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5 Leaf Radiative Properties 
and the Leaf Energy Budget

T.J. ARKEBAUER
University of Nebraska
Lincoln, Nebraska

Leaf radiative properties are the physical properties of leaves that characterize
radiant energy exchange with their surroundings. Radiant energy exchange is an
important consideration in studies of plant function since, for example, absorp-
tion of photosynthetically active radiation (PAR) leads to the transformation of
this energy into chemical energy via photosynthesis. Thus, plant productivity,
and hence, agricultural production, ultimately depend on leaf radiative properties.

Leaf temperature is an additional, very important, parameter in intimate
association with leaf radiant energy exchange. This association occurs since
energy gained via radiation must be in balance with energy lost through various
processes and energy loss from the leaf is predicated on leaf temperature. Leaf
temperature is a critical factor determining leaf transpiration (hence, crop water
use), reaction rates of biochemical processes (hence, photosynthetic rates, respi-
ration rates, growth rates and productivity), and many other aspects of plant func-
tion. Thus, leaf radiative properties not only affect leaf radiant energy exchange
but are implicit in determining rates of plant C uptake and water loss.

This chapter will begin with an overview of leaf radiative properties. Next
will follow a description of the significance of leaf radiative properties in deter-
mining the leaf energy budget. Leaf temperature will be discussed as the key
component in characterizing energy interactions with leaves and their environ-
ments and a practical technique for determining the leaf temperature from the
leaf energy budget will be presented. Finally, the importance of leaf conduc-
tances in the solution of the leaf energy budget will be stressed. Although much
of the research cited will be focused on species of agronomic importance the gen-
eral discussion is appropriate for foliage elements of any plant species.

LEAF OPTICAL PROPERTIES

In general, the radiant energy incident on a leaf surface is scattered either
towards the leaf interior or away from the leaf surface. The radiation entering the
leaf is scattered furthermore and eventually is either absorbed by various leaf
constituents or scattered back out of the leaf. The radiation scattered out the inci-
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dent surface (together with the energy scattered away initially) is reflected. Radi-
ation exiting the surface opposite the incident surface is transmitted. Thus, all
radiant energy incident on a leaf surface is either reflected, absorbed, or transmit-
ted. The partitioning of incident radiant energy into these three components is
determined by leaf optical properties that are manifestations of the physical prop-
erties of the leaf (e.g., its structure and composition).

Radiant energy exchange is mediated by photons traveling at the speed of
light. Photons are discrete bundles of energy (i.e., they are quantized) that also
exhibit wave-like properties; the energy (E) and wavelength (�e) are related
through the equation E = hc/�e, where h is Planck’s constant (6.6 × 10–34 J s) and
c is the speed of light (3.0 × 108 m s–1). Thus, radiant interactions typically occur
with characteristic spectral signatures defined by the specific energy levels that
give rise to changes in the discrete energetic states of the absorbing species. In
other words, a molecule will only absorb photons having specific energy levels
(corresponding to specific wavelengths)—these levels are such that discrete
changes in the energy states of the absorbing species occur.

The fate of radiant energy incident upon a leaf also depends upon proper-
ties associated with the source of radiation, that is, its spectral characteristics and
its angular distribution. Moreover, the radiant energy incident upon a leaf surface
is not reflected or transmitted equally in all directions; leaves exhibit non-Lam-
bertian characteristics. Thus, for illumination with a narrow range of incident
angles, there will be a distribution of reflectances that depend upon the view
direction. The bi-directional reflectance distribution function characterizes the
reflectance properties for narrow illumination and view angles. The bidirectional
reflectance properties of maize (Zea mays L.) and soybean [Glycine max (L.)
Merr.] leaves were appreciated by, among others, Woolley (1971) and Breece and
Holmes (1971). Walter-Shea et al. (1989, 1991) also have measured the direc-
tional properties of reflectance and transmittance for maize and soybean. Further
general discussion of the directionality of leaf reflectance and transmittance
properties can be found in Walter-Shea and Biehl (1990) and Campbell and Nor-
man (1998).

