CHARACTERIZATION OF *DICTYOCALUS* SPECIES (NEMATODA: TRICHOSTRONGYLOIDEA) FROM THREE SPECIES OF WILD RUMINANTS IN NORTHWESTERN SPAIN

Ramon A. Carreno
Ohio Wesleyan University, racarren@owu.edu

Natividad Diez-Baños
University of León

Maria del Rosario Hidalgo-Argüello
University of León

Steven A. Nadler
University of California - Davis, sanadler@ucdavis.edu

Follow this and additional works at: http://digitalcommons.unl.edu/parasitologyfacpubs

Part of the Parasitology Commons
CHARACTERIZATION OF DICTYOCALUS SPECIES (NEMATODA: TRICHOSTRONGYOIDEA) FROM THREE SPECIES OF WILD RUMINANTS IN NORTHWESTERN SPAIN

Ramon A. Carreno, Natividad Diez-Baños*, Maria del Rosario Hidalgo-Argüello*, and Steven A. Nadler†

Department of Zoology, Ohio Wesleyan University, Delaware, Ohio 43015. e-mail: racarren@owu.edu

ABSTRACT: Specimens of Dictyocaulus spp. were extracted from the respiratory tracts of 3 ruminant hosts including roe deer (Capreolus capreolus), red deer (Cervus elaphus), and chamois (Rupicapra rupicapra) from wild populations in the province of León, northwestern Spain. The near-complete nuclear small-subunit ribosomal RNA gene, and 2 regions of the large-subunit ribosomal RNA gene, were amplified by PCR and sequenced. The SSU rDNA gene sequences indicated a high level of similarity between the isolate from C. elaphus and the published sequences for Dictyocaulus eckerti. SSU rDNA gene sequences were identical in the isolates from C. capreolus and R. rupicapra, and both corresponded to published sequences for D. capreolus. The LSU rDNA gene sequences differed in isolates from the latter 2 hosts, indicating the possible presence of an undescribed Dictyocaulus sp. in R. rupicapra. These results showed that the LSU rDNA gene sequences are useful indicators of genetic and species diversity in species of Dictyocaulus.

MATERIALS AND METHODS

Specimens of Dictyocaulus spp. were collected in the Cantabrian Mountains of the province of León, northwestern Spain from chamois, red deer, and roe deer. Hosts were killed (31, 21, and 37 hosts, respectively) by hunters, and the respiratory tracts of each animal were examined for Dictyocaulus spp. Adult nematodes were extracted from the respiratory tract, placed in 1.5 ml microcentrifuge tubes, and frozen at −20 C. DNA was extracted from 1 specimen of each of the 3 hosts, using overnight digestion of nematode tissues with proteinase K, followed by DNA extraction using DNAzol (Molecular Research Center, Cincinnati, Ohio) or MasterPure™ (Epizentrum Technologies, Madison, Wisconsin) kits. Approximately 1,750 bp of the SSU rDNA was amplified using primers 18S1A forward (5'-GGCGATCAGAAAAGGATTTAAGC-CATGCA) and 136 reverse (5'-TTATCTTCTTGCAGTGTCACCCTACT). A 950-bp fragment of the 5' end of the LSU rDNA containing the D2 and D3 domains was amplified using primers 391 forward (5'-AGCGGAG-GAAAAGAACATTA) and 501 reverse (5'-TCGGAGGAACTGACG-TACTA). The third amplified region consisted of 850–900 bp of the 3' end of the LSU rDNA. This region was amplified using primers 950 forward (5'-GGCGATCGAAAAGATTAAGC-GAGCG-3') and 531 reverse (5'-TTATCTTCTTGCAGTGTCACCCTACT). A 950-bp fragment of the 5' end of the LSU rDNA containing the D2 and D3 domains was amplified using primers 391 forward (5'-AGCGGAG-GAAAAGAACATTA) and 501 reverse (5'-TCGGAGGAACTGACG-TACTA). The third amplified region consisted of 850–900 bp of the 3' end of the LSU rDNA. This region was amplified using primers 537 forward (5'-GATGTCGTAATCCTGGGGAAAGGAT) and 531 reverse (5'-CTTCGCAATGATAGGAAGAGCC). PCR reactions of 25 ul consisted of 0.5 μM of each primer, 200 μM deoxynucleoside triphosphates, and a MgCl₂ concentration of 3 mM. Proofreading polymerase (Finnzymes DynAzyme EXT, New England Biolabs, Ipswich, Massachusetts) was used.

