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Abstract To explore the roles of plasticity and genetic
variation in the response to spatial and temporal climate
variation, we established a common garden consisting of
paired collections of native and introduced riparian trees
sampled along a latitudinal gradient. The garden in Fort
Collins, Colorado (latitude 40.6°N), included 681 native
plains cottonwood (Populus deltoides subsp. monilifera)
and introduced saltcedar (Tamarix ramosissima, T. chinensis
and hybrids) collected from 15 sites at 29.2–47.6°N in the
central United States. In the common garden both species
showed latitudinal variation in fall, but not spring, leaf
phenology, suggesting that the latitudinal gradient in fall
phenology observed in the field results at least in part from
inherited variation in the critical photoperiod, while the
latitudinal gradient in spring phenology observed in the
field is largely a plastic response to the temperature
gradient. Populations from higher latitudes exhibited earlier
bud set and leaf senescence. Cold hardiness varied
latitudinally in both fall and spring for both species. For
cottonwood, cold hardiness began earlier and ended later in
northern than in southern populations. For saltcedar
northern populations were hardier throughout the cold
season than southern populations. Although cottonwood
was hardier than saltcedar in midwinter, the reverse was
true in late fall and early spring. The latitudinal variation in
fall phenology and cold hardiness of saltcedar appears to
have developed as a result of multiple introductions of

genetically distinct populations, hybridization and natural
selection in the 150 years since introduction.

Keywords Cold hardiness . Latitude . Phenology . Rapid
evolution .Populus deltoides . Tamarix

Introduction

For perennial plants in temperate climates, the seasonal
timing of the onset and cessation of growth reflects an
evolutionary compromise between avoiding frost damage
and maximizing growth (Ying and Bagley 1976; Rehfeldt et
al. 1999; Howe et al. 2003). This compromise is typically
studied in terms of leaf phenology, which is easily
observed, without accompanying measurements of seasonal
variation in cold hardiness, which are relatively laborious.
Measurements of cold hardiness are ecologically important,
however, because they directly relate temperature to
survival. Cold hardiness varies over time (Tsarouhas et al.
2001), within individual plants (Sakai and Larcher 1987),
within populations (Chen et al. 2002), between populations
(Repo et al. 2000) and between species (Sakai and Weiser
1973; George et al. 1974), and this variation is not always
correlated with variation in leaf phenology (Cannell and
Sheppard 1982). Simultaneous measurements of seasonal
variation in leaf development and cold hardiness quantify
the compromise between maximizing growth and survival
and allowing exploration of the extent to which these
contemporaneous processes are physiologically coupled
(Cannell and Sheppard 1982; Repo et al. 2000).

Because of the latitudinal gradient in temperature, wide-
ranging species often display latitudinal gradients in
phenology. Increasing latitude is typically associated with
later leaf flush and flowering and earlier growth cessation,
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leaf senescence and onset of cold hardiness (Sakai 1970;
Zhang et al. 2004; Borchert et al. 2005). Latitudinal
gradients in phenology reflect both genetic variation and a
plastic response to the climatic gradient, and common-
garden studies can be used to determine the relative
importance of these factors (Turesson 1930; Colautti et al.
2009). If phenological variation persists when plants from
different latitudes are grown together, then the variation
observed in the wild has a genetic component.

The environmental cues controlling leaf development in
temperate-zone trees suggest that latitudinal phenological
gradients should have a weaker genetic component in the
spring than in the fall. Leaf flush in most temperate trees is
controlled largely by temperature variation (Pauley and
Perry 1954; McMillan 1957; Perry 1971). More specifical-
ly, leaf and flower buds open after experiencing critical
amounts of chilling and then warming (Arora et al. 2003;
but see Linkosalo and Lechowicz 2006). These cues allow
a plastic response to climatic variation. For example, in a
warm year or location, the threshold of warming will be
passed earlier and leaf flush and flowering will occur
earlier. Therefore, although genetic variation in spring leaf
phenology is common (Farmer 1993), variation in climate
over time or latitude does not automatically require
evolution of corresponding genetic variation in spring leaf
phenology.

In contrast, fall phenology is strongly influenced by
light. Growth cessation is triggered in part by reduction of
day length below a critical photoperiod (Pauley and Perry
1954; Wareing 1956). Between the summer solstice and the
fall equinox, a given day length occurs on a later calendar
date at higher latitudes. If all individuals of a species had
the same critical photoperiod, growth cessation would be
later at higher latitudes, the opposite of the trend observed.
In order for growth cessation to be earlier at higher latitudes
a strong inherited latitudinal gradient in the critical
photoperiod is required (Pauley and Perry 1954; Viherä-
Aarnio et al. 2005). Although plasticity in fall leaf
phenology has been reported in response to variation in
temperature, and availability of water and nutrients (Arora
et al. 2003; Vitasse et al. 2010) the photoperiodic cue is not
plastic. A plant population moved to a new latitude or
exposed to a shift in climate must evolve a corresponding
shift in the critical photoperiod.

Plastic response to change in climate occurs within the
life span of an individual. Genetic changes in populations
can take many generations. Can such genetic changes occur
rapidly enough to respond to human-induced climate
change? One way to explore the potential rate of response
of organisms to climate change is to study the response of
recently introduced species to a novel climate. If physio-
logical control of phenology cannot evolve at the century
time scale, then (1) native species must depend upon

plasticity and migration to respond to human-induced
climate alteration (Saxe et al. 2001; Jump and Peñuelas
2005), and (2) recently introduced species are limited to the
same responses to deal with spatial climate variation in the
introduced range. On the other hand, if these controls can
evolve at the century time scale then (1) evolution of
phenology can be part of the response of plants to climate
change (Franks et al. 2007), and (2) introduced species may
rapidly evolve latitudinal genetic variation in phenology
similar to that displayed by native species. This possibility
is supported by discovery of clinal variation in several
introduced species (Weber and Schmid 1998; Colautti et al.
2009). To attribute clinal variation in an introduced species
to natural selection, it is necessary to disprove the null
hypothesis that this variation was produced by multiple
introductions of genetically distinct populations without
subsequent natural selection (Maron et al. 2004).

