New Taxa and Combinations in Onciderini Thomson, 1860
(Coleoptera: Cerambycidae: Lamiinae) from Central and South America, with notes on additional taxa

Eugenio H. Nearns
University of New Mexico, gnearns@unm.edu

Gérard-Luc Tavakilian
Muséum National d’Histoire Naturelle, Paris, tava@mnhn.fr

Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi
Part of the Entomology Commons

Nearns, Eugenio H. and Tavakilian, Gérard-Luc, "New Taxa and Combinations in Onciderini Thomson, 1860 (Coleoptera: Cerambycidae: Lamiinae) from Central and South America, with notes on additional taxa" (2012). Insecta Mundi. 733.
https://digitalcommons.unl.edu/insectamundi/733

This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
New Taxa and Combinations in Onciderini Thomson, 1860 (Coleoptera: Cerambycidae: Lamiinae) from Central and South America, with notes on additional taxa

Eugenio H. Nearns
Department of Biology
Museum of Southwestern Biology
University of New Mexico
Albuquerque, NM 87131-0001, USA
gnearns@unm.edu

Gérard-Luc Tavakilian
Antenne IRD, Entomologie
Département de Systématique et Évolution
Muséum National d'Histoire Naturelle
45, rue Buffon
F-75005 Paris
tava@mnhn.fr

Date of Issue: April 6, 2012
New Taxa and Combinations in Onciderini Thomson, 1860 (Coleoptera: Cerambycidae: Lamiinae) from Central and South America, with notes on additional taxa

Eugenio H. Nearns
Department of Biology
Museum of Southwestern Biology
University of New Mexico
Albuquerque, NM 87131-0001, USA
gnearns@unm.edu

Gérard-Luc Tavakilian
Antenne IRD, Entomologie
Département de Systématique et Évolution
Muséum National d'Histoire Naturelle
45, rue Buffon
F-75005 Paris
tava@mnhn.fr

Abstract. Touroultia, a new genus of Onciderini Thomson, 1860 (Coleoptera: Cerambycidae: Lamiinae) is described and illustrated. Five new species of Onciderini are also described and illustrated: Jamesia ramirezi from Costa Rica; Peritrox marcelae from French Guiana; Touroultia swifti from Ecuador; Touroultia lordi from French Guiana; Trestoncideres santossilvai from Brazil. Keys to the known species of Peritrox Bates, 1865; Touroultia gen. nov.; and Trestoncideres Martins and Galileo, 1990 are provided. The following new synonymies are proposed: Calliphenges Waterhouse, 1880 (Colobotheini) = Malthonea Thomson, 1864 (Desmiphorini); Paraclytemnestra Breuning, 1974 (Onciderini) = Jamesia Jekel, 1861 (Onciderini); Orteguaza Lane, 1958 (Apomecynini) = Clavidesmus Dillon and Dillon, 1946 (Onciderini). The following new combinations are proposed: Clavidesmus funerarius (Lane, 1958) (Onciderini); Clavidesmus lichenigerus (Lane, 1958) (Onciderini); Ischiocentra insulata (Rodrigues and Mermudes, 2011); Malthonea cuprascens (Waterhouse, 1880) (Desmiphorini); Touroultia obscurella (Bates, 1865) (Onciderini). The following species is restored to original combination: Jamesia lineata Fisher, 1926 (Onciderini). The following 13 new country records are reported: Ataxia hovorei Lingafelter and Nearns, 2007 (Pteropliini) (Haiti); Carterica soror Belon, 1896 (Colobotheini) (Ecuador); Colobothea lunulata Lucas, 1859 (Colobotheini) (Colombia); Curius punctatus (Fisher, 1932) (Curiini) (Haiti); Cyclopeplus lacordairei Thomson, 1868 (Anisocerini) (Colombia); Iarucanga mimica (Bates, 1866) (Hemilophini) (Ecuador); Pirangocyclus latithorax (Martins and Galileo, 2005) (Clytini) (Costa Rica); Parangonycha princeps (Bates, 1872) (Hemilophini) (Colombia); Trestonia lateapicata Martins and Galileo, 2010 (Onciderini) (Brazil); Tulcus dimidiatus (Bates, 1865) (Onciderini) (Colombia); Unaporanga cineta Martins and Galileo, 2007 (Hemilophini) (Colombia); Zeale dubia Galileo and Martins, 1997 (Hemilophini) (Colombia); Zonotylus interruptus (Olivier, 1790) (Trachyderini) (Colombia).

Key words. Key; Neotropical; New distribution record; New genus; New species; New synonymy; Taxonomy.
Curius punctatus (Fisher, 1932) (Curini) (Haiti); Cyclopeplus lacordairei Thomson, 1868 (Anisocerini) (Colombia); Iarucanga mimica (Bates, 1866) (Hemilophini) (Ecuador); Pirangocyclus latithorax (Martins y Galileo, 2008) (Clytini) (Costa Rica); Parangonycha princeps (Bates, 1872) (Hemilophini) (Colombia); Trestonia lateapicata Martins y Galileo, 2010 (Onciderini) (Brasil); Tulcus dimidiatus (Bates, 1865) (Onciderini) (Colombia); Unaporanga cincta Martins y Galileo, 2007 (Hemilophini) (Colombia); Zeale dubia Galileo y Martins, 1997 (Hemilophini) (Colombia); Zonotylus interruptus (Olivier, 1790) (Trachyderini) (Colombia).

Palabras Claves. Clave; Nueva especie; Nueva sinonimia; Nuevo género; Nuevo registro de país; Región neotropical; Taxonomía.

Introduction

The tribe Onciderini Thomson, 1860 (Cerambycidae: Lamiinae) is widely distributed in the New World from North America to southern South America. Nearns and Swift (2011) provided a brief review of the taxonomic history of the tribe. Onciderini currently consists of approximately 468 described species in 79 genera. It is worth noting that over half (52) of the 79 genera are either monotypic or have only two species. A phylogenetic analysis of the tribe has not been conducted and its monophyly remains untested. A morphological study and cladistic analysis of the tribe is forthcoming (Nearns and Miller in preparation).

During the process of producing a Lucid key to the genera of Onciderini (Nearns et al. 2011), several new taxa, taxonomic problems, and distribution records came to light (see Nearns and Swift 2011). Here we add a new genus and five new species, propose three synonymies, five new combinations, and add 13 new country records in the subfamilies Cerambycinae and Lamiinae.