TABLE I. Dictyocaulus sp. isolates from different hosts sequenced for comparative analysis. GenBank accession numbers for cloned sequences are in bold. Others were derived from direct sequencing of PCR products.

<table>
<thead>
<tr>
<th>Host</th>
<th>Sequence</th>
<th>GenBank accession no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capreolus capreolus</td>
<td>18S</td>
<td>FJ589016</td>
</tr>
<tr>
<td></td>
<td>28S 5' end</td>
<td>FJ589017</td>
</tr>
<tr>
<td></td>
<td>28S 3' end</td>
<td>FJ589011</td>
</tr>
<tr>
<td>Rupicapra rupicapra</td>
<td>18S</td>
<td>FJ589019</td>
</tr>
<tr>
<td></td>
<td>28S 5' end</td>
<td>FJ589018</td>
</tr>
<tr>
<td></td>
<td>28S 3' end</td>
<td>FJ589012</td>
</tr>
<tr>
<td>Cervus elaphus</td>
<td>18S</td>
<td>FJ589015</td>
</tr>
<tr>
<td></td>
<td>28S 5' end</td>
<td>FJ589013</td>
</tr>
<tr>
<td></td>
<td>28S 3' end</td>
<td>FJ589014</td>
</tr>
</tbody>
</table>

Trichostrongyloid nematodes of Dictyocaulus spp. Railliet and Henry, 1907 may be important pathogens in the respiratory tracts of domestic and wild ruminants. The cross-transmission of Dictyocaulus spp., from wild to domestic ruminants and vice versa, has rarely been demonstrated. Although little evidence of such cross-transmission between ruminants exists, a thorough understanding of the parasites’ geographic distribution and host ranges is important for monitoring Dictyocaulus transmission between wild- and domestic-host populations.

In Spain, Dictyocaulus viviparus (Bloch, 1782) Railliet and Henry, 1907 and Dictyocaulus filaria (Rudolphi, 1809) Railliet and Henry, 1907 have been reported in domestic ruminants (Cordero del Campillo et al., 1994; Astiz et al., 2000). There have also been recent reports of species occurring in wild ruminants, including Dictyocaulus noerneri Railliet and Henry, 1907 in roe deer (Dama dama Linn.), a nematode redescribed by Durette-Desset et al. (1988), but considered incertae sedis by several authors (and suggested to represent Dictyocaulus eckerti Skrjabin, 1931). In addition, a Dictyocaulus sp. has been reported in chamois (Rupicapra rupicapra Linn.) following recovery and examination of adult specimens. Identification of larvae typical of Dictyocaulus spp. has also been the basis of 3 reports (Díez-Baños et al., 1990; Carrillo Gonzalez et al., 1994; Panadero et al., 2001). In these cases, the morphological features of these nematodes have been difficult to use for species identification, given the high level of similarity that exists among several species (Gibbons and Khalil, 1988).