We examined phenology and cold hardiness in a
common garden consisting of paired collections of a native
and an introduced species. The selected species were
cottonwood and saltcedar, riparian pioneer trees that
compete for dominance along rivers throughout most of
the western United States (Friedman et al. 2005). The
eastern cottonwood (Populus deltoides Bartram ex Marsh.)
is a large, fast-growing riparian tree of North America
(USDA 2009) displaying strong latitudinal variation in leaf
phenology and cold hardiness (Kaszkurewicz and Fogg
1967; Ying and Bagley 1976). P. deltoides is known to be
cold hardy in winter; dormant buds and stems can survive
chilling to −80°C (Sakai and Weiser 1973). In summer,
however, P. deltoides can be killed by temperatures of −3 to
−5°C (Tsarouhas et al. 2001). Inherited variation in cold
hardiness among individual plants is greater in the spring
and fall than in the summer and winter (Tsarouhas et al.
2001). We limited our study to plains cottonwood (Populus
deltoides ssp. monilifera (Aiton) Eckenwalder), the domi-
nant riparian tree of the western Great Plains, ranging from
northern Texas to southern Manitoba, Saskatchewan, and
Alberta at latitude 30–55°N and longitude 96–114°W (Van
Haverbeke 1990; Friedman et al. 2005; USDA 2009). The
large latitudinal range, the absence of barriers to gene flow
(Friedman et al. 2008), and the simple climatic gradient,
uncomplicated by mountains or coastal influences, make
plains cottonwood ideal for the study of latitudinal variation
in leaf phenology and cold hardiness.

Riparian shrubs of the genus Tamarix were introduced to
North America in the mid-1800s as ornamental plants and
for erosion control (Robinson 1965). Although there are
now several Tamarix species in the United States, T.
chinensis Lour. and T. ramosissima Ledeb. are by far the
most abundant (Gaskin and Kazmer 2009). T. chinensis is
native to China, Korea, and Japan at latitude 23–42°N and
longitude 79–110°E, whereas T. ramosissima occurs more
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widely across temperate Asia at latitude 30–53°N and
longitude 42–127°E (Baum 1978). Although these two
species are morphologically and genetically distinct in Asia
(Baum 1978), the North American population is dominated
by their hybrids (Gaskin and Kazmer 2009). Analysis of
microsatellites and amplified fragment length polymor-
phisms along the latitudinal gradient in North America
shows that genetic variation within populations is large
relative to that between populations, and reveals a gradual
genetic gradient with individuals more like T. chinensis in
the south and individuals more like T. ramosissima in the
north (Friedman et al. 2008; Gaskin and Kazmer 2009). We
refer to the complex of T. ramosissima, T. chinensis, and
their hybrids as saltcedar.

Saltcedar is now the second most abundant riparian
woody plant in the interior western United States (Friedman
et al. 2005). Because replacement of native cottonwood-
willow (Populus-Salix) communities by saltcedar can be
associated with degradation of habitat for vertebrates and
increased water loss from evapotranspiration, there is
intense interest in controlling its spread (Shafroth et al.
2005). In the United States north of about 39ºN latitude
saltcedar is relatively scarce (Friedman et al. 2005),
suggesting that cold sensitivity may limit northward
expansion. A comparison of latitudinal gradients in cold
hardiness and phenology in cottonwood and saltcedar is
valuable for two reasons. First, it makes it possible to
explore whether differences in cold hardiness could explain
the apparent inferior competitive ability of saltcedar in the
north. This information would help to assess the potential
for spread of this major invasive species both in the present
climate and in response to climate warming. Second,
comparing latitudinal variation in the native and introduced
species explores whether patterns of clinal variation typical
of native species can rapidly evolve in introduced species.

We planted a common garden of paired samples of native
cottonwood and introduced saltcedar collected along a
latitudinal gradient in the central United States. The
feasibility of this approach was demonstrated in a pilot
study using limited observations of potted plants grown in a
shade house for one winter with no contemporaneous
observations of leaf phenology (Friedman et al. 2008).
The earlier study suggested the existence of latitudinal
genetic variation in cold hardiness for both species. In the
present study, we sought to verify the existence of this
genetic variation and to quantify it in relation to variation in
leaf phenology by making intensive observations over three
winters of trees planted outdoors.

Hypotheses

First, the timing of terminal bud formation and leaf
senescence is strongly correlated with the onset of cold

hardiness in the fall, and the timing of leaf flush is strongly
correlated with the relaxation of cold hardiness in the
spring. Second, there is stronger inherited latitudinal
variation in cold hardiness and leaf phenology in fall than
in spring. Third, there is inherited latitudinal variation in
leaf phenology and cold hardiness in the native cottonwood,
but not in the introduced saltcedar. Fourth, cottonwood has
greater cold hardiness than saltcedar.

Materials and methods

Common garden

In February and March of 2005, we collected plains
cottonwood and saltcedar as cuttings from 15 sites
distributed along a latitudinal gradient from 29.2 to
47.6ºN in the central United States (Online Resource 1).
Sample collection and propagation are described by Friedman
et al. (2008). On August 16, 2005 we planted rooted cuttings
in a common garden at the Colorado State Nursery in Fort
Collins at latitude 40.58°N and longitude 105.14°W. The
garden contained 313 cottonwoods and 368 saltcedars
planted in a clay loam soil in a random design without
blocks, with a spacing of 1.5 m north-south and 3.0 m east-
west. Replicates of planted individuals were held over the
winter of 2005–2006 and used to replace 90 individuals in
the garden that were dead by June 1, 2006. We used a
sprinkler system to irrigate the garden when necessary to
prevent drought stress until the end of May 2008. We
eliminated competition from grasses and herbs using weed
barrier, mowing, and occasional application of the herbicide
glyphosate (Roundup®, Monsanto Corporation, St. Louis,
Missouri). We reduced herbivory from deer by fencing and
application of deer repellent. Damage from insects and leaf
rust was minimal. By summer of 2008 plants were 0.5–3 m
tall, with a multi-branched shrub form. The cottonwoods
were not mature enough to flower. All saltcedar flowers were
removed to prevent formation of viable, hybrid seeds.

Climate data

To characterize temperature variation at the common garden
we used daily low temperature data for the period 1 April
2005–20 June 2008 from the Christman Field Weather
Station located 1 km from the common garden and operated
by the Colorado Climate Center, Colorado State University.
To characterize temperature variation at the 15 collection
sites we used the DAYMET interpolated daily low
temperature series for the period 1980–2003 gridded at 1-km
resolution (Thornton et al. 1997; http://www.daymet.org). We
used latitude of the sample collection sites as a surrogate for
the climatic gradient. Latitude was well correlated with both
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mean annual extreme minimum temperature (r2=0.98) and
mean annual number of frost-free days (r2=0.85, Online
Resource 2).