For many practical applications it has proven useful to divide the terrestrial
electromagnetic spectrum into rather broad wavebands, i.e., ultraviolet (0.1 to 0.4
μm wavelength), visible (0.4 to 0.7 μm), near infrared (0.7 to 3.0 μm) and ther-
mal (3.0 to 100.0 μm). Solar radiation (that coming from the sun) spans the visi-
ble and near infrared wavebands with relatively smaller amounts in the ultraviolet
band. Leaves absorb most of the incident radiation in the ultraviolet, visible and
thermal portions of the spectrum and reflect or transmit most of the radiation in
the near infrared waveband (e.g., Fig. 5–1). For example, Walter-Shea et al.
(1987; as cited in Norman & Arkebauer, 1991) reported values as follows: maize
PAR reflectance 0.09, maize PAR transmittance 0.04, maize NIR reflectance
0.38, maize NIR transmittance 0.45, soybean PAR reflectance 0.09, soybean PAR
transmittance 0.04, soybean NIR reflectance 0.42, soybean NIR transmittance
0.42. The high absorptivity (often >0.8) in the visible waveband is due to the
presence of plant pigments, notably the chlorophylls but also xanthophylls,
carotenoids and anthocyanins (Gates et al., 1965). Chlorophylls absorb strongly
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in the blue and red regions of the visible waveband; it is their lower absorptivity
(hence, higher reflectivity and transmissivity) in the green region that gives
leaves their characteristic color. Therefore, leaf optical properties change during
leaf development as pigment composition and concentration change. In the near
infrared waveband between 0.7 and 1.3 μm leaf absorptivity is very low (<0.1).
The incident radiation is either reflected or transmitted in approximately equal
amounts. These properties are due to the scattering of radiation by refractive
index changes between internal air spaces and water-filled cell walls (e.g., Gaus-
man et al., 1969; Knipling, 1970) and to the fact that few leaf constituents absorb
radiation over these wavelengths. For near infrared wavelengths greater than 1.3
μm, leaf absorptivity increases slightly, due, to a large degree, to energy absorp-
tion by water molecules (Knipling, 1970; Woolley, 1971). In the thermal wave-
band, absorptivities are quite high (often >0.95). This is in accordance with a
principle set forth by Kirchhoff that states the absorptivity equals the emissivity
(when they refer to the same wavelength). Leaves at moderate temperatures emit
radiation in the thermal waveband. Gates and Tantraporn (1952) and Wong and
Blevin (1967) have determined leaf reflectances in the thermal portion of the
electromagnetic spectrum for many plant species and found most values to be
<0.05. For example, in beans (Phaseolus vulgaris L.; cv. Brown Beauty), Wong
and Blevin (1967) reported total specular reflectance (at a 10° incidence angle) to
be 0.02 to 0.03 at 5 μm and 0.03 to 0.04 at 10 μm. For the upper surface of sugar-
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Fig. 5–1. Representative maize and soybean leaf optical properties. Data are means of seven leaves
and optical properties were obtained from the abaxial leaf surfaces on Aug. 2, 2002, on plants
grown in irrigated plots at the University of Nebraska Agricultural Research and Development
Center near Mead, NE, as part of the UNL Carbon Sequestration Project (Data courtesy E.A. Wal-
ter-Shea).



cane (Saccharum sp.) leaves, the same authors report reflectances of 0.02 at 5 μm
and 0.03 at 10 μm.

Leaf radiative properties have been determined both in the field and in the
laboratory. Field determinations using intact leaves are very useful since they
avoid possible changes in radiative properties associated with changes in either
leaf water content or metabolic activity. In order to measure single leaf proper-
ties, a radiometer or spectroradiometer is connected to an integrating sphere. The
integrating sphere has ports for leaves, light sources, and detectors. The light
source and leaf are usually positioned such that light strikes the leaf in a near-nor-
mal incidence angle. Leaf reflectances are determined by placing the detector in a
port on the same side of the leaf as the light source; transmittance measurements
have the detector located in back of the leaf. The output from the detector is typi-
cally divided by the output when the leaf is absent from the integrating sphere
(having been replaced by a reflective plug); therefore, the ratio represents the
integrated (hemispherical) reflectance or transmittance factor from a specific
incidence angle. Quantum sensors have been used as integrating sphere detectors
in order to obtain radiative properties in the PAR portion of the spectrum. Bidi-
rectional radiative properties are usually determined in laboratory situations
where precise control over source intensity and the direction of incident and
detected radiation is possible. More detail on these types of measurements, as
well as the determination of canopy radiative properties, can be found in the
review of Walter-Shea and Biehl (1990).