In recent years, advances in molecular characterization of Dictyocaulus spp. have resulted in the identification of a distinct species from roe deer, namely Dictyocaulus capreolus Gibbons and Höglund, 2002. The use of DNA sequences, coding for small-subunit ribosomal RNA genes and other loci such as internal transcribed spacer (ITS2) sequences, has revealed the existence of several distinct clades or species of Dictyocaulus (Epe et al., 1997; Höglund et al., 1999; Hogland et al., 2003). Genes from the ribosomal RNA repeat have also been of value in estimating phylogenetic relationships among trichostrongyloid and metastrongyloid nematodes (Carreno and Nadler, 2003; Chilton et al., 2006). In the present study, we report the characterization of Dictyocaulus spp. found in 3 ruminant hosts in northwestern Spain, including chamois (R. rupicapra), red deer (Cervus elaphus Linn.), and roe deer (Capreolus capreolus Linn.) using sequences from the small- and large-subunit ribosomal RNA genes.

Received 21 July 2008; revised 23 December 2008; accepted 10 January 2009.

*Department of Animal Health, Faculty of Veterinary Medicine, University of León, Spain.
†Department of Nematology, University of California, Davis, California 95616.
DOI: 10.1645/GE-1791.1
used for amplification. PCR cycling parameters for the SSU rDNA reactions included denaturation at 94°C for 3 min, followed by 35 cycles of 94°C for 30 sec, 54°C for 30 sec, and 72°C for 1 min, followed by a post-amplification extension of 72°C for 7 min. The LSU rDNA regions were amplified using an annealing temperature of 54–58°C (5' end) or 54°C (3' end).

Amplifications that yielded only the target product (as assessed by agarose gel electrophoresis) were prepared for direct sequencing using enzymatic treatment with exonuclease I and shrimp alkaline phosphatase (PCR product pre-sequencing kit, USB Corporation, Cleveland, Ohio). Amplifications that yielded one or more non-target products, in addition to the expected amplicon, were cloned prior to sequencing (Table I). For cloning, PCR amplicons were gel-isolated, washed 3× with TE buffer (pH 7.0) by spin filtration (Millipore Ultrafree-MC 30,000 NMWL, Millipore Corporation, Billerica, Massachusetts), ligated into pGEM-T vector (Promega, Madison, Wisconsin), and cloned into competent JM109 Escherichia coli. Plasmid DNA was obtained for sequencing using Qiaprep spin miniprep kits (Qiagen Inc., Valencia, California). Sequencing reactions were performed using dye-terminator sequencing chemistry, and reaction products were separated and detected using an ABI 3730 capillary DNA sequencer (Applied Biosystems Inc., Foster City, California). DNA templates were sequenced for both strands; for cloned amplicons, a different clone was sequenced for each strand.

For directly sequenced PCR products, site polymorphisms were recorded only when both alternative nucleotide peaks were present in all sequencing reactions representing both DNA strands. If the heights of the alternative nucleotide peaks at polymorphic sites were not equal, the height of the minor peak was required to significantly exceed background.

Figure 1. Strict consensus of 3 equally parsimonious trees depicting phylogenetic relationships among Dictyocaulus spp. inferred from SSU rDNA sequences. Bootstrap values (from 2,000 replicates) for clades exceeding 50% support are mapped onto the tree. Sequences acquired from Spanish ruminants are underlined.
terminations, and to comprise ≥25% of the major peak, in order to be scored as a polymorphism. For cloned rDNA, sequence differences between clones were recorded as polymorphisms. CodonCode Aligner (Version 1.5.1, CodonCode Corporation, Dedham, Massachusetts) and Phred base calling were used for assembly of contigs. Sequences produced for this study have been deposited in GenBank (Table I). Completed sequences were aligned with other available Dictyocaulus spp. sequences from GenBank using Clustal-X version 1.53b (Thompson et al., 1997). Phylogenetic analysis of SSU rDNA sequences, using parsimony analysis, was performed using PAUP*4.0b10 (Swofford, 1998). Phylogenetic trees were viewed and printed using TreeView version 1.6.6 (Page, 1996). Sequences from 2 metastrongyloid species (Skrjabinylus chitwoodorum Hill, 1939 and Crenosoma mephitidis Hobmaier, 1941) were used as outgroups to root the trees (Chilton et al., 2006). Portions of the 5’ and 3’ end of the alignment, for which a sequence was not available for each representative taxon, were excluded from the analyses. There were 2 portions of the alignment that could not be reliably aligned; these included bases 610–617 and 1276–1299. Thus, these 2 regions were also excluded from the phylogenetic analyses. Sequences were analyzed, and most parsimonious trees were found using the branch-and-bound search option of PAUP*. Relative reliability of clades was assessed using 2,000 replicates of bootstrap resampling with parsimony inference. Clades with bootstrap support greater than 60% were mapped on the strict consensus of the most parsimonious trees recovered. A second analysis of the data was conducted using the program MrBayes 3.1.2 (Ronquist and Huelsenbeck, 2003) and using the same alignment and outgroups. The standard deviation of split frequencies was used to assess if the number of generations completed was sufficient; the chain was sampled every 200 generations over a total of 2 million generations. Burn-in (20%) was determined empirically by examination of the log likelihood values of the chains.

