Coomassie
brilliant blue, a magnified region showing the numbered
spots cut out for proteomic analysis, and an immunoblots
are shown (Fig. 5a–c). Spots labeled 1 through 7 shown in
Fig. 5b were excised and subjected to proteomic analysis.
Proteomic analyses (Table 4) showed that peptides common
to both PviCAD1 and PviCAD2 proteins were present in
spots 1–4 and 7, although the number of peptides
attributable to PviCAD1 and 2 were found in greatest
abundance in spots 1 and 2, with a lesser number of
peptides in spots 3, 4, and 7. Peptides unique to PviCAD2
were only found in spots 1 and 2. The predicted C-terminal
residue for PviCAD1 (FVVDVAGSNIEEQAAAAGAPAN)
was identified in spots 1–3. Taken together these data
suggest that the abundance of PviCAD1-related peptides
was probably greater than those attributable solely to

PviCAD2. Spots 5 and 6 were dominated by peptides
arising from the large subunit of Rubisco (Table 4).
Immunoblots of 2-D gels showed the presence of at least
three or four immunoreactive spots at the expected size of
CAD (~42–45 kDa, Fig. 5c).

Real-Time qPCR Analysis of PviCAD1, PviCAD2,
and PviAroADH Transcripts

Analysis of candidate reference genes using geNorm [50]
indicated that UCE1, eIF4α, and GAPDH would comprise
a suitable set of reference genes. Using this approach,
delta Ct values were normalized and relative expression
levels of PviCAD1, PviCAD2, and PviAroADH in switch-
grass internodes indicated that PviCAD1 transcripts were
considerably more abundant in internodes as compared to
the transcript levels for PviCAD2 (Fig. 6). Average
PviCAD2 transcript levels were 44-fold lower than the
PviCAD1 transcript levels in internode 1. Additionally,
PviAroADH transcript was also consistently more abun-
dant than PviCAD2. Compared to PviCAD1, relative

Fig. 3 CAD activity in switchgrass internodes. Internodes were
numbered from least mature (top of plant; 1) to most mature (bottom
of plant; 6). Results are from duplicate experiments. Error bars
represent the standard deviation (n=5 or 6)

Fig. 4 Immunoblots of switchgrass internode extracts probed with
CAD-specific polycolonal antibodies. Antibodies generated to ascor-
bate peroxidase (AscPx) were used a loading control. Pixel intensities
for the signal arising from the two probed proteins are shown in the
bottom bar graph

Fig. 5 a Two-dimensional gel of internode protein extract stained
with Coomassie brilliant blue. The region of the gel selected for
proteomic analyses is highlighted; b zoomed image of the 2-D gel
with numbered protein spots that were analyzed by mass spectrom-
etry; c An immunostained image from a comparable 2-D gel blotted
onto nitrocellulose and developed with polyclonal antibodies to CAD
is shown in the bottom panel. The signal arising from recombinant
PviCAD1 is indicated as rCAD and was loaded in the marker lane to
permit identification of potential spots that could contain native
switchgrass CAD (see image above)
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expression values for PviAroADH ranged from 1.8- to 5-
fold lower. Expression patterns differed among the three
transcripts. PviCAD1 was most abundant in internode 1

and displayed lower transcript abundance in all other
internodes, with the lowest abundance in internode 4.
PviCAD2 transcript levels were low throughout the length
of the tiller, with the highest abundance in internode 6.
PviAroADH transcript levels were relatively constant
across internodes 1–5 with the highest abundance in
internode 6.

Detection of Motifs Present in CAD Enzymes with Good
Catalytic Activity Against Hydroxycinnamylaldehydes

Based on the phylogenetic analyses, the AtCAD5 crystal
structure [55], models of sorghum Bmr6 and a related
sorghum CAD-like protein [43], and the enzyme activity
data presented in Fig. 3 and Table 3, we looked for specific
sequence motifs that could be used to distinguish CADs
that are most likely to function in lignification versus CAD-
like sequences that are unlikely to have significant role in
secondary cell wall formation. Alignment of several grass
CADs along with AtCAD8, SbCAD5, PviAroADH, and
the putative Z. mays AroADH (enzymes not associated with