Leaf and flower phenology

A single observer made weekly phenological observations of
all individuals in the common garden in 2006, 2007, and
2008. We observed the date of leaf flush of both species in the
spring of 2007 and 2008, the date of first flowering for
saltcedar in 2007 and 2008, the date of cottonwood terminal
bud formation in the fall of all three years, and the date of leaf
senescence of both species in fall 2007. We defined the date of
leaf flush as the first date on which individual leaves were
visible on a plant. We defined the date of first flowering of
saltcedar as the first date on which flower buds had opened
enough that the pink or white color of the enclosed petals was
visible. We defined cottonwood bud formation date as the first
date on which more than 50% of the stems on a plant had a
terminal bud at least partially formed. We defined the leaf
senescence date as the first date on which more than 50% of
the leaves on a plant had dropped or turned yellow.

Cold hardiness

We measured variation in cold hardiness of plant stems
through time, within populations, between latitudes and
between species. We used three sampling strategies to
explore this variation—a temporally intensive sample, a
spatially intensive sample, and a highly replicated sample.
The temporally intensive sample characterized temporal
variation in cold hardiness of northern and southern
saltcedar and cottonwood. Every week from 21 August to
6 November 2007, and from 12 February to 3 June 2008,
we collected 40 cm of stem material from each of ten
randomly selected individuals from each of four species-
latitude combinations in the common garden: cottonwood
and saltcedar from latitudes 34.9 and 47.6°N. These two
latitudes were selected because they were the most northern
and southern latitudes with abundant individuals of both
species (Online Resource 1). We cut the 40-cm stem length
from each individual into seven 5-cm stem pieces (2 species ×
2 latitudes × 10 individuals × 7 pieces=280 pieces each
sample day) for cold-hardiness testing.

The spatially intensive sample examined cold hardiness of
saltcedar and cottonwood from all available latitudes of origin
on nine different days from fall 2006 to spring 2007. On each
sample day we collected 40 cm of stem material from each of
ten randomly selected individuals from 27 of the 28 species-
latitude combinations in the common garden (Online Re-
source 1). A new random sample of individuals was selected
on each sample day. Cottonwood from latitude 46.5 was
excluded because that latitude had insufficient stem material

for these cold hardiness tests. We cut the 40-cm stem length
from each individual into seven 5-cm stem pieces (27
species-latitude combinations × 10 individuals × 7 pieces=
1,890 pieces each sample day) for cold-hardiness testing.

The highly replicated sample compared variation in cold
hardiness of saltcedar and cottonwood in the common
garden, within and between latitudes of origin on five
different days in 2007 and 2008. On each sample day we
collected 400 cm of stem material from a total of 24–28
individuals from two to eight latitudes. We cut the 400-cm
stem length from each individual into seventy 5-cm stem
pieces for cold-hardiness testing.

For all three sampling strategies we measured cold
hardiness of stems less than 1 year old and between 4 and
9 mm in diameter. We cut stems into 5-cm pieces, removed
all leaves, placed pieces vertically in random order in wire
racks with 1-cm spacing and, no more than 8 hours after
collection, placed the wire racks in a programmable
temperature chamber (Test Equity Model 115, Thousand
Oaks, CA). The temperature in the chamber followed the
same sequence for all cold hardiness tests. Beginning at
room temperature (about 24°C), it decreased to −4°C in 15
minutes. After holding at −4°C overnight (13–18 hours) the
temperature decreased 5°C per hour before reaching the
coldest possible setting in the chamber (−70°C). The
temperature remained at −70°C overnight (10–13 hours).
We removed racks from the chamber at six different
temperatures, which varied seasonally depending upon the
expected killing temperatures of the twigs. After removing
racks from the freezer, we placed them in a refrigerator (4°C).
A seventh set of racks, the control, remained in the refrigerator
throughout the cold treatment. Two hours after placing the last
racks in the refrigerator, we moved all racks to trays of water
1–2 cm deep at room temperature. We changed the water in
the trays daily to prevent spread of fungi. After 12–16 days,
we determined survival of pieces by visual observation
(Calkins and Swanson 1990; Friedman et al. 2008). Live
samples had bright green inner bark and were moist
throughout. Dead samples had brown-green inner bark and
were dry at the top. In comparison to other methods such as
electrolyte leakage and chlorophyll fluorescence, visual
observation of survival has the important advantage of
allowing direct comparisons between seasons and between
species (Calkins and Swanson 1990; Friedman et al. 2008).
A disadvantage of this method is that a single categorical
observation (dead or alive) contains less information than a
quantitative observation. We addressed this limitation by
using a large sample size.

Statistical analysis

We calculated the Pearson correlation matrix of all pairwise
comparisons between phenological characters using the
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values of each phenological character for each individual in
each year. In the correlation matrix, we included killing
temperatures of individual plants from the five highly
replicated cold hardiness samples.

We used logistic regression to estimate probability of
dying as a function of temperature, latitude of origin, and
species where the dependent response variable was 1 for
twigs that died and 0 for twigs that survived. We defined the
killing temperature (LT50) as the temperature at which the
probability of dying exceeded 0.50 (Friedman et al.
2008): LT50 ¼ �b̂0=b̂1, where b̂0was the estimated intercept
and b̂1was the estimated temperature effect in the logistic
regression (Venables and Ripley 1999, p. 221).

To estimate LT50s by week for each species and latitude
in the temporally intensive sample, we performed logistic
regressions with fixed effects for temperature (seven
levels), species (two categories), and latitude of origin
(two categories), including necessary interactions among
temperature, species, and latitude to allow separate logistic
survival functions (intercepts and slopes) for each species
and latitude combination. We estimated confidence intervals
(95%) on LT50s by simulating parameter estimates 10,000
times from the multivariate normal sample distribution with
parameters specified by the estimated variance/covariance
matrix of the model, computing the LT50 at each
simulation, and then using the 2.5 and 97.5 percentiles of
the distribution of simulated LT50s as our estimates. We
used the sim() function from the arm package (Gelman and
Hill 2007) for R (R Development Core Team 2003) to
perform the necessary simulations. Forty-two of the 116
logistic functions had complete or near complete separation
of dead and surviving twigs by temperature (≤1 temperature
had both dead and live twigs) that produced unusable
variance/covariance matrices for simulations. In order to
calculate a conservative estimate of confidence intervals in
such cases, we found the highest temperature with average
mortality greater than 0.5 and arbitrarily changed one stem
fragment at that temperature from dead to alive, and we
found the lowest temperature with average mortality less
than 0.5 and arbitrarily changed one stem fragment at that
temperature from alive to dead. Because this adjustment
slightly decreased the slope of the relation between
mortality and temperature, it produced slightly inflated
estimates of the confidence intervals for the LT50.