Figure 2. Bayesian tree depicting phylogenetic relationships among Dictyocaulus spp. inferred from SSU rDNA sequences. Posterior probabilities are mapped onto the tree.
RESULTS

The alignment of the SSU rDNA sequences revealed, with the exception of a single base, identical sequences for the isolate from C. elaphus and 4 sequences identified as D. eckerti in GenBank and obtained from various ruminant hosts (GenBank AY168863, AY168857, AY168858, and AY168864). The single exception was a substitution of a C in the Spanish isolate for a T in D. eckerti (position 929 in the multiple alignment). Two other SSU sites that appeared polymorphic (G or A, designated R) were seen in the Spanish red deer Dictyocaulus sp. The 2 SSU rDNA Dictyocaulus sp. sequences from R. rupicapra and C. capreolus were identical to one another and also matched 2 GenBank sequences from A. alces (AY168862) and Ca. capreolus (AY168859), except that there were 3 polymorphic “R” sites for the 2 Spanish isolates that were referred to as either A or G in the GenBank sequences.

The SSU rDNA alignment for all available Dictyocaulus spp., and the 2 metastrongyloid outgroups, yielded 98 parsimony-informative characters. The analysis yielded 3 equally parsimonious trees of 135 steps, with a consistency index of 94.8%. The majority-rule consensus of these trees depicted D. viviparus as sister to D. eckerti plus Dictyocaulus from Spanish red deer. Within the monophyletic genus Dictyocaulus, bootstrap parsimony analysis (Fig. 1) showed very weak support for a clade including D. viviparus and D. eckerti. The D. capreolus sequences, and the Dictyocaulus representing R. rupicapra and C. capreolus from Spain, formed a strongly supported monophyletic group. A Dictyocaulus sp. sequence (AY168860) from the fallow deer, Dama dama, was not included with the D. eckerti, D. viviparus, or D. capreolus clades. Dictyocaulus filaria was the sister taxon to a clade containing the other Dictyocaulus spp.

Bayesian analysis of the SSU rDNA alignment yielded a tree with a topology very similar to that found by parsimony analysis. There was no posterior probability support for the inclusion of D. viviparus with the D. eckerti clade (Fig. 2), a result reflecting the low parsimony bootstrap support for this grouping. The Bayesian posterior tree also excluded the Dictyocaulus sp. isolate of roe deer from the clade containing D. capreolus, D. viviparus, and D. eckerti.