Table 4 Proteomic results

Protein Sequence Molecular weight Ion score Spot number

PviCAD1 and PviCAD2 TVVGWAAR 858.48 41 1,2

HFGLTAPGLR 1,067.58 61 1,2,3,4

GLTSQIEVVK 1,072.59 66 1,2,3

ANVEQYCNK 1,124.5 42 1,2,3

MGVYNEALER 1,180.55 83 1,2,3

ANVEQYCNKR 1,280.59 38 1,2

GGILGLGGVGHMGVK 1,350.75 66 1,2,3

VGDVVGVGVIVGCCR 1,544.8 68 1,2,3,4

FCVDKGLTSQIEVVK 1,721.9 1 1,2,3

VLYCGICHTDIHQAK 1,813.86 52 1,2,3

IWSYNDVYTDGRPTQGGFASTMVVDQK 3,050.46 76 1,2

FVVPIPAGLAPEQAAPLLCAGVTVYSPLK 2,977.6 91 2,3

PviCAD1 NTGPEDVVVK 1,056.53 50 1,2,3,4

ALGHHVTVISSSSR 1,449.77 71 1,2

DAAGHLSPYTYTVR 1,549.75 74 1,2

KSVTGSFIGSVDETAELLR 2,008.07 47 1,2,3,4,7

FVVDVAGSNIEEQAAAAGAPAN 2,100.01 157 1,2,3

HVLLGVVGEPLSFVSPMVMLGR 2,368.28 72 1,2,3

YPMVPGHEVVGEVVEVGPEVSK 2,336.17 77 2,3,4

PviCAD2 KTGPEDVVVK 1,067.58 61 1,2

AVTGSFIGSIDETAELLR 1,878.0 143 1,2

HVLLGVVGEPLSFVAPMVMLGR 2,352.27 58 1,2

Ribulose 1,5,-bisphosphate EITLGFVDLLR 1,274.72 78 5,6

DDENVNSQPFMR 1,466.61 78 5,6

DDFIEKDR 1,036.48 67 5,6

VTPQPGVPPEEAGAAVAAESSTGTWTTVWTDGLTSLDR 3,583.86 101 5,6

Fig. 6 Relative expression levels of PviCAD1, PviCAD2, and
PviAroDH in switchgrass internodes. Internode numbering as de-
scribed for Fig. 3. Error bars represent the standard deviation
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lignification, nor displaying significant in vitro activity
against monolignals) indicated that there are several key
conserved residues present in CADs with documented
catalytic activity against coniferaldehyde or sinapaldehyde
as compared to CAD-like proteins that display poor activity
against these substrates (Fig. 7). The proposed mechanism
for aldehyde reduction in AtCAD5 appears to involve
Thr49, His52, and Asp57 [55]. Sattler et al. [43] had shown
that the equivalent residue for Asp57 in monocot CADs
was a histidine. As shown in Fig. 7, monocot and dicot
CADs known to be associated with cell wall lignification
and displaying significant catalytic activity against mono-
lignals have the 57HL58 or 57DL58 motif. This motif is
present in PviCAD1 and PviCAD2 but not in PviAroADH.
Also, key residues identified in the substrate binding
domain in AtCAD5 [55] and sorghum bmr6 [43] are
apparently absolutely conserved in all other CADs with a
demonstrated role in cell wall lignification; these include
the 118IWSY121 and 274LGV276 or 274MGV276 motifs
(Fig. 7). The IWSY and LGV motifs are present in
PviCAD1 and 2 but absent in PviAroADH and related
proteins. In these enzymes, two critical amino acid
substitutions are evident, first, the leucine next to the
catalytically important His57 or Asp57 has been replaced
with tryptophan, and second, the tryptophan in the IWSY
motif has been replaced with phenylalanine.

PviCAD1 and PviAroADH Protein Structures

PviCAD1 and PviAroADH structures were modeled using
the AtCAD5 [55] structure in order to minimize template
bias in the modeling. Amino acids 6 to 356 of PviCAD1
show 71.5% sequence identity with the AtCAD5 sequence,
whereas amino acids 15 to 359 of PviAroADH align with
only 48.1% sequence identity to AtCAD5. The residues