Instead of predicting leaf optical properties from leaf physical proper-
ties, it is possible, and the subject of much current research, to invert the prob-
lem and attempt to infer leaf structure and composition from measurements of
leaf optical properties; however, leaves are complex aggregations of diverse
materials and thus the spectral responses of whole leaves are made up of many
interactions and it is often difficult to discern the composition and concentra-
tion of specific substances (e.g, N, chlorophyll) in leaves based on their spec-
tral signatures. Due to the complicated arrangement of structures within plant
leaves these investigations frequently rely on empirically-derived relationships
or on models of radiative transfer within leaves (e.g., Jacquemoud & Baret,
1990; Ganapol et al., 1998). Researchers have been especially interested in
developing methodologies for remotely-sensed leaf pigment determination
due to the obvious association of these pigments and photosynthetic carbon
fixation. Reflectances near 550, 700, and 750 nm have been related to chloro-
phyll content by Gitelson and Merzlyak (1996, 1997) and to carotenoid and
anthocyanin content by Gitelson et al. (2001, 2002). Yoder and Pettigrew-
Crosby (1995) estimated N and chlorophyll contents from near infrared and
visible reflectance spectra. Fourty et al. (1996), Kokaly and Clark (1999), and
Curran et al. (2001) related reflectance spectra from the ultraviolet through the
near infrared to various biochemical compounds including protein, starch,
lignin, and cellulose. In addition, Gamon et al. (1990) and Zarco-Tejada et al.
(2000a,b) related reflectance (at 531 nm or 680 to 690 nm) to chlorophyll flu-
orescence. This research also has led to the development of reflectance indices
for estimating net CO2 uptake and photosynthetic radiation use efficiency
(e.g., Gamon et al., 1990, 1997, and others).
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LEAF RADIATION BALANCE

Although leaf optical properties, in themselves, do not depend strongly on
leaf temperature, leaf radiative exchange, i.e., the radiant energy transferred
between a leaf and its surroundings, does. Consideration of leaf energy exchange
begins with consideration of the leaf radiation balance. The net radiation
absorbed by a leaf (Rn in W m–2) can be simply written as:

Rn = Rn� – 2 �leaf � T 4
leaf,k [1]

where Rn� (W m–2) is the net incoming, absorbed, radiation from the ultraviolet,
visible, near infrared, and thermal wavebands and the second term is the outgoing
radiation. The outgoing radiation term arises since the leaf radiates energy simi-
lar to a black body and the factor of two comes from energy being emitted from
both sides of the leaf. �leaf is known as the leaf emissivity (equivalent to the leaf
absorptivity in the thermal waveband) and, as stated above, has typical values of
0.95 to 0.99. � is the Stefan-Bolzmann constant (5.670 × 10–8 W m–2 °K–4) and
Tleaf,k (°K) is the leaf temperature. The outgoing term is non-negligible; at 0°C it is
about 600 W m–2 and at 25°C it is near 850 W m–2. The critical importance of leaf
temperature can be seen immediately since the leaf radiates according to the
fourth power of its temperature; however, the leaf temperature is influenced by
the ultimate partitioning of radiant energy into other processes (e.g., sensible and
latent heat fluxes). Thus, solving Eq. [1], i.e., determining the radiant energy
exchange between a leaf and its surroundings in a particular situation, depends on
knowledge of how this energy partitioning occurs and requires consideration of
the leaf energy budget.