Materials

Specimens from the following collections were examined and the following codens are used throughout the paper:

ACMS American Coleoptera Museum, San Antonio, Texas, USA
BMNH The Natural History Museum, London, United Kingdom
CMNH Carnegie Museum of Natural History, Pittsburgh, Pennsylvania, USA
CUIIC Cornell University Insect Collection, Ithaca, New York, USA
DFPC Denis Faure Private Collection, Kourou, French Guiana
EFGC Edmund F. Giesbert Collection (at FSCA), Gainesville, Florida, USA
ENPC Eugenio H. Nearns Private Collection, Albuquerque, New Mexico, USA
FSCA Florida State Collection of Arthropods, Gainesville, Florida, USA
INBC Instituto Nacional de Biodiversidad, Santo Domingo de Heredia, Heredia, Costa Rica
ISNB Institut royal des Sciences naturelles de Belgique, Brussels, Belgium
ISPC Ian P. Swift Private Collection, Orange County, California, USA
JLGC Jean-Louis Giuglaris Private Collection, Matoury, French Guiana
JTPC Julien Touroult Private Collection, Soyaux, France
MCNZ Museu de Ciências Naturais, Fundação Zoobotânica do Rio Grande do Sul, Porto Alegre, Brazil
MNCR Departamento de Historia Natural, Museo Nacional de Costa Rica, San José, Costa Rica
MNHN Muséum National d’Histoire Naturelle, Paris, France
MNRJ Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
MUSM Museo de Historia Natural Universidad Nacional Mayor de San Marcos, Lima, Peru
MZSP Museu de Zoologia, Universidade de São Paulo, São Paulo, Brazil
NHRS Swedish Museum of Natural History, Stockholm, Sweden
NMBA Naturhistorisches Museum Basel, Basel, Switzerland
PHDC Pierre-Henri Dalens Private Collection, Rémire-Montjoly, French Guiana
RRCC Rolando Ramírez Campos Private Collection, Veragua, Costa Rica
SMFD Forschungsinstitut und Naturmuseum Senckenberg, Frankfurt-am-Main, Germany
New Onciderini from Central and South America

Jamesia Jekel, 1861: 259 (Lamiinae: Onciderini)

Type-species. Lamia globifera Fabricius, 1801 (original designation).

The genus Jamesia currently contains nine described species. Nearns et al. (2011) provided color photographs of seven species of this genus, including four type specimens.

Jamesia ramirezi Nearns and Tavakilian, sp. nov.
(Figures 1a–d)

Description. Female. Length 25.0–27.0 mm (measured from vertex to elytral apices), width 10.5–11.0 mm (measured across humeri). Habitus as in Fig. 1a. General form elongate-ovate, moderate to large-sized. Integument ferrugineous or dark brown, entire body (except antennae and legs) with tawny pubescence, mottled with dark brown maculae of various sizes; elytra with two large, dark brown, irregularly-shaped maculae of various sizes; elytra with two large, dark brown, irregularly-shaped maculae near middle.

Head with frons elongate, about 3/4 times width of lower eye lobe (as in Fig. 1c). Eyes with lower lobes large, ovate-oblong. Genae subquadrate to trapezoidal, distinctly shorter than lower eye lobes. Antennae about 1.3 times longer than body; antennal tubercles prominent, narrowly separated, contiguous at base; tubercles armed at apex with small, blunt tubercle; scape robust, slightly bowed, gradually expanded to apex. Antennal formula based on antennomere III: scape=0.80; II=0.06; III=1; IV=0.81; V=0.63; VI=0.59; VII=0.53; VIII=0.45; IX=0.45; X=0.45; XI=0.45.

Pronotum roughly conical, distinctly wider at base, transverse, about 1.5 times as wide as long, sides feebly arcuate (Fig. 1d); disk at middle near base with a feebly elevated, median tubercle, either side of middle with three blunt tubercles arranged in a triangle; one apical and one transverse sulcus, and a more distinct oblique sulcus laterally which continues down the side.

Scutellum transverse, apex rounded.

Elytra about 1.75 times as long as width at humeri (Fig. 1a), about 4.5 times as long as pronotal length, about 1.6 times broader basally than pronotum at widest (at base); sides slightly sinuate, distinctly attenuate to apices, elytral apices individually rounded; base of each elytron somewhat gibbose, gibbositys each with prominent granules, rest of base with minute scattered granules, widely separated punctures placed one in each dark brown pubescent spot; humeri prominent, anterior margin oblique, the angle with a moderate-sized shining tubercle; sides below humeri with a few small granules.

Venter with procoxae large, globose, not uncate; narrowest area of prosternal process between procoxae about 1/4 as wide as procoxal cavity; apex of prosternal process subtriangular. Mesosternal process about as wide as mesocoxal cavity; mesosternal process deeply emarginate. Fifth sternite nearly 2 times as long as IV, with a median triangular impression.

Legs moderate in length; femora robust, gradually expanded to apex; tibiae slightly expanded apically; metafemora about 1/3 as long as elytra.
Figure 1. *Jamesia ramirezi*, sp. nov. a) Holotype female, dorsal habitus. b) Allotype male, ventral habitus. c) Holotype female, close-up of head. d) Holotype female, close-up of pronotum.
Male. Length 20.0–27.0 mm (measured from vertex to elytral apices), width 8.5–11.1 mm (measured across humeri). Similar to female except antennae 1.5 times longer than body; antennal tubercles armed at apex with short, blunt horn; pronotum widest behind middle, about 1.3 times as wide as long; elytra about 4 times as long as pronotal length; larger specimen with profemora transversely rugose; fifth sternite without a median triangular impression.

Type Material. Holotype, female (Fig. 1a, c-d), “Estación Pitilla, 9 km S. Sta. Cecilia, Prov. Guanacaste, Costa Rica. 700m, Abr. 1994. C. Moraga, LN 330200_380200 #2841” (INBC). Allotype, male (Fig. 1b), “Costa Rica, Limón, Liverpool, Reserva Veragua Rainforest. 430m.s.m. 9°55’35, 7” N - 83°11’27,9”W, 10/VI/2010, Rolando Ramírez Campos leg., #4503” (MNCR). Six paratypes: one male, same data as allotype except “18/VII/2011, #4757” (RRCC); one male, same data as allotype except “22/I/2009, #4185” (RRCC); one female, same data as holotype except “Mar 1994. #2804” (INBC); one male, same data as holotype except “P.N. Guanacaste, Ene 1994, #2563” (ENPC); one male, same data as holotype except “P.N. Guanacaste, May 1994. #2999” (INBC); one female, “Est. Hitoy Cerere, 100m. R. Cerere, Res. Biol. Hitoy Cerere, Prov. Limón, Costa Rica, 27 jun a 22 jul 1992, K. Taylor, L-N 184200, 643300” (INBC).

Etymology. Jamesia ramirezi, sp. nov. is named for Rolando Ramírez Campos, for his collaboration and who collected part of the type series. The epithet is a noun in the genitive case.

Diagnosis and Remarks. This species is distinguished from its congeners by the combination of the following characters: antennomeres I, II, basal 5/6 of III, and basal 2/3 of IV with grayish pubescence, distinctly lighter than V-XI, which are uniformly dark brown; and elytra with red-orange pubescence, with small and moderately sized, dark brown maculae outlined with ring of white pubescence. Swift et al. (2010) listed three species of Jamesia from Costa Rica. Jamesia ramirezi, sp. nov. is described from eight specimens: five males and three females. Nothing is known about the habitat and behavior of this species; however, all known specimens were collected in Costa Rica, above 100 m elevation (three specimens at 700 m elevation).