To estimate LT50s by latitude, species, and date in the
spatially intensive sample, we performed logistic regres-
sions using PROC LOGISTIC in SAS® (SAS Institute,
Inc., Cary, NC) as a function of temperature. To determine
the strength and significance of the latitude effect for a
given species on a given date we performed multiple
logistic regressions using PROC LOGISTIC in SAS with
temperature and latitude as the independent variables (fixed
effects).

To estimate LT50s of individual plants in the highly
replicated sample, we performed logistic regressions in-
cluding all individuals of a given species on a given date
using mixed effects models in the lme4 package of R (R
Development Core Team 2003). In these mixed effects
logistic regressions, temperature and latitude entered as
continuous fixed effects and individual plant was a random
effect on the intercept. We determined the proportions of
deviance in the mixed effects logistic regression model
attributable to individual plants and to latitude by compar-
ison to reduced parameter models (with just fixed effects of
temperature, with fixed effects of temperature and random
effects of individuals on intercept, and with fixed effects of
temperature and latitude). We estimated confidence inter-
vals on the estimated LT50s for individual plants based on
simulations as above for the temporally intensive sample.

Results

Leaf and flower phenology

The timing of cottonwood terminal bud formation was
strongly negatively correlated with latitude (Online Re-
source 3 and Table 1). In all three autumns studied (2006–
2008), northern cottonwoods formed their terminal buds
and ceased extension growth before southern cottonwoods
(Online Resource 3). In the years 2006, 2007, and 2008,
cottonwoods from latitude 47.6 formed buds 20 days,
37 days, and 23 days before cottonwoods from latitude
34.9, and the correlations between bud formation date and
latitude were −0.66, −0.84 and −0.73 (Table 1).

The timing of leaf senescence for both species (measured
only in 2007) was also negatively correlated with latitude,
but not as strongly as the timing of cottonwood bud
formation (Tables 1 and 2). Consistent with the latitudinal
effect on bud formation, leaves of northern individuals of
both species became senescent before those of southern
individuals (Online Resource 3). The time difference
between leaf senescence at latitudes 34.9 and 47.6°N was
larger in cottonwood (21 days) than in saltcedar (10 days),
and the correlation between latitude and leaf senescence
date was stronger in cottonwood (−0.58) than in saltcedar
(−0.37) (Tables 1 and 2). For latitude 47.6°N, saltcedar
leaves became senescent 1 day before those of cottonwood,
but for latitude 34.9°N leaves of saltcedar became senescent
12 days before those of cottonwood (Online Resource 3).

The timing of spring leaf flush was not correlated with
latitude in cottonwood and weakly and inconsistently
correlated with latitude in saltcedar (Tables 1 and 2).
However, the date of leaf flush in 2007 was correlated to
that of 2008 for both species (Tables 1 and 2), indicating
that individuals that were late in 2007 tended to be late in
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2008 as well. Leaf flush occurred earlier in saltcedar than in
cottonwood by 22 days in 2007 and 21 days in 2008. Leaf
flush of both species occurred about 2 weeks later in 2008
than in 2007 (Online Resource 3). Phenological pattern in
the date of first flowering of saltcedar was similar to that in

leaf flush of both species. The date of first flowering of
saltcedar in 2007 and 2008 was unrelated to latitude (Table 2),
but the date of first flowering in 2007 was correlated with that
of 2008 (Table 2), indicating that individuals that flowered late
in 2007 tended to flower late in 2008 as well.

Table 1 Correlation matrix relating observations of phenological
characters and cold hardiness of plains cottonwood individuals in the
common garden, Fort Collins, Colorado. Triplets of values consist of

the Pearson correlation coefficient, r, above the correlation probability,
p, and sample size. Significant correlations (p <0.05) are given in
bold

Character Spring phenology Killing temperature Fall phenology Latitude

Leaf flush Spring Fall Bud formation Leaf senescence

2007 2008 30-Apr-08 18-Sep-07 24-Sep-08 2006 2007 2008 2007

Spring phenology

Leaf flush

2007 1.00 0.46 −0.55 0.002 0.16 −0.07 −0.10 −0.08 0.01 0.09

<.0001 0.006 1.00 0.40 0.26 0.10 0.15 0.80 0.13

302 299 24 14 28 237 296 302 302 302

2008 1.00 −0.06 −0.15 0.33 0.12 0.04 0.10 0.07 −0.06
0.79 0.62 0.09 0.08 0.44 0.10 0.22 0.31

300 24 14 28 235 295 300 300 300

Killing temperature

Spring

30-Apr-08 1.00 0.10 0.09 0.38 0.32 0.11 −0.51
0.72 0.72 0.07 0.13 0.61 0.012

24 2 16 19 24 24 24 24

Fall

18-Sep-07 1.00 0.91 −0.58 0.75 0.80 0.67 −0.80
<.0001 0.13 0.002 0.0006 0.009 0.0005

14 14 8 14 14 14 14

24-Sep-08 1.00 0.44 0.88 0.77 0.83 −0.87
0.05 <.0001 <.0001 <.0001 <.0001

28 21 28 28 28 28

Fall phenology

Bud formation

2006 1.00 0.64 0.50 0.51 −0.66
<.0001 <.0001 <.0001 <.0001

238 237 238 238 238

2007 1.00 0.73 0.55 −0.84
<.0001 <.0001 <.0001

297 297 297 297

2008 1.00 0.58 −0.73
<.0001 <.0001

303 303 303

Leaf senescence

2007 1.00 −0.58
<.0001

303 303

Latitude 1.00

313
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The fall phenological characters, leaf senescence and
cottonwood bud formation, were correlated with latitude
and each other within and between years (Table 1). For
example, individuals that formed buds early in 2006
tended also to drop leaves early in 2007. In contrast,
spring phenological characters, leaf flush and saltcedar
first flowering, were only weakly correlated with latitude
and each other (Table 2). There was little correlation

between fall phenological characters and spring pheno-
logical characters (Tables 1 and 2).