The 2 LSU rDNA sequences produced for each of the nematodes from Spain were combined and aligned with the only 2 Dictyocaulus LSU sequences previously deposited in GenBank, namely those of D. viviparus and D. filaria. The alignment revealed the absence of a region between bases 354 and 621, in which most bases in the R. rupicapra and C. capreolus Dictyocaulus isolates were absent (230 out of 267), compared to Dictyocaulus sp. from Spanish C. elaphus and published sequences of D. viviparus, D. filaria, and the 2 metastrongyloid sequences that were compared. The C. elaphus isolate also included unique nucleotide substitutions that, altogether, yielded considerable genetic distance from the other isolates (Table II). Between the isolates from C. capreolus and R. rupicapra, there was a difference at base 1002 (A in the former, G in the latter), as well as an insert of TACGA at bases 1004 to 1009 in the C. capreolus nematode that was absent in the lungworm from R. rupicapra. In addition, there was an insert of TATA at base 1107–1110 in the R. rupicapra lungworm that was absent in the C. capreolus nematode and in the other species (Table III). No phylogenetic tree was produced for these LSU sequences because too few sequences were available for comparative analysis.

DISCUSSION

The LSU rDNA sequence acquired from the C. elaphus lungworm could not be compared to sequences representing D. eckerti, as these are not yet available. However, the SSU rDNA sequences acquired from Dictyocaulus spp. in this host indicate a close affinity to the sequences of D. eckerti, which has been reported in C. elaphus (Gibbons and Khalil, 1988; Höglund et al., 2003). Similarly, the SSU rDNA gene sequence from C. capreolus is also most similar to that of D. capreolus; our finding of a putative D. capreolus from Spanish roe deer is also consistent with the recently reported type host for this species in Sweden (Gibbons and Höglund, 2002).

The LSU rDNA sequence obtained from the C. elaphus lungworm is more similar to that of D. viviparus than it is to the corresponding sequences acquired from C. capreolus and R. rupicapra isolates, a pattern consistent with the SSU rDNA gene sequences with respect to the sister group relationship inferred for D. viviparus and the C. elaphus isolate. A different sister group relationship, namely one between D. capreolus and D. eckerti, was shown by Höglund et al. (2003) using SSU rDNA gene sequences. However, bootstrap support for the D. viviparus–D. eckerti relationship in the present study was weak, suggesting that SSU data are insufficient for distinguishing between these alternatives. In contrast, there was strong support, in the present study, for a clade consisting of all sampled Dictyocaulus except for D. filaria.

Table II. Pairwise absolute number of differences calculated for the combined large-subunit ribosomal RNA gene sequences (5’ and 3’ ends) for Dictyocaulus spp. from Spain. The absolute distance matrix, excluding gaps, is shown on the top right portion of the matrix. Differences including gaps are represented in the bottom left portion of the matrix.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. AMO39753 Dictyocaulus viviparus</td>
<td>–</td>
<td>48</td>
<td>57</td>
<td>58</td>
<td>210</td>
</tr>
<tr>
<td>2. Cervus elaphus isolate</td>
<td>142</td>
<td>–</td>
<td>47</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>3. Capreolus capreolus isolate</td>
<td>292</td>
<td>299</td>
<td>–</td>
<td>1</td>
<td>144</td>
</tr>
<tr>
<td>4. Rupicapra rupicapra isolate</td>
<td>297</td>
<td>296</td>
<td>10</td>
<td>–</td>
<td>144</td>
</tr>
<tr>
<td>5. AMO39754 Dictyocaulus filaria</td>
<td>263</td>
<td>302</td>
<td>413</td>
<td>423</td>
<td>–</td>
</tr>
</tbody>
</table>

DISCUSSION

The LSU rDNA sequence acquired from the C. elaphus lungworm could not be compared to sequences representing D. eckerti, as these are not yet available. However, the SSU rDNA sequences acquired from Dictyocaulus spp. in this host indicate a close affinity to the sequences of D. eckerti, which has been reported in C. elaphus (Gibbons and Khalil, 1988; Höglund et al., 2003). Similarly, the SSU rDNA gene sequence from C. capreolus is also most similar to that of D. capreolus; our finding of a putative D. capreolus from Spanish roe deer is also consistent with the recently reported type host for this species in Sweden (Gibbons and Höglund, 2002).