Peritrox Bates, 1865: 313 (Lamiinae: Onciderini)

Type species. Peritrox denticollis Bates, 1865 (monotypy).

The genus Peritrox currently contains four described species. Nearns et al. (2011) provided color photographs of three species of this genus, including two type species. The following key was adapted from Dillon and Dillon (1945) and treats all currently known species of Peritrox including one new species described herein (the species Peritrox insulatus Rodrigues and Mermudes, 2011, is transferred to the genus Ischiocentra Thomson herein).

1. Eye with lower lobe less than twice the height of gena; elytra with irregular, vermicular, fulvous maculae outlined with thin whitish pubescence, interspaces glabrous (Brazil)...P. vermiculatus Dillon and Dillon, 1945
 – Eye with lower lobe at least twice the height of gena; elytra without vermicular fulvous maculae ... 2

2(1). Elytra with fulvous or red-range pubescent maculae...3
 – Elytra with only dull reddish pubescent maculae (Argentina, Bolivia, Brazil, Paraguay, Uruguay)...P. denticollis Bates, 1865

3(2). Antennomeres more or less uniformly dark brown; elytra fulvous, with irregularly shaped dark brown or black maculae outlined with thin grayish pubescence...4
 – Antennomeres I, II, basal 5/6 of III, and basal 2/3 of IV with grayish pubescence, distinctly lighter than V-XI, which are uniformly dark brown; elytra with red-orange pubescence, with small and moderately-sized, dark brown maculae outlined with ring of white pubescence (French Guiana).. P. marcelae, sp. nov.
4(3). Front entirely ochraceous pubescent, more densely pubescent laterally; elytra with fulvous pubescence predominating, a broad, unbroken, hoary fascia placed partly anterior to middle of its length (Brazil, Ecuador, French Guiana, Peru). … *P. perbra* Dillon and Dillon, 1945

— Front variegated with white and fulvous pubescence, fulvous vittate laterally; elytra with gray pubescence predominating, hoary fascia broken, placed behind middle of length (Bolivia, Brazil, Paraguay) … *P. nigromaculata* Aurivillius, 1920

Peritrox marcelae Nearns and Tavakilian, sp. nov.
(Figures 2a–d)

Description. Male. Length 16.0–17.0 mm (measured from vertex to elytral apices), width 5.5–6.0 mm (measured across humeri). Habitus as in Fig. 2a. General form elongate-oblong, moderate-sized. Integument dark brown, antennomeres I, II, basal 5/6 of III, and basal 2/3 of IV with grayish pubescence, distinctly lighter than V-XI, which are uniformly dark brown; elytra with red-orange pubescence, with dense field of small and moderately-sized, dark brown maculae outlined with ring of white pubescence; legs with grayish pubescence; legs with grayish pubescence.

Head with frons distinctly elongate, a little wider than width of one lower eye lobe (as in Fig. 2c). Eyes with lower lobes large, oblong; narrowest area connecting upper and lower eye lobes about 6 ommatidia wide. Genae roughly subquadrate, about half as tall as lower eye lobes.

Antennae about 2 times longer than body; antennal tubercles prominent, narrowly separated, contiguous at base; tubercles armed at apex with short blunt horn; scape robust, gradually expanded to apex; antennomeres III, X, and XI slightly curved. Antennal formula based on antennomere III: scape = 0.55; II = 0.08; III = 1; IV = 0.72; V = 0.6; VI = 0.54; VII = 0.5; VIII = 0.48; IX = 0.47; X = 0.51; XI = 0.77.

Pronotum subcylindrical, slightly wider at base, transverse, about 1.5 times as wide as long, sides irregular, with a small, blunt protuberance each side behind middle (Fig. 2a, d); disk with five feebly elevated tubercles, median tubercle oval, lateral tubercles slightly longer, elongate; disk with 8-10 fine punctures at basal transverse sulcus.

Scutellum transverse, apex rounded.

Elytra about 2 times as long as width at humeri (Fig. 2a), nearly 4 times as long as pronotal length, about 1.3 times broader basally than pronotum at widest (at base); lateral margins nearly straight, sides roughly parallel, gradually rounded to apices at apical 1/3, apices jointly rounded; basal 1/3 of elytra with moderate punctation, surface finely punctate, with mix of shallow and deep punctures; humeri prominent, anterior margin arcuate, angle with moderate sized, obtuse tubercle.

Venter with procoxae large, globose, not uncate; narrowest area of prosternal process between procoxae about 1/6 as wide as procoxal cavity; apex of prosternal process subtriangular. Mesosternal process about as wide as mesocoxal cavity; mesosternal process subtruncate-rounded. Fifth sternite slightly longer than IV.

Legs moderate in length; femora robust; metafemora clavate apically; tibiae slightly expanded apically; metafemora about 1/3 as long as elytra.

Female. Length 19.5–24.0 mm (measured from vertex to elytral apices), width 7.5–9.0 mm (measured across humeri). Similar to male except antennae about 1.5 times as long as body; elytra about 1.5 times broader basally than pronotum at widest (at middle).

Type Material. Holotype, male (Fig. 2a, c), “Montagne de Kaw, 11.XII.82 pk 35 P.L., P. Debost leg.” (MNHN). Allotype, female (Fig. 2b), “05/I/2011 lumière Piste Kapiri RN2 PK125, J-L Giuglaris leg.” (PHDC). Four paratypes: one male (Fig. 2d), “Guyane, 05/I/2008 lumière piste de Bélizon PK15+17, J-L Giuglaris leg.” (JLGC); one male, “Guyane, 06/IX/2011 lumière ZA Wayabo Matiti, J-L Giuglaris leg.” (JLGC); one female, “Guyane, 10/I/1994 lumière route de Kaw PK38, J-L Giuglaris leg.” (JLGC); one female, “Guyane, 01/IV/2003 lumière piste de Bélizon PK15+12” (JLGC).

Etymology. We are pleased to name this species in honor of Marcela Laura Monné, for her friendship and many contributions to the study of Neotropical Cerambycidae. The epithet is a noun in the genitive case.
Figure 2. *Peritrox marcelae*, sp. nov. a) Holotype male, dorsal habitus. b) Allotype female, dorsal habitus. c) Holotype male, close-up of head. d) Paratype male, dorsal habitus.
Diagnosis and Remarks. This species is distinguished from its congeners by the combination of the following characters: antennomeres I, II, basal 5/6 of III, and basal 2/3 of IV with grayish pubescence, distinctly lighter than V–XI, which are uniformly dark brown; and elytra with red-orange pubescence, with small and moderately sized, dark brown maculae outlined with ring of white pubescence. *Peritrox marcelae*, sp. nov. is described from six specimens: three males and three females. Nothing is known about the habitat and behavior of this species; however, all known specimens were collected in French Guiana, at light.