Cold hardiness

Stems of both cottonwood and saltcedar survived colder
temperatures in winter than in summer, but this seasonal cycle
was stronger in cottonwood than in saltcedar (Figs. 1 and 2); as

Table 2 Correlation matrix relating observations of phenological
characters and cold hardiness of saltcedar individuals in the common
garden, Fort Collins, Colorado. Triplets of values consist of the

Pearson correlation coefficient, r, above the correlation probability, p,
and sample size. Significant correlations (p <0.05) are given in bold

Character Spring phenology Killing temperature Fall phenology Latitude

Leaf flush First flower Spring Fall Leaf senescence

2007 2008 2007 2008 12-Mar-08 7-Apr-08 18-Sep-07 2007

Spring phenology

Leaf flush

2007 1.00 0.37 0.09 0.07 0.18 −0.33 0.22 0.12 −0.17
<.0001 0.11 0.26 0.35 0.12 0.45 0.03 0.003

327 324 296 296 28 23 14 327 327

2008 1.00 −0.01 0.19 −0.33 −0.60 −0.21 −0.03 0.13

0.85 0.001 0.09 0.002 0.48 0.59 0.02

333 294 298 28 23 14 333 333

First flower

2007 1.00 0.34 −0.07 0.07 −0.11 0.07 −0.06
<.0001 0.72 0.75 0.74 0.20 0.31

298 277 28 20 12 298 298

2008 1.00 −0.41 0.04 −0.31 −0.08 0.04

0.04 0.89 0.35 0.17 0.55

298 26 18 11 298 298

Killing temperature

Spring

12-Mar-08 1.00 −1 0.13 −0.63
0.50 0.0004

28 0 2 28 28

7-Apr-08 1.00 0.002 −0.69
0.99 0.0003

23 1 23 23

Fall

18-Sep-07 1.00 0.56 −0.82
0.04 0.0004

14 14 14

Fall phenology

Leaf senescence

2007 1.00 −0.37
<.0001

343 343

Latitude 1.00

368
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a result cottonwood was hardier in midwinter, but saltcedar
was hardier in the late spring and early fall. On 21 August

2007, saltcedar from latitudes 34.9 and 47.6°N had killing
temperatures around −13°C, while cottonwood from the same

-60

-40

-20

0

20

K
ill

in
g 

te
m

pe
ra

tu
re

 (
°C

)

< -70 

AUG SEP OCT NOV JAN FEB MAR APR MAY JUNDEC

C
47

.6

C
34

.9

S CC
47

.6

C
34

.9

S
47

.6

S
34

.9

Bud formation Leaf senescence
Leaf flush

C34.9

C47.6

S34.9

S47.6

Daily Min T 

C34.9

C47.6

S34.9

S47.6

Daily Min T 

Fig. 1 Temporal variation in killing temperature (LT50) for twigs of
northern and southern plains cottonwood and saltcedar grown in Fort
Collins, Colorado (latitude 40.6°N) during fall 2007 and spring 2008
(the temporally intensive sample). Northern individuals are from Fort
Peck Reservoir, Montana, latitude 47.6°N and southern individuals are
from Buffalo Lake National Wildlife Refuge, Texas, latitude 34.9°N.
Saltcedar (cottonwood) data are red (blue) labeled S (c). Northern
(southern) populations are indicated by thick (thin) lines. Error bars
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caps in cases where data were adjusted to avoid complete separation.
Error bars are jittered in the x direction to eliminate over-plotting.
Mean values for leaf flush, bud formation and leaf senescence are
shown above the graph. Daily minimum temperature data are from the
Christman Field Weather Station (Colorado Climate Center) about
1 km from the common garden
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latitudes was killed by temperatures around 0°C (Fig. 1). In
autumn, killing temperatures for saltcedar gradually de-
creased, reaching a minimum in mid-winter. Saltcedar from
latitudes 34.9 and 47.6°N survived temperatures of −41°C
and −46°C on 12 February 2008. In contrast, killing
temperatures decreased precipitously for cottonwood. By
mid-October 2007 cottonwood from both 34.9 and 47.6°N
latitude survived −70°C, the coldest temperature attainable in
our temperature chamber. Temperatures of −70°C or warmer
did not kill cottonwood again until April 2008 (Fig. 1).

Both cottonwood and saltcedar demonstrated inherited
latitudinal variation in cold hardiness in the winters of
2007–2008 (Fig. 3 and Table 3) and 2006–2007 (Fig. 2),
confirming conclusions of a pilot study of potted plants
carried out in a nearby shade house in the winter of 2005–
2006 (Friedman et al. 2008). In saltcedar, northern
populations survived colder temperatures than southern
populations throughout the cold season (Figs. 1 and 2). The
difference in killing temperature for the extreme latitudes
on the gradient (29.2 and 47.6°N) reached a maximum of
15–20°C in the spring and fall and decreased to about 10°C
in mid-winter (Fig. 2).

For cottonwood the latitudinal effect was manifested as a
difference in the timing of a critical threshold in fall and
spring. All latitudes had similar killing temperatures in the
summer, underwent a period of rapid cold hardening, and
by mid-winter could survive temperatures colder than any
that occur in the study region. The coldest daily low
temperature in the 24-year record (1980–2003) for the
northernmost site (47.6°N latitude) was −41°C, but all
cottonwoods survived 10–13 hours at −70°C from November
through March in the winters of 2006–2007 and 2007–2008
(Figs. 1 and 2). In both winters the northern populations

hardened off earlier in the fall and emerged from cold
hardiness later in the spring. Temporally intensive sampling
in the winter of 2007–2008 demonstrated that the plants
from a given latitude passed through the threshold in 2 to
3 weeks and that latitudes 34.9 and 47.6°N passed through
the threshold 2 to 3 weeks apart (Fig. 1). Spatially intensive
sampling in the winter of 2006–2007 located the threshold
on three different dates: 26 September 2006, 10 October
2006, and 3 April 2007 (Fig. 2). In contrast to cottonwood,
saltcedar did not display a threshold in the onset or
termination of cold hardiness. Cold hardiness of saltcedar
developed gradually in the fall and subsided gradually in the
spring (Figs. 1 and 2). The magnitude of the latitudinal effect
for saltcedar also changed gradually over time, reaching a
maximum in the fall and spring, but persisting through the
winter (Fig. 2).