thought to be catalytically important appeared to have the
same general conformation between PviCAD1 and
AtCAD5 (Fig. 8a and b). The overlay (Fig. 8c) further
shows the basic similarities and differences between these
two CADs; most residues have a similar orientation.
However, the orientation of the catalytically important
His57 is apparently different than the Asp57 of AtCAD5.
Similarly, Trp119 and Tyr121 in PviCAD1 are oriented in a
manner that could improve substrate binding. Results for
PviAroADH (Fig. 8d) showed that, when AtCAD5 coor-
dinates were used as a template, the alignment produced a
structure that was markedly different from the active site of
either AtCAD5 or PviCAD1. Significantly, the Trp64 next
to the predicted catalytically important Glu63 residue
appears to protrude into the putative substrate binding
pocket and the replacement of Trp119 in the CADs with
high catalysis against cinnamylaldehydes with Phe125 in
PviAroADH appears to also change the putative substrate
binding pocket relative to PviCAD1, suggesting that
PviAroADH is likely to prefer substrates other than
cinnamylaldehydes.

Discussion

PviCAD1 and PviCAD2 encode for the dominant CADs
involved in switchgrass lignification

CAD is involved in the phenylpropanoid pathway in plants
and catalyzes the final step in monolignol biosynthesis by
converting cinnamyl aldehydes to the corresponding cin-
namyl alcohols [28]. Here, two CADs and one CAD-like
gene were cloned from switchgrass EST resources. Al-
though PviCAD1 and PviCAD2 were cloned from different
cultivars, analysis of existing Kanlow CAD clones and

Fig. 7 Alignment of protein residues for the two switchgrass CADs as
well as the putative switchgrass aromatic dehydrogenase. The
alignment also includes sequences from sorghum (BMR6 and
SbCAD5), maize (ZmCAD2 and ZmMDH), ryegrass (LpeCAD1),

and Arabidopsis (AtCAD5 and AtCAD8). Alignment was done using
ClustalW2. The amino acids shown include those in the active site as
proposed by Youn et al. [55]
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proteomic data, especially identification of the PviCAD1 C-
terminal peptide indicated that PviCAD1 sequence was
identical in both cultivars. Despite the fact that many genes
coding for CADs or CAD-like proteins are found in all
currently known plant genomes (for example: [5, 22]), genetic
and enzyme activity data from several studies support the
notion that one or at most a few CADs actually function in
cell wall lignification [14, 38, 43, 46, 56]. The data presented
here indicate that a similar situation exists in switchgrass,
where PviCAD1and PviCAD2 encode functional CAD
proteins that appear to be involved in switchgrass lignin
biosynthesis.

CAD activity and protein was detected in all internodes,
which indicated that CAD is active in lignifying tissues at
different stages of maturity. These data were consistent with
earlier studies that had shown lignification is greater in more
mature internodes suggesting that cell wall lignification
continues to take place across all stages of internode maturity.
Our studies focused on the stems since these tissues comprise
a significant proportion of biomass at harvest, and represent
tissues with the most lignin content. Ultimately, improving
quality parameters in switchgrass biomass for liquid fuels will
probably result in significant reduction in stem lignin content
[39].

Immunoblot results from 2-D gel electrophoresis indi-
cated that different forms of CAD may exist in switchgrass
internodes, although these differences were not fully
identified. Multiple spots can be artifacts due to processes
such as deamidation which are frequently encountered
during sample preparation for 2-D gel analyses [41] and it

is unclear if differences included CAD isozymes, post-
translational modifications, or were simply artifacts. How-
ever, our polyclonal antibodies will detect other related
CAD-like proteins in tissue extracts [43]. Proteomic
analyses revealed a greater abundance of peptides matching
PviCAD1 suggesting that PviCAD1 was present at higher
levels or peptides derived with PviCAD1 were preferen-
tially enriched during proteomic analyses. Enrichment of
PviCAD1 relative to PviCAD2 was supported by qPCR
data that showed greater transcript abundance for mRNA
coding for PviCAD1 relative to mRNA coding for
PviCAD2. However, these results do not preclude the
possibility that PviCAD2 may be present in specific tissues
or have other temporally or spatially defined developmental
roles as was suggested for CADs in aspen [27] and other
species [5, 24]. Kanlow switchgrass is an allotetraploid
cultivar [1, 33] and it is possible that PviCAD1 and
PviCAD2 are encoded by the two different genomes. In
many polyploid species, translation of alleles is not equal,
and dominance by one or the other genome is observed [1,
13]. Our data suggests that PviCAD1 and PviCAD2
transcripts are present in all internodes. Furthermore, these
tissues appear to contain active CAD proteins which could
participate in the continued lignification of tissues such as
the stem sclerenchyma and parenchyma. Previously pub-
lished results show that these tissues are progressively more
lignified in the basal and more mature internodes as
compared to the topmost internode [39]. Future functional
genomic studies in switchgrass should allow greater
insights into these phenomena.