LEAF ENERGY BUDGET

The net radiation absorbed by a leaf (Rn) must be partitioned to all other
energy-using processes occurring at the leaf level. Thus, the leaf energy budget
is:

Rn = H + �E + S + P � H + �E [2]

where H is the sensible heat flux (Wm–2), �E is the latent heat flux (Wm–2), S is
the energy stored by the leaf (caused by changing its temperature), and P is the
energy used for photosynthesis. Since the storage and photosynthesis terms are
small relative to the sensible and latent heat fluxes, they are usually neglected in
the leaf energy budget. Combining Eq. [1] and Eq. [2] gives:

Rn� = H + �E + 2 �leaf � T 4
leaf,k [3]

The leaf energy budget is written in this “practical” manner so that each
term can be explicitly measured or calculated; however, as will become apparent,
each term in Eq. [3] is dependent on knowledge of the leaf temperature.
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SENSIBLE HEAT FLUX

The sensible heat flux term (H) accounts for energy transfer between the
leaf and its surroundings caused by temperature gradients. These are typically
considered as arising from the temperature difference between the leaf and the air
around it with the energy transfer due to either forced (wind-driven) or free (no
wind) convection. The sensible heat flux term can be written as:

H = 2 � cp gb (Tleaf – Tair) [4]

where � is the density of dry air (1.2 kg m–3 at 20°C), cp is the volumetric heat
capacity of dry air at constant pressure (1.2 kJ m–3 °C–1), gb is the leaf boundary
layer conductance for heat transfer (m s–1), Tleaf is the leaf temperature (°C), and
Tair is the air temperature (°C). Again, the factor of two arises since the heat trans-
fer occurs through both the abaxial and adaxial surfaces of the leaf. Once again,
in this equation, the importance of leaf temperature becomes explicit, i.e., in
order to solve for H, Tleaf (or !T = Tleaf – Tair) must be known.

LATENT HEAT FLUX

The latent heat flux term (�E) accounts for energy invested in evaporating
water from the leaf. Water is an interesting compound in this regard since it has a
very high latent heat of vaporization, � (44.21 kJ mol–1 at 20 °C) and thus, as long
as leaf stomata are open, a large proportion of the total radiant energy absorbed
by the leaf can be partitioned into evaporation. This energy term can be written
as:

�E = � gtotal [�*
w(Tleaf) – �w,air] [5]

where gtotal is the total leaf conductance for water vapor (cm s–1 or mol m–2 s–1, see
discussion of units below), �*

w(Tleaf) is the absolute humidity for saturated air at
Tleaf (g m–3), and �w,air is the absolute humidity of the air outside the boundary
layer (g m–3). The total leaf conductance, gtotal, includes the conductance, in paral-
lel, of both the adaxial and abaxial surfaces of the leaf. The adaxial and abaxial
conductances are made up of the stomatal and boundary layer conductances in
series. Note that the latent heat flux term, written in this manner, only accounts
for water moving from the inside of the leaf to the atmosphere, it does not con-
sider evaporation from a leaf surface. For convenience, Eq. [5] can be written in
terms of vapor pressures:

�E = (� � M/P) gtotal [e*(Tleaf) – eair] [6]

where M is the ratio of the molecular weight of water vapor to that of air (0.622),
P is the atmospheric pressure (kPa), e*(Tleaf) is the saturation vapor pressure at the
leaf temperature (kPa), and eair is the vapor pressure of the air outside the bound-
ary layer (kPa). Since the saturation vapor pressure is a strong function of tem-
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perature the critical importance of the leaf’s temperature in determining its
energy partitioning is again explicit.

LEAF TEMPERATURE

The preceding discussion is fine as far as it goes; however, to be of practical
use there must be a way to solve resulting set of equations in spite of the rather
messy (i.e., non-linear) appearance of leaf temperature in the various energy
terms. Given a practical solution, these theoretically sound formulations can be
used to address problems related to, for example, leaf photosynthesis, leaf tran-
spiration or leaf radiative exchange since these processes involve a strong
dependence on leaf temperature. The energy balance equations can be solved by
linearizing them in terms of !T (= Tleaf – Tair) and solving explicitly for the
(unknown) leaf temperature. Note that under well-watered conditions !T is usu-
ally negative.