In both cottonwood and saltcedar there was variation in
cold hardiness among individuals from the same latitude
that was similar in magnitude to the variation between
latitudes (Fig. 3, Table 3). In mixed effects logistic
regression of the highly replicated samples, models includ-
ing the effects of temperature, latitude, and individual
within latitude always had much lower deviance than
models including temperature alone, and 27–78% of this
reduction in deviance could be attributed to latitude
(Table 3). Individuals from the same latitude collected on
the same day often differed significantly in killing
temperature (Fig. 3). On April 30, 2008, the latitudinal
effect for cottonwood was small (Table 3) because the time
of strongest latitudinal contrast had already passed (Fig. 1).

For cottonwood, bud formation (growth cessation) oc-
curred prior to the beginning of development of cold
hardiness, and leaf senescence occurred after plants could
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Fig. 3 Variation in killing temperature (LT50) within and between
latitudes for twigs of saltcedar (a) on April 7, 2008 and plains
cottonwood (b) on September 24, 2008 (the highly replicated sample).
Each point is an individual plant. The magnitude of the single plotted
error bar is the mean 95% confidence interval for individuals in the

sample: 4.37°C (range 3.72–5.17°C) for saltcedar on 7 April 2008 and
11.05°C (range 9.34–12.52°C) for cottonwood on 24 September 2008,
calculated using mixed effects logistic regression. Results of these and
four other tests are summarized in Table 3
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survive temperatures below −70°C (Fig. 1). For saltcedar, bud
formation was not observable, but leaf senescence occurred
just after the killing temperature had fallen below −20°C. In
fall there was latitudinal variation in cold hardiness of both
species while the leaves were still active (Fig. 1). In contrast,
spring leaf flush in both species coincided with the end of
latitudinal variation in cold hardiness (Fig. 1). Cold hardiness
was strongly correlated with latitude in both the spring and
fall (Table 1), but in the one case where the same individuals
were tested in both spring and fall (16 cottonwoods tested on
both 30 April 2008 and 24 September 2008), spring cold
hardiness was not significantly correlated with fall cold
hardiness (Table 1).

Discussion

Species differences

In mid-winter all plains cottonwoods survived colder
temperatures than occur in the range of this species,
suggesting that exposure to extreme cold in mid-winter is
not an important mortality factor (Sakai and Weiser 1973;
Tsarouhas et al. 2001; Morin et al. 2007). In contrast,
saltcedar, even when completely hardened off, was killed
by temperatures around −40°C, which is within the
temperature range of the northern Great Plains. The
superior cold hardiness of cottonwood over saltcedar was
especially prolonged for plants from northern latitudes,
where cold stress is likely to be most important. At latitude
47.6°N cottonwood was more hardy than saltcedar from
mid-September to early May, while at latitude 34.9°N
cottonwood was more hardy than saltcedar only from mid-
October to early April.

The greater winter cold hardiness of cottonwood relative
to saltcedar is corroborated by other evidence from the

common garden and elsewhere. We observed dispropor-
tionate winter mortality and dieback of southern saltcedar,
but not southern cottonwood, in our common garden
(Online Resource 4) and in a related shade house study
(Friedman et al. 2008). Whereas saltcedar stems grow to
large size and age in the southern United States, northern
stems are smaller and often older below ground than above,
indicating that winter die-back is common in the north
(Lesica and Miles 2001). Finally, although T. ramosissima
occurs in areas of northern China and Mongolia as cold as
our coldest collection sites in northern Montana (Baum
1978), the occurrence of saltcedar in the western United
States is strongly correlated with mild winter temperatures
(Friedman et al. 2005). We conclude that winter cold is a
significant factor influencing distribution of saltcedar in the
United States. Increases in winter low temperatures could
promote northward spread of saltcedar in the future.

Although cottonwood is extremely cold hardy in mid-
winter (Sakai and Weiser 1973) it is less hardy than
saltcedar in the early spring and late fall. In late August
and mid-May cottonwood stems were almost all killed by
13–18 hours at −4°C and unharmed by exposure to 4°C,
which is corroborated by experimental observations of cold
damage on Populus spp. at temperatures between −3°C and
−5°C during the growing season (Tsarouhas et al. 2001).
Although we observed no fall or spring damage to
cottonwood in our common garden, Ying and Bagley
(1976) observed over-winter damage to southern cotton-
woods transplanted northwards and attributed this damage
to fall frost injury resulting from late growth cessation. Leaf
flush in cottonwood coincided with a sharp decrease in cold
hardiness. This sensitivity to cold in spring may explain the
late leaf flush of cottonwood relative to saltcedar. Plains
cottonwood leaf buds from several sites across Nebraska
opened after those of three other dominant trees in the western
Great Plains,Ulmus americana, Fraxinus pennsylvanica, and

Table 3 Variation within and between latitudes in mixed effects
logistic regression models of cold hardiness of cottonwood and
saltcedar (the highly replicated sample). Deviance is given for models
based on temperature alone (T), temperature and latitude (T+L), and
temperature, latitude, and individual within latitude (T+L+I). The full
model (T+L+I) always has reduced deviance compared to the model

with temperature alone (T), and the latitude contribution is the
proportion of that reduction in deviance that can be attributed to
latitude: latitude contribution=[Dev(T) –Dev(T+L)] /[Dev(T)-Dev
(T+L+I)], where Dev(T), Dev(T+L), and Dev(T+L+I) are the
deviances of the three models

Species Date Deviance Latitude contribution

T T+L T+L+I

Cottonwood 18-Sep-07 588.5 419.1 307.2 0.60

30-Apr-08 1123.3 998.1 657.2 0.27

24-Sep-08 1556.5 1115.9 960.5 0.74

Saltcedar 18-Sep-07 480.9 472.5 470.1 0.78

12-Mar-08 1038.5 950.5 814 0.39

7-Apr-08 661.3 561.1 438.8 0.45
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Acer negundo, and at the same time as those of Quercus
macrocarpa (McMillan 1957). Therefore, although cot-
tonwood is extremely hardy in mid-winter, sensitivity to
cold after leaf flush limits the growing season for this
species.