Fig. 8 Comparison of key
residues in the predicted active
site of AtCAD5 (a), PviCAD1
(b), and PviAroDH (d). Overlay
of AtCAD5 (pink/yellow
residues) and PviCAD1 (green/
red residues) is shown in c.
PviCAD1 and PviAroDH
structures were based off of the
AtCAD5 crystal structure. Only
residues that are likely to be
involved in substrate docking or
the catalytic reaction are shown
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Relationships of PviCAD1, PviCAD2, and PviAroADH
to Other CAD and CAD-Like Proteins

PviCAD1 and PviCAD2 displayed a preference for aldehyde
substrates, which was unsurprising because these enzymes are
expected to catalyze the final step in monolignol biosynthesis
where cinnamaldehydes are converted to their corresponding
alcohols. Although PviCAD1 velocity and turnover (kcat)
values were higher for the aldehyde substrates, the two
lowest Km values were for coniferyl and coumaryl alcohol,
respectively. The low PviCAD1 Km observed with coniferyl
alcohol results in a higher kcat/Km value when compared to
the other alcohols. Otherwise, PviCAD1 efficiency with the
aldehydes was higher than with alcohols. PviCAD2 was

even more efficient with aldehyde substrates than PviCAD1,
although the exact localization and temporal control of these
two enzymes are not currently known. A similar preference
for aldehyde substrates, particularly sinapaldehyde has been
reported for sorghum and rice CADs [43, 56]. However,
reported kinetic data for other CADs did not necessarily
show this type of strong preference (Table 5). In Arabidop-
sis, AtCAD5 had only a 12.4% higher Vmax for sinapalde-
hyde [22]; in Eucalyptus gunnii the velocity increase was
31–33%, depending upon the CAD subunit composition
[19]. In contrast, CAD velocity on sinapaldehyde was
markedly lower in Populus euramericana [42], Picea abies
[16, 29], Populus tremoloides [27], and Pinus thunbergii
[25]. Outside of monocots, the only other kinetically

Species Substrate Km (μM) Vmax (nkat mg−1) Reference

Pinus thunbergii Coniferaldehyde 9.1 3.3 [25]
Sinapaldehyde – 0.073

p-coumaraldehyde 30 5.7

Cinnamaldehyde 14 7.6

Picea abies Coniferaldehyde 3.6 1,724 [29]
Sinapaldehyde 83 167

4-coumaraldehyde 12.5 2,857

Forsythia suspensa Cinnamyl alcohol 156 39%e [31]
p-coumaryl alcohol 132 112%

Coniferyl alcohol 32 100%

Eucalyptus gunnii Coniferaldehyde 4.5a/5.2b 2,104a/1,580b [19]
Sinapaldehyde 6.8/2.5 2,758/2,107

p-coumaraldehyde 5.1/16 1,244/2,107

Coniferyl alcohol 2.3/23 539/1,817

Sinapyl alcohol 6.6/4.5 717/562

p-coumaryl alcohol 35/64 812/1,150

Populus euramericana Coniferaldehyde 0.77 52.2 [42]
p-coumaraldehyde 1.2 17

Sinapaldehyde 4.8 19.5

Populus tremoloides Coniferaldehyde 2.3c 3.5c [27]
Sinapaldehyde 9.1 1.7

p-coumaraldehyde 6.2 2.8

Caffealdehyde 37 2.5

5-OH coniferaldehyde 17.5 2.8

Arabidopsis thaliana (AtCAD5)d Coniferaldehyde 35 157.4 [22]
Sinapaldehyde 20 177

p-coumaraldehyde 13 187.3

Caffeylaldehyde 68 94.1

5-OH coniferaldehyde 22 106.9

Medicago sativad Coniferaldehyde 1.3 47.8%e [9]
Sinapaldehyde 6.9 67.2%

Cinnamaldehyde 9.2 100%

Oryza sativad Coniferaldehyde 4.4 32.9 [56]
Sinapaldehyde 20.8 87.0

Lolium perenne L. Coniferaldehyde 1.9 57.8%e [32]
Sinapaldehyde 6.3 75.7%

Cinnamaldehyde 5.8 100%

Table 5 Reported CAD kinetic
parameters

a HeteroCAD
bHMW HomoCAD
c PtCAD
d Recombinant protein
e Only relative values
were reported
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characterized enzyme for which a relatively similar increase
in activity was observed is PtSAD [27], although questions
have been raised about its proposed specific physiological
role in angiosperms [2].