The linearization involves using Taylor series approximations of the Tleaf

terms. For the 2��T4
leaf,k term, the first two terms of a Taylor series approximation

of T 4
leaf,k expanded around Tair,k are given as:

2��T 4
leaf,k � 2��(T 4

air,k + 4T 3
air,k !T) [7]

For Tair,k = 308°K (Tair = 35°C) and Tleaf,k = 303°K (Tleaf = 30°C), this approx-
imation differs from the true value by about +5%. Similarly, for the latent heat
flux term, the first two terms of a Taylor series approximation of e*(Tleaf)
expanded about e*(Tair) are:

(� � M/P) gtotal [e*(Tleaf) – eair] � (� � M/P) gtotal [e*(Tair) + S(Tair) !T – eair] [8]

where S(Tair) is the slope of the saturation vapor pressure versus temperature
curve evaluated at Tair. Again, for Tair = 35°C and Tleaf = 30°C, this approximation
differs from the actual value by about –4%. Using these approximations, Eq. [3]
can be rewritten as:

Rn� = (� � e/P) gtotal [e*(Tair) + S(Tair) !T – eair] + 2 � cp gb !T

+ 2 � � T 4
air,k + 4 T 3

air,k !T [9]

thus, the unknown !T is explicitly given as:

!T = {Rn� – (� � e/P) gtotal [e*(Tair) – eair] – 2 � � T 4
air,k}/

{(� � e/P) gtotal S(Tair) + 2 � cp gb + 2 � � 4 T 3
air,k} [10]

Temperatures of individual leaves (or small portions of leaves) are most
conveniently measured with small thermocouples. Copper-constantan thermo-
couples have reasonable high (voltage) outputs across the temperature range
most leaves experience, they are inexpensive, and they can be made using fairly
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small diameter wires that keeps the junction small as well as minimizing thermal
conduction along the leads. Small junctions also have the advantage of short time
constants that enable quantification of temperature fluctuations. Thermocouples
used to measure leaf temperatures should be inserted into the middle of the leaf
from the bottom, or attached to the underside of the leaf with surgical tape (e.g.,
Ehleringer, 1989). Care also must be taken to avoid exposure of thermocouples to
direct solar radiation.

Having thus dealt with the nonlinearities in the leaf temperature terms, it is
readily apparent that in order to solve Eq. [10], and, in general, in order to under-
stand processes that depend on leaf temperature, we must appreciate the impor-
tance of leaf conductance.

LEAF CONDUCTANCE

Leaf conductances appear explicitly in both the sensible and latent heat
flux equations (Eq. [4], [5], and [6]. Moreover, for practical applications, in order
to solve the leaf energy budget (Eq. [2] and [3]), we must solve for the leaf tem-
perature (or the leaf to air temperature difference), a solution that implicitly
involves knowledge of leaf conductances. Therefore, factors that affect leaf
conductances (e.g., light, CO2, plant hormones) also become important when
considering, for example, exchange of radiant energy between a leaf and its sur-
roundings.

Amongst plant physiologists leaf conductances are usually expressed in
molar units, e.g., stomatal and boundary layer conductances for water vapor are
expressed in mol H2O m–2 leaf area s–1; however, historically, micrometeorolo-
gists have typically expressed conductances in velocity units (e.g., cm s–1). Con-
version between these two ways of expressing conductances is relatively
straightforward (e.g., Pearcy et al., 1989):

g(mol m–2 s–1) = g(cm s–1) 0.446 (273/Tleaf,k) (P/101.3) [11]

where P is the atmospheric pressure (kPa) and the importance of leaf temperature
is, yet again, explicit.