Touroultia Nearns and Tavakilian, gen. nov. (Lamiinae: Onciderini) (Figures 4a–d, 5a–d)

Type species. *Touroultia lordi*, sp. nov., here designated.

Description. General form elongate-ovate, robust, small to moderate-sized. Head with frons elongate, about 1.5 times width of lower eye lobe. Eyes with lower lobes large, oblong. Genae distinctly shorter than lower eye lobes. Antennae distinctly longer than body; antennal tubercles prominent, moderately separated; scape robust, clavate; antennomere III longest. Pronotum subcylindrical, transverse, sides feebly sinuate; disk with three tubercles; disk with one basal transverse sulcus, and a more distinct oblique sulcus laterally which continues down the side. Scutellum transverse, apex rounded. Elytra with lateral margins slightly sinuate, gradually rounded to apices at apical 1/3; humeri prominent. Legs moderate in length; profemora robust; meso- and metafemora clavate apically; tibiae slightly expanded apically; metafemora about 1/3 as long as elytra.

The following key treats all currently known species including two new species described herein.

1. Genae roughly transverse, about 1/3 as tall as lower eye lobes; elytra with basal gibbosities moderately elevated...2
 – Genae roughly subquadrate, about 1/2 as tall as lower eye lobes; elytra with basal gibbosities feebly elevated (Brazil).. *T. obscurella* (Bates, 1865), new combination

2(1). Base of antennomeres IV-XI with grayish or pale testaceous pubescence; base of elytra with surface coarsely, moderately to deeply, granulate-punctate (French Guiana) ...
 – Base of antennomeres IV-XI with golden-yellow pubescence; base of elytra with surface finely, shallowly, granulate-punctate (Ecuador) .. *T. swifti*, sp. nov.

Etymology. *Touroultia*, gen. nov. is named for Julien Touroult, with appreciation of his friendship and collaboration. The gender is feminine.

Diagnosis and Remarks. This genus closely resembles *Priscatoides* Dillon and Dillon, 1945 (Fig. 3a-d) but can be distinguished by the combination of the following characters: genae distinctly shorter than lower lobes, from 1/3 to 1/2 as tall (genae slightly shorter than lower eye lobes in *Priscatoides*); frons distinctly elongate and narrow, about as wide as width of 1 to 1.5 lower eye lobes (frons about as wide as width of two lower eye lobes in *Priscatoides*); pronotum subcylindrical in *Touroultia* (slightly narrower at apex in *Priscatoides*); elytra about 3.75 times longer than pronotal length (about 4.3 times longer in *Priscatoides*).

Touroultia lordi Nearns and Tavakilian, sp. nov. (Figures 4a, c)

Description. Male. Length 14.0–14.5 mm (measured from vertex to elytral apices), width 6.0–6.25 mm (measured across humeri). Habitus as in Fig. 4a. General form elongate-ovate, moderate-sized.
Figure 3. *Priscatoideas tatila* Dillon and Dillon, 1945, holotype female. a) Dorsal habitus. b) Lateral habitus with original labels. c) Close-up of head. d) Close-up of pronotum.
Integument dark brown or black, with pale testaceous and dark brown variegated pubescence; base of antennomeres with grayish or pale testaceous pubescence; elytra dark brown pubescence, with two irregularly-shaped, distinct regions of pale testaceous pubescence near middle.

Head with frons elongate, about 1.5 times width of lower eye lobe (as in Fig. 4c). Eyes with lower lobes large, oblong; narrowest area connecting upper and lower eye lobes about 4 ommatidia wide.
Genae roughly subquadrate, about 1/3 as tall as lower eye lobes. Antennae distinctly longer than body; antennal tubercles prominent, moderately separated; tubercles unarmed at apex; scape robust, clavate; antennomere III sinuate. Antennal formula based on antennomere III: scape=0.84; II=0.15; III=1; IV=0.85; V=0.76; VI=0.73; VII=0.74; VIII=0.74; IX=0.77; X=0.79; XI=0.87.

Pronotum subcylindrical, transverse, about 1.25 times as wide as long, sides feebly sinuate; disk with three moderately elevated tubercles, median tubercle oval, lateral tubercles more prominent; one basal transverse sulcus, and a more distinct oblique sulcus laterally which continues down the side. Scutellum transverse, apex rounded.

Elytra about 1.6 times as long as width at humeri (Fig. 4a), about 3.75 times as long as pronotal length, about 1.6 times broader basally than pronotum at widest (at base); lateral margins slightly sinuate, gradually rounded to apices at apical 1/3, apices individually rounded; base of each elytron with a moderate gibbosity; basal 1/3 of elytra with surface coarsely, moderately to deeply, granulate-punctate; humeri prominent, anterior margin oblique, angle with moderate sized, obtuse tubercle.

Venter with procoxae large, globose, with small, obtuse tubercle; narrowest area of prosternal process between procoxae, about 1/5 as wide as procoxal cavity; apex of prosternal process subtriangular. Mesosternal process about 0.75 times as wide as mesocoxal cavity; mesosternal process feebly emarginate. Fifth sternite slightly longer than IV, apex feebly emarginate.

Legs moderate in length; profemora robust; meso- and metafemora clavate apically; tibiae slightly expanded apically; metatibia slightly broader than IV, with a median triangular impression.

Female. Length 17.0 mm (measured from vertex to elytral apices), width 7.5 mm (measured across humeri). Similar to male except antennae about 1.3 times as long as body; procoxae without tubercle; elytra about 1.75 times broader basally than pronotum at widest (at middle); fifth sternite about 1.5 times as long as IV, with a median triangular impression.

Etymology. We take pleasure in naming this species for Nathan Patrick Lord, for his friendship and companionship on many collecting trips. The epithet is a noun in the genitive case.

Diagnosis and Remarks. This species is distinguished from its congeners by the combination of the following characters: base of antennomeres IV-XI with grayish or pale testaceous pubescence; base of elytra with surface coarsely, deeply, granulate-punctate genae roughly transverse, about 1/3 as tall as lower eye lobes; elytra with basal gibbosities strongly elevated. *Touroultia lordi*, sp. nov. is described from four specimens: three males and one female. Nothing is known about the habitat and behavior of this species; however, the holotype specimen was collected at light and the allotype specimen was collected beating vegetation.

Touroultia obscurella (Bates, 1865), new combination
(Figures 5a–d)

Type locality: Brazil, Pará: Óbidos. (MNHN). Distribution: Brazil (Pará).
Hypsioma obscurella (Bates, 1865); Lacordaire 1872: 676; Dillon and Dillon 1946: 206; Martins and Galileo 1990: 56.
Hypsioma ? obscurella; Breuning 1961: 208 (cat.).