The onset of cold hardiness in cottonwood was a
threshold phenomenon, and the strongest latitudinal differ-
ences in cold hardiness were related to the timing of the
threshold. Latitudinal differences in cottonwood cold
hardiness were nonexistent in mid-summer and ecologically
irrelevant in mid-winter. In contrast to cottonwood, salt-
cedar did not show a threshold in the onset or completion of
cold hardiness. Cold hardiness in saltcedar developed and
ended gradually, along with the clinal variation. The season
of greatest cold hardiness in saltcedar was mid-winter.
Although northern saltcedar was hardier than southern
saltcedar from fall through spring, the latitudinal effect
was stronger in spring and fall than in mid-winter. These
results suggest that latitudinal variation in cold hardiness of
saltcedar reflects both a greater capacity for cold hardiness
in northern saltcedar and a difference in the seasonal timing
of the onset of and recovery from cold hardiness.

Latitudinal variation

As predicted, we found strong inherited variation in fall, but
not spring, leaf phenology of cottonwood as a function of
latitude of origin. In the field, between latitudes 34.9 and
47.6°N, the date of leaf flush of Populus deltoides is
delayed by about 44 days and the date of growth cessation
is advanced by about 32 days (Kaszkurewicz and Fogg
1967). In our common garden, comparing cottonwood
populations from latitudes 34.9 and 47.6°N, leaf flush was
unaffected by latitude and the date of growth cessation was
advanced by an average of 27 days. These results support
the hypothesis that the latitudinal variation in fall leaf
phenology observed in the field has a strong genetic
component related in part to variation in the critical
photoperiod for growth cessation, while the latitudinal
variation observed in the field in spring phenology is
largely a plastic response to the temperature gradient. Our
inference about the relative roles of plasticity and genetic
variation is limited by the fact that this study included only
a single common garden. One component of plasticity is
spatial variation in the strength of the observed genetic
effect (Sultan 2000). Our results are consistent, however,
with those of other common-garden studies of Populus in
North America and Europe (Ying and Bagley 1976;
Brissette and Barnes 1984; Farmer 1993; Luquez et al.
2008) and of other temperate forest trees (Nienstaedt 1974),
showing greater latitudinal genetic variation in fall than in
spring phenology. Furthermore, the lack of correlation
between fall and spring phenological characters (Table 1)

suggests that these characters are controlled by different
physiological processes (Tsarouhas et al. 2001; Howe et al.
2003; Luquez et al. 2008), which was expected given the
importance of photoperiod as a cue for fall but not spring
leaf phenology.

This argument is consistent with variation in success of
phenological models in predicting spring and fall phenol-
ogy of widely distributed tree species. Spring phenological
data for Fraxinus americana, Ulmus americana, and
Quercus velutina collected from a single location over a
long period were sufficient to calibrate thermal models that
successfully predicted spring phenology in remote parts of
the ranges of these species (Chuine et al. 2000). Therefore,
genetic variation in the temperature sensitivity of spring
phenology within these species is relatively small (Vitasse
et al. 2009). In contrast, fall phenological data from a single
location could not be used to predict fall phenology
elsewhere in the range of the same species (Schaber and
Badeck 2003). This result reflects the importance of spatial
genetic variation in fall phenology, as observed in the
present study, as well as complex influences on fall
phenology of other factors such as temperature, moisture,
nutrient availability, and developmental status (Dunlap and
Stettler 1996; Arora et al. 2003). Finally, the plasticity of
the temperature cues dominating spring leaf phenology is
demonstrated by the spatial and temporal variation in this
character exhibited by clones of trees planted across Europe
in the International Phenological Gardens. Warming tem-
peratures over the last several decades have caused
advancement in the spring phenology of these trees, while
changes in fall leaf phenology are smaller and less
consistent (Chmielewski and Rötzer 2001; Estrella and
Menzel 2006).

Whereas leaf phenology in our common garden varied
with latitude of origin in fall but not spring, cold hardiness
of cottonwood and saltcedar twigs varied with latitude of
origin in both fall and spring. Growth cessation and leaf
senescence were tightly coupled to cold hardiness in fall,
especially for cottonwood. For a given latitude the onset of
cottonwood cold hardiness occurred after growth cessation
and before leaf senescence, and there was strong correlation
among growth cessation, leaf senescence, and fall cold
hardiness within and between years. Similar correlations
among latitude, the timing of growth cessation, and the
onset of cold hardiness have been reported in conifers
(Repo et al. 2000).

In spring, southern cottonwoods and saltcedars emerged
from cold hardiness before northern individuals in 2007 and
2008 even though there was no strong or consistent
latitudinal trend in leaf flush or saltcedar flowering. These
results suggest that emergence from cold hardiness in
spring is not tightly coupled to leaf phenology. Similar
temporal variation in spring cold hardiness and phenology
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as a function of latitude of origin has been observed in
Quercus rubra (Flint 1972) and Picea sitchensis (Cannell
and Sheppard 1982). The earlier emergence from cold
hardiness of stems of southern accessions may reflect
greater activity of processes that can continue during winter
in the absence of leaves, such as root growth and
translocation within stems (Perry 1971). These processes
may occur for extended periods during mild southern
winters.

Rapid evolution of phenology

In spite of its recent introduction to North America,
saltcedar showed latitudinal variation in the timing of leaf
senescence and cold hardiness from fall through spring.
Furthermore, growth chamber experiments comparing
northern and southern saltcedar have demonstrated
inherited temperature-dependent differences in root-shoot
ratio (Sexton et al. 2002). This latitudinal genetic variation
appears to have resulted from (1) multiple introductions of
genetically distinct populations, including T. chinensis in
the south and T. ramosissima in the north (Gaskin and
Kazmer 2009), (2) hybridization that produced a population
containing extensive genetic variation for leaf phenology
and cold hardiness (Hurka et al. 2003; Friedman et al.
2008), and (3) natural selection. The hypothesis that the
observed latitudinal gradient in North America resulted, at
least in part, from natural selection after introduction is
supported by the fact that North American Tamarix are
genetically distinct from Eurasian Tamarix (Gaskin and
Kazmer 2009). In addition, in both cottonwood and
saltcedar there was strong variation in cold hardiness and
leaf phenology within and between the populations collected
from different latitudes. In contrast, neutral microsatellite
markers from the same plants showedmuch stronger variation
within than between populations (Hall et al. 2007; Friedman
et al. 2008).