The leaf boundary layer conductance describes the ease with which an
entity crosses the layer of still air next to a leaf’s surface. The thickness of this
layer, and, hence, the accompanying conductance, is a function of both the wind
speed near the leaf and the size of the leaf. As the wind speed increases, the con-
ductance increases and as the leaf size increases, the conductance decreases (e.g.,
Campbell & Norman, 1998). Boundary layer conductances also depend on leaf
anatomy. For example, many plant species growing in water-limited environ-
ments have stomata sunken below the leaf surface, thus effectively increasing the
thickness of the boundary layer. Also, leaf pubescence (in addition to its impor-
tance in determining leaf optical properties) tends to increase leaf boundary layer
thickness through its effect on wind speeds near the leaf surface.

The total leaf conductance for water vapor (in Eq. [5] and [6]) represents
the ease with which water vapor moves from its source (here, the saturated cell
walls within the leaf) to its destination (here considered to be the atmosphere
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around the leaf). As such, as discussed above, it embodies both boundary layer
(gb) and stomatal (gs) components. Additionally, the cuticular conductance is
involved; this is the ease with which water moves through the leaf cuticle from
epidermal cells to the boundary layer; however, the cuticular conductance is usu-
ally much smaller than the other components and it is usually ignored or implicit
in gs due to the (gas exchange) methods whereby gs is typically quantified. A
fourth component of the total conductance is the internal conductance. For water
vapor this represents the pathway between the saturated cell walls and the stom-
atal pore. Again, this component is very small relative to the others and is usually
ignored; however, in the case of conductances for CO2 (e.g., conductances associ-
ated with photosynthetic C assimilation), this pathway also would include a por-
tion between the intercellular air spaces and the sites of carboxylation and this
additional distance may not be negligible.

Leaf boundary layer conductances are rather straightforward to measure.
Usually, a filter paper replica of the leaf is enclosed in a gas exchange cuvette and
the resulting transpiration rate is related to gb. Robust relationships have been
developed for estimating gb based on leaf dimensions and wind speeds. Leaf
stomatal conductances, however, while not overly difficult to quantify, are not
understood well in mechanistic terms. Stomatal conductance is related to a vari-
ety of factors including light, CO2 concentration, vapor pressure deficit, and plant
hormones (particularly abscisic acid). Given the complex coupling between gs

and environmental and biological parameters, it is not surprising that models of
stomatal conductance are, at best, empiricisms based on available evidence. One
of the most widely used formulations is the Ball-Berry index:

gs = (m An hs/cs) + b [12]

where hs and cs are the relative humidity and the CO2 concentration within the
leaf boundary layer, An is the net CO2 assimilation rate and m and b are empiri-
cally determined coefficients in this linear relationship (Ball et al., 1986). Note
that in Eq. [12] gs refers to stomatal conductance to CO2 whereas in Eq. [9] and
[10] the (implicit) gs refers to water vapor. While the linearity of Eq. [12] is use-
ful, the parameters cannot be easily determined independent of leaf gas exchange
data. The strong dependence of gs on light, specifically the amount of absorbed
photosynthetically active radiation (i.e., radiation in the visible waveband), high-
lights once again the intimate association between leaf radiative properties and
leaf function.

CONCLUDING REMARKS

In this brief chapter, a consideration of leaf radiative properties and a desire
to apply these to practical problems in agricultural systems has quickly led to a
realization of the importance of plant physiological properties, notably leaf con-
ductance. Unfortunately, mechanisms of stomatal responses to environmental
conditions are not as yet fully understood. For example, the well-known associa-
tion of reduced stomatal conductance with increasing vapor pressure deficit is
only beginning to be explained (e.g., Matzner & Comstock, 2001). Therefore,
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advances in physiology will undoubtedly assist in the solution to problems in
related fields including micrometeorology.

Globally there is a pressing need to intensify agricultural productivity
whilst minimizing environmental consequences. Given the critical agricultural
importance of mathematical modeling to understand plant growth, development
and productivity, as well as fluxes of energy, water, carbon, etc., there is a real
need for cooperation between micrometeorologists, physiologists, plant breeders
and others to develop appreciations of each other’s work and to take advantage of
insights offered by these diverse disciplines. Through interdisciplinary efforts
practical solutions to a wide range of interesting problems will be discovered.
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