Description. Male? Length 11.0 mm (measured from vertex to elytral apices), width 4.9 mm (measured across humeri). Habitus as in Fig. 5a. General form elongate-ovate, small-sized. Integument ferrugine-
Figure 5. *Touroultia obscurella* (Bates, 1865), holotype male? a) Dorsal habitus with original labels. b) Lateral habitus. c) Close-up of head. d) Close-up of pronotum.
ous or dark brown, with grayish and pale testaceous pubescence; base of antennomeres with grayish pubescence; elytra with predominantly dark brown pubescence, with two feebly defined regions of pale testaceous pubescence near middle.

Head with frons elongate, about 1.5 times width of lower eye lobe (as in Fig. 5d). Eyes with lower lobes large, oblong; narrowest area connecting upper and lower eye lobes about 4 ommatidia wide. Genae roughly subquadrate, about 1/2 as tall as lower eye lobes.

Antennae about 1.3 times longer than body (estimated); tubercles prominent, moderately separated; tubercles unarmed at apex; scape robust, clavate; antennomere III sinuate. Antennal formula based on antennomere III: scape=0.73; II=0.13; III=1; IV=0.82; V=0.7; VI=0.57 (specimen damaged, antennomeres VII-XI missing).

Pronotum subcylindrical, transverse, about 1.25 times as wide as long, sides feebly sinuate; disk with three moderately elevated tubercles, median tubercle oval, lateral tubercles more prominent; one basal transverse sulcus, and a more distinct oblique sulcus laterally which continues down the side.

Scutellum transverse, apex rounded.

Elytra about 1.85 times as long as width at humeri (Fig. 5b), about 3.75 times as long as pronotal length, about 1.6 times broader basally than pronotum at widest (at base); lateral margins slightly sinuate, gradually rounded to apices at apical 1/3, apices individually rounded; base of each elytron with a moderate gibbosity; basal 1/3 of elytra with dense punctuation, surface finely granulate-punctate; humeri prominent, anterior margin oblique, angle with moderate sized, obtuse tubercle.

Venter with procoxae large, globose, not uncate. Abdomen unavailable for study (specimen damaged).

Legs moderate in length; profemora robust; meso- and metafemora clavate apically; tibiae slightly expanded apically; metafemora about 1/3 as long as elytra.

Female. Unknown.

Material Examined. Holotype, male? (Fig. 5a-d), “Hypselomus obscurellus, Obydos / Bates; obscurel-lus Bates Am. N.H.; Museum Paris Coll. H.W. Bates 1952” (MNHN).

Diagnosis and Remarks. This species is distinguished from its congeners by the combination of the following characters: genae roughly subquadrate, about 1/2 as tall as lower eye lobes; elytra with basal gibbosities feebly elevated. Touroultia obscurella (Bates, 1865) is described from a single specimen collected at “Obydos” (Brazil, Pará: Óbidos) and originally described in the genus Hypselomus Perty, 1832 (Onciderini). Although the original description indicates the holotype specimen is male, this remains unconfirmed due to specimen damage. Breuning (1961) indicated doubt about the placement of this species in the genus Hypsioma Audinet-Serville, 1835 (Onciderini).

Touroultia swifti Nearns and Tavakilian, sp. nov.
(Figures 4b, d)

Description. Male. Length 14.0 mm (measured from vertex to elytral apices), width 5.8 mm (measured across humeri). Habitus as in Fig. 4b. General form elongate-ovate, moderate-sized. Integument dark brown or black, with pale testaceous and dark brown variegated pubescence; pedicel, base of scape and antennomere III with grayish pubescence; base of antennomeres IV-XI with golden-yellow pubescence; elytra with predominantly dark brown pubescence, with two feebly defined regions of pale testaceous pubescence near middle.

Head with frons elongate, about width of 1 lower eye lobe (as in Fig. 4d). Eyes with lower lobes distinctly large, oblong; narrowest area connecting upper and lower eye lobes about 4 ommatidia wide. Genae transverse, about 1/3 as tall as lower eye lobes.

Antennae about 1.5 times longer than body; antennal tubercles prominent, moderately separated; tubercles armed at apex with short blunt tooth; scape robust, clavate; antennomere III sinuate. Antennal formula based on antennomere III: scape=0.67; II=0.16; III=1; IV=0.85; V=0.82; VI=0.7; VII=0.55; VIII=0.56; IX=0.63; X=0.65; XI=0.71.
Pronotum subcylindrical, transverse, about 1.25 times as wide as long, sides feebly sinuate; disk with three moderately elevated tubercles, median tubercle oval, lateral tubercles more prominent; one basal transverse sulcus, and a more distinct oblique sulcus laterally which continues down the side.

Scutellum transverse, apex rounded.

Elytra about 1.6 times as long as width at humeri (Fig. 4b), about 3.75 times as long as pronotal length, about 1.6 times broader basally than pronotum at widest (at base); lateral margins slightly sinuate, gradually rounded to apices at apical 1/3, apices individually rounded; base of each elytron with a moderately-elevated gibbonosity; basal 1/3 of elytra with dense punctuation, surface finely granulate-punctate; humeri prominent, anterior margin oblique, angle with moderate sized, obtuse tubercle.

Venter with procoxae large, globose, with small, acute tubercle; narrowest area of prosternal process between procoxae distinctly narrow, about 1/10 as wide as procoxal cavity; apex of prosternal process subtriangular. Mesosternal process about 0.75 times as wide as mesocoxal cavity; mesosternal process feebly emarginate. Fifth sternite slightly longer than IV, apex feebly emarginate.

Legs moderate in length; profemora robust; meso- and metafemora feebly clavate apically; tibiae slightly expanded apically; metafemora about 1/3 as long as elytra.

Female. Length 17.0 mm (measured from vertex to elytral apices), width 7.5 mm (measured across humeri). Similar to male except antennae about 1.25 times as long as body; procoxae without tubercle; fifth sternite about 1.5 times as long as IV, with a median triangular impression.

Etymology. We are pleased to name this species for Ian Patrick Swift, with appreciation of his friendship, encouragement, and camaraderie in the field. The epithet is a noun in the genitive case.

Diagnosis and Remarks. This species is distinguished from its congeners by the combination of the following characters: genae transverse, about 1/3 as tall as lower eye lobes; base of antennomeres IV-XI with golden-yellow pubescence; base of elytra with surface finely, shallowly, granulate-punctate; elytra with basal gibbosities moderately elevated.

Touroultia swifti, sp. nov. is described from two specimens: one male and one female. Nothing is known about the habitat and behavior of this species; however, both specimens were collected in Ecuador and the male specimen was collected at 450 m elevation.

Trestoncideres Martins and Galileo, 1990: 87 (Lamiinae: Onciderini)

Type species. Trestoncideres lateritalba Martins and Galileo, 1990 (monotypy and original designation).