The LSU rDNA sequence obtained from the C. elaphus lungworm is more similar to that of D. viviparus than it is to the corresponding sequences acquired from C. capreolus and R. rupicapra isolates, a pattern consistent with the SSU rDNA gene sequences with respect to the sister group relationship inferred for D. viviparus and the C. elaphus isolate. A different sister group relationship, namely one between D. capreolus and D. eckerti, was shown by Höglund et al. (2003) using SSU rDNA gene sequences. However, bootstrap support for the D. viviparus–D. eckerti relationship in the present study was weak, suggesting that SSU data are insufficient for distinguishing between these alternatives. In contrast, there was strong support, in the present study, for a clade consisting of all sampled Dictyocaulus except for D. filaria.

Table III. Sequence differences for large-subunit ribosomal RNA sequences from 2 portions of the alignment.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>pos. 1000</th>
<th>pos. 1104</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMO39753 Dictyocaulus viviparus</td>
<td>CTATGAGAGGATTGAGG</td>
<td>ATCTACGC</td>
</tr>
<tr>
<td>Cervus elaphus isolate</td>
<td>---------------------------</td>
<td>AT---------------</td>
</tr>
<tr>
<td>Capreolus capreolus isolate</td>
<td>CTATGAGAGGATTGAGG</td>
<td>ATCTACGC</td>
</tr>
<tr>
<td>Rupicapra rupicapra isolate</td>
<td>CTGG-----------------------</td>
<td>ATATATATACG</td>
</tr>
<tr>
<td>AMO39754 Dictyocaulus filaria</td>
<td>CTATGAGCGGATTGAGG</td>
<td>A---------------</td>
</tr>
</tbody>
</table>
with the latter species representing the sister taxon to this larger group of *Dictyocaulus* spp. Sequences from additional specimens of *D. eckerti*, including LSU data, would be of value in further characterization of this species and in resolving the phylogenetic relationship between *D. viviparum*, *D. capreolus*, and *D. eckerti*.

The differences in the LSU rDNA sequences found between the isolates from *C. capreolus* and *R. rupicapra*, in contrast to the identical nature of the SSU rDNA gene sequences in both isolates, indicate that the SSU rRNA gene may be too highly conserved in some closely related species to be of value in distinguishing between them. If the *Dictyocaulus* sp. in our Spanish roe deer sample is *D. capreolus*, then the differences seen in LSU rRNA gene sequences are suggestive of an undescribed species in *R. rupicapra* that is closely related to *D. capreolus* from roe deer. Alternatively, the *Dictyocaulus* sp. from Spanish roe deer and chamois may represent undescribed species. Here, too, there is a need for comparable LSU rDNA sequences from reliably identified *D. capreolus*.

The higher degree of variation seen in the sequences acquired from the LSU rDNA gene from the 3 *Dictyocaulus* sp. in the present study indicates that variable regions of this locus are valuable for distinguishing between different species in this genus. *Dictyocaulus* sp. are often reported from wildlife, based on recovery of larvae in feces, in the absence of post mortem examination of adult nematodes. Furthermore, adults identified as different species have been described from the same hosts. For example, the *Dictyocaulus* sp. has often been reported in the chamois as *D. filaria* (e.g., Gebauer, 1932; Hörning and Wandeler, 1968). However, there are reports of other species from this host, including *D. viviparum* (Stefancikova, 1999). The identity of larval stages could be verified using the partial LSU rDNA sequences described in the current study. The sequences that we acquired from Spanish ruminants are readily distinguishable from *D. filaria* and also reveal differences between the closely related species from *C. capreolus* and *R. rupicapra*.

ACKNOWLEDGMENTS

We thank Angélica Martinez Delgado for technical assistance and the Servicio de Medio Ambiente, Junta de Castilla y León, for their cooperation in providing the animals for this study. This study was supported by funds from a National Science Foundation grant (DEB-0234520) to R.A.C and S.A.N.

LITERATURE CITED