A recent analysis of Populus trichocarpa CAD genes
suggested that the CAD protein sequences present in the
Populus genome could be separated into three classes [5].
Based on these classes, PviCAD1 and PviCAD2 fall into
Class I, which includes PoptrCAD4 and AtCAD5 and
further indicates the broad conservation of the lignin-
pathway related CADs in plants. The phylogenetic analysis
reported here places PviCAD1 and PviCAD2 into a distinct
clade that contains all of the other known well-
characterized CADs that have a role in catalyzing the last
step in monolignol biosynthesis and are thus bona fide
CAD genes. Also, this group further divides into two major
sub-groups encompassing the monocots and dicots; Pvi-
CAD1 and PviCAD2 fall into a group that contains all of
the other known monocot CADs, including the recently
reported sorghum BMR6 [43]. However, PviAroADH,
PtSAD, and its apparent Populus ortholog Poptr10 are not
included within this clade which is in agreement with
Barakat et al. [5], and suggests these genes may not be
involved in lignin monomer synthesis or may have other,
more primary, roles such as plant defense or catalytic
activity under specific conditions [8, 46]. We have been
unable to produce soluble, active recombinant PviAroADH
in E. coli and could not directly characterize this protein. A
sorghum ortholog (Sb_02g024190; 61% identity, 5e-116)
of PviAroADH displayed poor activity against monolignol
and monolignal substrates [43], suggesting that Pvi-
AroADH could exhibit similar properties. Future biochemical
evaluation of recombinant PviAroADH should clarify these
points and indicate if it could participate in the lignification
process.

Sequence Motifs of Lignifying CADs and Predicted Model
of PviCAD1

Sequence alignment of binding pocket and active site
residues based on AtCAD5 [55], showed that among
lignifying CADs (i.e., CADs shown by activity and/or
genetics to function in the biosynthesis of monolignols),
most amino acids were highly conserved, with the
exception that in monocots His57 is present instead of the
dicot Asp57 [43].

When the CAD-like sequences including PviAroADH,
PtSAD, and AtCAD8 were compared to bona fide CADs,
some differences were evident. First, PviCAD1 and other
Class I (lignin) CADs have an invariant Gln53, which is more
variable at the equivalent position in other CAD-like
sequences. Second, the lignin CADs have either a His57/
Leu58 or Asp57/Leu58 motif, while the CAD-like sequences

contain either Glu/Trp or Asp/Trp at equivalent positions.
Finally, lignin CADs contain an invariant Trp119 which is not
conserved in the other CADs. In examining the binding
pocket models for PviCAD1, AtCAD5, and PviAroADH, the
differences are more apparent (Fig. 8a–d). Trp119, which
resides towards the back of the binding pocket, likely
stabilizes the aromatic ring of cinnamaldehydes through pi-
bonding; this residue has a similar conformation in both
PviCAD1 and AtCAD5 (Fig. 8a and b, respectively).
Additionally, Youn et al. [55] noted that Trp119 and
Phe299 shrunk the size of the substrate binding pocket
compared to PtSAD (Leu122/Gly302), which likely resulted
in AtCAD5 having increased substrate specificity. These
residues (Trp119/Phe299) are replaced by Phe125 and
Cys305 in PviAroADH. Also, His57 and Leu58 in Pvi-
CAD1 are replaced by Glu63 and Trp64 in PviAroADH.
Taken together, these amino acid changes could dramatically
alter the binding pocket conformation of PviAroADH
(Fig. 8d) and, although a member of the alcohol dehydro-
genase superfamily, this protein is likely to have a biological
role that is different than PviCAD1 in switchgrass.

Given that switchgrass is a good candidate feedstock for
biorefineries [36, 40] and that CAD mutants have been
shown to impact lignin composition and conversion to
ethanol in sorghum [15, 34, 43], the data presented here
will be useful for understanding and manipulating lignin
synthesis for future development of switchgrass bioenergy
cultivars.
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