The genus Trestoncideres currently contains two described species. Nearns et al. (2011) provided color photographs of both species, including the holotype specimen of Trestoncideres lateritalba Martins and Galileo, 1990 and a paratype specimen of Trestoncideres albiventris Martins and Galileo, 2005. The following key treats all currently known species of Trestoncideres including one new species described herein.

1. Antennae, pronotum, and elytra with whitish and gold pubescence; pronotum with a small, acute protuberance each side behind middle; scutellum with central 1/2 glabrous, outer margins fringed with grayish or whitish pubescence; apical 1/3 of elytra slightly darker (Brazil, French Guiana)..T. santossilvai, sp. nov.
 - Antennae, pronotum, and elytra without grayish-white and gold pubescence; pronotum without acute protuberances each side; scutellum pubescent, with at most a small glabrous area at center; apical 1/3 of elytra not slightly darker..........................2
2(1). Base of each elytron with moderately raised gibbosity; elytral gibbosities with orange pubescence, together forming an elongate-cordate region; elytra (excluding gibbosities) with nearly uniform ochraceous or light brown pubescence (Bolivia) ...

- Elytra with nearly uniformly pale orange pubescence (Brazil, Costa Rica, French Guiana, Suriname) ... T. albiventris Martins and Galileo, 2005

Trestoncideres santossilvai Nearns and Tavakilian, sp. nov. (Figures 6a–d)

Description. Male. Length 12.0–13.0 mm (measured from vertex to elytral apices), width 3.5–4.0 mm (measured across humeri). Habitus as in Fig. 6a. General form elongate-oblong, small to moderate-sized. Integument generally dark brown or black, with whitish, gold, and ochraceous pubescence; mesepisternum, mesepimeron, metepisternum with dark brown and gold pubescence; metasternum with distinct vitta formed by dense, white pubescence, about as wide as metepisternum, not reaching margin with metepisternum (Fig. 6b); lateral margin of metasternum with dark brown and gold pubescence; remaining portions of venter and femora with whitish pubescence; apical 1/3 of elytra slightly darker than basal 2/3.

Head with frons roughly subquadrate, slightly transverse, about 3 times width of lower eye lobe (as in Fig. 6c). Eyes with lower lobes moderate-sized, ovate; narrowest area connecting upper and lower eye lobes about 2-3 ommatidia wide. Genae elongate, about as tall as lower eye lobes. Antennae about 1.25 times longer than body; antennal tubercles prominent, widely separated; tubercles armed at apex with short blunt horn; scape robust, clavate; antennomere III curved, slightly sinuate. Antennal formula based on antennomere III: scape=0.85; II=0.29; III=1; IV=0.76; V=0.72; VI=0.65; VII=0.63; VIII=0.5; IX=0.53; X=0.47; XI=0.48.

Pronotum roughly subcylindrical, slightly narrower at base, transverse, about 1.4 times as wide as long, sides irregular, with a small, acute protuberance each side behind middle (Fig. 6d); disk with median, oval, glabrous region at basal half.

Scutellum transverse, apex rounded; outer margins fringed with whitish pubescence, central 1/2 glabrous.

Elytra about 2 times as long as at humeri (Fig. 6a), about 3.3 times as long as pronotal length, about 1.25 times broader basally than pronotum at widest (at base); lateral margins nearly straight, gradually rounded to apices at apical 1/3, apices jointly rounded; base of each elytron with a feeble gibbosity; basal 1/3 of elytra with moderate to dense punctation, surface granulate-punctate; humeri slightly prominent, anterior margin arcuate, angle with small, obtuse tubercle.

Venter with procoxae large, globose, not uncate; narrowest area of prosternal process each side behind middle (Fig. 6d); disk with median, oval, glabrous cavity at basal half.

Legs short in length; pro- and mesofemora robust; metafemora clavate apically; tibiae expanded apically; metafemora about 1/4 as long as elytra.

Female. Length 12.0–14.0 mm (measured from vertex to elytral apices), width 4.0–4.5 mm (measured across humeri). Similar to male except antennae shorter, surpassing elytral apex at antennomere X; fifth sternite about 3 times as long as IV, with a median triangular impression.

Type Material. Holotype, male (Fig. 6a, c–d), “Piste de Belizor, pk 24, 19 septembre 1992, Guyane, piégeage lumineux, Michel Duranton leg.” (MNHN). Allotype, female (Fig. 6b), “Brazil: Amazonas, Rio Taruma Mirim, 20 km nw Manaos, 02Mar979, 02°53’S 060°07’W; Black water inundation forest canopy fogged with Pyrethrum sample #44; Montgomery, Irwin, Schimmel, Krischik, Date, Bacon colls.”
Figure 6. Trestoncideres santossilvai, sp. nov. a) Holotype male, dorsal habitus. b) Allotype female, lateral habitus. c) Holotype male, close-up of head. d) Holotype male, close-up of pronotum.
New Onciderini from Central and South America

Insecta Mundi 0231, April 2012 • 17

...Insecta MundI...

17

Etymology. We take pleasure in naming this species in honor of Antonio Santos-Silva, for his friendship, collaboration, and many contributions to the study of Neotropical Cerambycidae and Disteniidae. The epithet is a noun in the genitive case.

Diagnosis and Remarks. This species is distinguished from its congeners by the combination of the following characters: antennae, pronotum, and elytra with whitish and gold pubescence; pronotum with a small, acute protuberance each side behind middle; scutellum glabrous except for outer margins, which are fringed with whitish pubescence; and apical 1/3 of elytra slightly darker than basal 2/3. In addition, T. santossilvai can be distinguished from its congeners by the lateral margins of the metasterna not with dense white pubescence (in T. albiventris and T. lateralis, the dense white pubescence extends to the lateral margins of the metasterna, contiguous with metepisterna); outermost margin of metepisternum with dark brown and gold pubescence. Trestoncideres santossilvai, sp. nov. is described from 11 specimens: six males and five females. Nothing is known about the habitat and behavior of this species; however, all specimens from French Guiana were collected at light and the specimen from Brazil was collected by canopy fogging with pyrethrum.

Taxonomic Notes

Clavidesmus Dillon and Dillon, 1946: 293 (Lamiinae: Onciderini)
(Figures 7a–i)

Clavidesmus Dillon and Dillon, 1946: 293. Type species: Eudesmus heterocerus Buquet, 1852.
= Orteguaza Lane, 1958: 10 (Lamiinae: Apomecynini). Type species: Orteguaza lichenigera Lane, 1958, by original designation, new synonymy.

Discussion. Lane (1958) described the genus Orteguaza and included two species: O. funeraria (Fig. 7c) and O. lichenigera (Fig. 7f). Examination of the holotype specimens of O. funeraria and O. lichenigera, as well as the type specimens of all described species of Clavidesmus Dillon and Dillon [C. chicae Giorgi, 1998 (Fig. 7a); C. columbianus Breuning, 1961 (Fig. 7b); C. heterocerus (Buquet, 1852) (Fig. 7d); C. indistinctus Dillon and Dillon, 1952 (Fig. 7e); C. metallicus (Thomson, 1868) (Fig. 7g); C. monnei Giorgi, 1998 (Fig. 7h); and C. rubigineus Dillon and Dillon, 1949 (Fig. 7i)] revealed are no characters to separate the two genera. Based on close morphological similarities, Orteguaza is here synonymized with Clavidesmus, creating two new combinations, Clavidesmus funerarius (Lane, 1958) and Clavidesmus lichenigerus (Lane, 1958). The known range of Clavidesmus is extended to Central America (Costa Rica, Honduras, Nicaragua, and Panama). We believe the genus Clavidesmus is over-split and in need of a taxonomic revision.

Ischiocentra Thomson, 1861: 382 (Lamiinae: Onciderini)

Ischiocentra Thomson, 1861: 382. Type species: Ischiocentra clavata Thomson, 1861.

Discussion. Rodrigues and Mermudes (2011) described Peritrox insulatus from a single female specimen collected on “Ilha Grande,” Rio de Janeiro, Brazil. Nearns et al. (2011) provided color photographs of...
Figure 7. Nine species of Clavidesmus Dillon and Dillon, dorsal habitus.
b) C. columbianus Breuning, 1961, holotype female.
c) C. funerarius (Lane, 1958), holotype female.
d) C. heterocerus (Buquet, 1852), holotype male.
e) C. indistinctus Dillon and Dillon, 1952, holotype female.
f) C. lichenigerus (Lane, 1958), holotype female.
g) C. metallicus (Thomson, 1868), holotype female.
h) C. monnei Giorgi, 1998, holotype male.
i) C. rubigineus Dillon and Dillon, 1949, holotype female.
three type specimens of the genus *Peritrox*. Based on examination of the holotype specimen of the type species of the genus (*Peritrox denticollis* Bates, 1865; deposited at the MNHN); and photographs of the type specimens of *Peritrox nigromaculata* Aurivillius, 1920; *Peritrox perbra* Dillon and Dillon, 1945; and *Peritrox vermiculatus* Dillon and Dillon, 1945; the genus *Peritrox* possesses the following characters: eyes large, oblong; frons elongate, about as wide as 1 1/2 lower eye lobe widths; genae distinctly shorter than lower eye lobes, about 1/3 as tall; antennal tubercles armed with short, blunt horn; antennal tubercles narrowly separated, contiguous at base; scape gradually expanded to apex (e.g. Fig. 2a-d).

The three views of the holotype specimen (dorsal habitus, lateral habitus, and close-up of head) provided by Rodrigues and Mermudes (2011) indicate the eyes of *P. insulatus* are moderately large; frons approximately subquadrate, about as wide as 2 1/2 lower eye lobe widths; genae a little shorter than lower eye lobes, about 3/4 as tall; antennal tubercles unarmed, moderately separated, not contiguous at base; scape clavate, not gradually expanded to apex.

Based on these morphological differences, the specimen described by Rodrigues and Mermudes (2011) conforms more closely to characteristics of the genus *Ischiocentra* Thomson, known from Brazil, Colombia, Costa Rica, Panama, and Venezuela. Therefore, we propose the new combination *Ischiocentra insulata* (Rodrigues and Mermudes, 2011).

Jamesia Jekel, 1861: 259 (Lamiinae: Onciderini)
(Figures 8a–d)

Jamesia Jekel, 1861: 259. Type species: *Lamia globifera* Fabricius, 1801.
= *Paracytemnestra* Breuning, 1974: 239. Type species: *Paracytemnestra gigantea* Breuning, 1974, by monotypy and original designation, new synonymy.

Discussion. Fisher (1926) described *Jamesia lineata* (Fig. 8a, c) from a single female specimen from St. Lucia, Lesser Antilles (holotype deposited at USNM). Breuning (1974) described *Paracytemnestra gigantea* from a single female specimen from the Antilles. Tavakilian (1997) studied both holotype specimens, synonymized *P. gigantea* and proposed the new combination *Paracytemnestra lineata* (Fisher, 1926). Reexamination of both holotype specimens, as well as dozens of specimens of all described species of *Jamesia*, revealed that both genera share several diagnostic morphological characters: frons elongate, narrow, about as wide as width of one lower eye lobe; frons surface roughly sculptured; eyes with lower lobes oblong; genae about as tall or slightly shorter than lower eye lobes; antennal tubercles narrowly separated, contiguous at base; scape gradually expanded to apex; pronotum transverse, roughly conical, narrower anteriorly (e.g., Fig. 1a-d, 8b, d). Based on these morphological similarities, we propose that *Jamesia lineata* Fisher, 1926 be restored to original combination, and *Paracytemnestra* Breuning becomes a new synonym of *Jamesia* Jekel.

Malthonea Thomson, 1864: 329 (Lamiinae: Desmiphorini)
(Figures 9a–d)

= *Calliphenges* Waterhouse, 1880: 296 (Colobotheini). Type species: *Calliphenges cuprascens* Waterhouse, 1880, by monotypy, new synonymy.

Discussion. The monotypic genus *Calliphenges* was described by Waterhouse (1880) and placed in Colobotheini. Examination of the holotype specimen of *Calliphenges cuprascens* Waterhouse, 1880 (collected at Chiguinda, Ecuador and deposited at the BMNH) (Fig. 9a-d) revealed no characters to distinguish it from the genus *Malthonea*. Martins and Galileo (1995) reviewed the genus *Malthonea*, providing diagnostic morphological characters and a key to species. *Calliphenges cuprascens* is here transferred to *Malthonea*, creating the new combination *Malthonea cuprascens* (Waterhouse, 1880), and *Calliphenges* Waterhouse becomes a new synonym of *Malthonea* Thomson.
Figure 8. Two species of *Jamesia* Jekel, 1861.

a) *J. lineata* Fisher, 1926, holotype female, dorsal habitus with original labels.

b) *J. globifera* Jekel, 1861, female, dorsal habitus.

c) *J. lineata* Fisher, 1926, holotype, close-up of head.

d) *J. globifera* Jekel, 1861, female, close-up of head.
Figure 9. *Malthonea cuprascens* (Waterhouse, 1880), holotype. a) Dorsal habitus. b) Lateral habitus with original labels. c) Close-up of head. d) Close-up of pronotum
New Distribution Records in Cerambycidae

Ataxia hovorei Lingafelter and Nearns, 2007 (Lamiinae: Pteropliini) is recorded from Haiti, **new country record**. One male specimen (MNHN), “Haiti, ex. museo E. Sallé, 1897, coll. A. Sallé, Museum-Paris.” This species was previously believed to be endemic to Dominican Republic (Lingafelter and Nearns 2007; Monné and Bezark 2011).

Carterica soror Belon, 1896 (Lamiinae: Colobotheini) is recorded from Ecuador, **new country record**. One specimen (BMNH), “Ecuador: Pichincha, Nambillo Valley near Mindo, 1450m., 13.viii.1987, M. Cooper.” This species was previously recorded from Bolivia and Peru (Monné 2005b; Monné and Bezark 2011).

Colobothea lunulata Lucas, 1859 (Lamiinae: Colobotheini) is recorded from Colombia, **new country record**. One female specimen (BMNH), “Colombia: Meta, La Macarena, 15.3.76, M. Cooper.” This species was previously recorded from Bolivia, Brazil, Ecuador, and Peru (Monné 2005b; Monné and Bezark 2011).

Curius punctatus (Fisher, 1932) (Cerambycinae: Curiini) is recorded from Haiti, **new country record**. One female specimen (MNHN), “Haiti, Gonaïves.” This species was previously believed to be endemic to Cuba (Monné 2005a; Monné and Bezark 2011).

Cyclopeplus lacordairei Thomson, 1868 (Lamiinae: Anisocerini) is recorded from Colombia, **new country record**. One female specimen (BMNH), “Colombia: Amazonas, Tarapaca, 1/10/76, M. Cooper.” This species was previously recorded from Bolivia, Ecuador, French Guiana, and Peru (Monné 2005b; Monné and Bezark 2011).

Iarucanga mimica (Bates, 1866) (Lamiinae: Hemilophini) is recorded from Ecuador, **new country record**. One specimen (BMNH), “Ecuador: Morona-Santiago, Cord. de Cutucu 6K. e. of Macas, 1,100m, 12.v.1981, M. Cooper.” This species was previously recorded from Bolivia, Brazil, and French Guiana (Monné 2005b; Monné and Bezark 2011).

Pirangoclytus latithorax (Martins and Galileo, 2008) (Cerambycinae: Clytini) is recorded from Costa Rica, **new country record**. One specimen (BMNH) “Costa Rica: Guanacaste, Golfito, iii, M. Cooper.” This species was previously believed to be endemic to Panama (Monné and Bezark 2011).

Porangonycha princeps (Bates, 1872) (Lamiinae: Hemilophini) is recorded from Colombia, **new country record**. One specimen (BMNH), “Colombia: Nariño, Barbarcoas, 40m, 7.X.1990, M. Cooper.” This species was previously recorded from Bolivia, Costa Rica, Ecuador, French Guiana, Nicaragua, and Peru (Monné and Bezark 2011; Monné et al. 2012).

Trestonia lateapicata Martins and Galileo, 2010 (Lamiinae: Onciderini) is recorded from Brazil, **new country record**. One male specimen (MNHN), “Brésil, Ét. de Goyaz, Jatahy, Museum Paris, Coll. E. Gounelle 1915.” This species was previously known from Bolivia (Monné and Bezark 2011).

Tulcus dimidiatus (Bates, 1865) (Lamiinae: Onciderini) is recorded from Colombia, **new country record**. One female specimen (MNHN), “S.E. Columbia, Putumayo Superior, Muséum Paris 1932 Col. R. Oberthur.” This species was previously known from Brazil and Ecuador (Monné 2005b; Monné and Bezark 2011).

Unaporanga cincta Martins and Galileo, 2007 (Lamiinae: Hemilophini) is recorded from Colombia, **new country record**. One male specimen (BMNH), “Colombia: Nariño, Barbarcoas, 40m, 20.iv.1993, M. Cooper.” This species was previously recorded from Panama (Monné and Bezark 2011).
Zeale dubia Galileo and Martins, 1997 (Lamiinae: Hemilophini) is recorded from Colombia, new country record. One specimen (BMNH), “Colombia: Putamayo, Mocoa, 580m. 5.4.76, M. Cooper.” This species was previously recorded from Bolivia (Monné 2005b; Monné and Bezark 2011).

Zonotylus interruptus (Olivier, 1790) (Cerambycinae: Trachyderini) is recorded from Colombia, new country record. One specimen (BMNH), “Colombia: Amazonas, Leticia, 24.8.74, M. Cooper.” This species was previously recorded from Brazil and French Guiana (Monné 2005a; Monné and Bezark 2011; Morvan and Morati 2011: 39, fig. 108).

Acknowledgments

We greatly appreciate the loan of specimens and assistance from Ian P. Swift (ISPC), Steven W. Lingafelter (Systematic Entomology Lab, USNM), James E. Wappes (ACMS), Miguel A. Monné and Marcela L. Monné (MNRJ), Ubirajara R. Martins and Antonio Santos-Silva (MZSP), Thierry Deuve and Azadeh Taghavian (MNHN), Sharon Shute, Max Barclay, and Roger Booth (BMNH), Michael C. Thomas and Paul E. Skelley (FSCA), Stewart B. Peck (Ottawa, Canada), Larry G. Bezark (Sacramento, CA, USA), Gerardo Lamas and Sarah C. Carbonel Carril (MUSM), Alvaro Herrera and Angel Solis (INBC), Damir Kovac and Andrea Hastenflug-Vesmanis (SMFD), Maria Helena M. Galileo (MCNZ), Bert Viklund (NHRNS), Johannes Frisch (ZMHB), Alexey Solodovnikov (ZMUC), David Furth (USNM), Michael Balke (ZMSC), Dilma Solange Napp (Universidade Federal do Paraná, Curitiba, Brazil), Adriano Giorgi (Universidade Federal Rural de Pernambuco, Recife, Brazil), Jose Ricardo M. Mermudes (Universidade Federal do Rio de Janeiro, Brazil), Robert L. Davidson (CMNH), E. Richard Hoebeke (CUIC), Eva Sprecher and Isabelle Zürcher-Pfander (NMBA), Alain Drumont and Pol Limbourg (ISNB), Stewart B. Peck (Ottawa, Canada), Pierre-Henri Dalens (PHDC), Jean-Louis Giuglaris (JLGC), José R. Esteban Duran (Madrid, Spain), and Denis Faure (DFPC). We are especially grateful to the late Frank T. Hovore for loan of material from Ecuador. For assistance with specimen photography, we thank Nathan P. Lord (University of New Mexico, NM, USA), Rolando Ramírez Campos (RRCC) and the late Pierre Buirette. Miguel A. Monné (MNRJ), Antonio Santos-Silva (MZSP), Alicia M. Hodson (University of New Mexico, NM, USA), and Paul E. Skelley (FSCA) provided helpful comments to a previous version of this manuscript. For funding and support of this research we thank Terrence W. Walters and Amanda J. Redford (U.S. Department of Agriculture / Animal and Plant Health Inspection Service), Kelly B. Miller and Nathan P. Lord (University of New Mexico, NM, USA).

Literature Cited

Received March 7, 2012; Accepted March 13, 2012.