Global increases in temperature could promote earlier
leaf flush in spring and later growth cessation and leaf
senescence in fall (Saxe et al. 2001; Linkosalo and
Lechowicz 2006). Our results suggest that cottonwood
and saltcedar can accomplish earlier leaf flush through
plasticity. To the extent that growth cessation is controlled
by photoperiod, however, development of later growth
cessation will involve migration and natural selection. The
development of a phenological cline in introduced saltcedar
is evidence that such change can occur in a shrub
population within 150 years.
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Online Resource 1 for “Genetic and environmental influences on leaf phenology and cold hardiness of 

native and introduced riparian trees” by JM Friedman, JE Roelle and BS Cade, in International Journal 

of Biometeorology. Corresponding author: Jonathan M Friedman, US Geological Survey, 

friedmanj@usgs.gov. A table showing collection locations and number of individuals planted on 16 

August 2005, for plains cottonwood (Populus deltoides subsp. monilifera) and saltcedar (Tamarix 

ramosissima, Tamarix chinensis, and hybrids) grown in the common garden in Fort Collins, Colorado 

(latitude 40.58°N).    

 Latitude Longitude Elevation      Number planted   

Site name (N) (W)    (m) Saltcedar Cottonwood 

      

Fort Peck Reservoir, Hell Creek Arm, Montana 47.60 106.90    683 22 25 

Musselshell River near Roundup, Montana 46.45 108.53    962 25 21 

Powder River near Broadus, Montana 45.43 105.41    927 24 25   

Keyhole Reservoir, Wyoming 44.37 104.79 1,254 25 32 

Boysen Reservoir, Wyoming 43.22 108.18 1,379 25 25 

Lake McConaughy, Nebraska 41.29 101.93    988 25 25 

Cache la Poudre River, Fort Collins, Colorado 40.56 105.01 1,504 32 25 

Bonny Reservoir, Colorado 39.62 102.19 1,120 22 24   

Arkansas River, Colorado 38.09 102.29 1,053 25 25 

Cimarron River, Oklahoma 37.12 101.89 1,036 25 25 

Lake Meredith, Mullinaw Creek, Texas 35.53 101.77    896 25 24   

Buffalo Lake National Wildlife Refuge, Texas 34.90 102.12 1,105 22 25 

Lake Alan Henry, Texas 33.06 101.04    649 22 12 

Colorado River west of Silver, Texas 32.02 100.74    581 24   0 

Tornillo Creek, Big Bend National Park, Texas 29.18 103.01    568 25   0   
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Online Resource 2 for “Genetic and environmental influences on leaf phenology and cold hardiness of 

native and introduced riparian trees” by JM Friedman, JE Roelle and BS Cade, in International Journal 

of Biometeorology. Corresponding author: Jonathan M Friedman, US Geological Survey, 

friedmanj@usgs.gov. A figure showing variation in climate among collection locations. 

 

 

 

 

Latitudinal variation in mean annual extreme minimum temperature (MT, solid line) and mean annual 

number of frost-free days (FFD, dotted line) in the central United States. Locations of data points are 

described in Online Resource 1 and climate data are calculated from the DAYMET interpolated daily 

low temperature series for the period 1980–2003 gridded at 1-km resolution (Thornton et al. 1997, 

http://www.daymet.org).  

 

The latitudinal gradient sampled in this study corresponds to a climatic gradient in that northern sites are 

colder and have a shorter growing season. Mean annual extreme minimum temperature shows a linear 

decrease with increasing latitude (r
2
 of linear regression = 0.98). The mean annual number of frost-free 

days also decreases with increasing latitude (r
2
 of linear regression = 0.85), but the slope becomes less 

steep with increasing latitude. The underlying reason for this trend is that elevation increases with 
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increasing latitude from 29.2 to 40.6°N, but decreases with increasing latitude north of latitude 40.6°N 

(Online Resource 1). Since temperatures decrease with increasing elevation, the elevation effect 

strengthens the climatic gradient from 29.2 to 40.6°N, but weakens it from 40.6 to 47.6°N.  



 

 

For the purposes of this table the latitude effect for a given species and phenological character is 

the difference in days between the mean values for latitudes 34.9°N and 47.6°N. We selected 

these two latitudes because they were the most northern and southern latitudes with abundant 

Online Resource 3  for “Genetic and environmental influences on leaf phenology and cold hardiness of native and 

introduced riparian trees” by JM Friedman, JE Roelle and BS Cade, in International Journal of Biometeorology. 

Corresponding author: Jonathan M Friedman, US Geological Survey, friedmanj@usgs.gov. Mean values of 

phenological characters by latitude of origin.  

  Spring phenology  Fall phenology 

  Leaf flush  First flower  Bud formation  

Leaf 

senescence 

Species 

or effect 

Latitude 

of origin 2007 2008  2007 2008  2006 2007 2008  2007 

Cottonwood            

 33.1 1-May 16-May     13-Sep 2-Sep 12-Aug  6-Nov 

 34.9 30-Apr 14-May     18-Sep 1-Sep 31-Jul  4-Nov 

 35.5 2-May 17-May     19-Sep 27-Aug 28-Jul  2-Nov 

 37.1 29-Apr 15-May     13-Sep 30-Aug 29-Jul  2-Nov 

 38.1 29-Apr 11-May     5-Sep 19-Aug 25-Jul  29-Oct 

 39.6 30-Apr 13-May     2-Sep 19-Aug 23-Jul  19-Oct 

 40.6 2-May 14-May     31-Aug 8-Aug 17-Jul  24-Oct 

 41.3 1-May 14-May     30-Aug 14-Aug 21-Jul  20-Oct 

 43.2 30-Apr 13-May     30-Aug 27-Jul 12-Jul  14-Oct 

 44.4 30-Apr 13-May     29-Aug 28-Jul 9-Jul  16-Oct 

 45.4 3-May 16-May     29-Aug 31-Jul 8-Jul  13-Oct 

 46.4 3-May 13-May     29-Aug 26-Jul 8-Jul  17-Oct 

 47.6 30-Apr 14-May     29-Aug 26-Jul 8-Jul  14-Oct 

       Latitude effect  0 0     20 37 23  21 

Saltcedar             

 29.2 30-Apr 6-May  22-Jul 16-Jun      5-Nov 

 32 16-Apr 21-Apr  30-May 23-May      27-Oct 

 33.1 12-Apr 21-Apr  19-Jun 25-May      25-Oct 

 34.9 6-Apr 23-Apr  1-Jun 24-May      23-Oct 

 35.5 11-Apr 23-Apr  8-Jun 24-May      26-Oct 

 37.1 8-Apr 23-Apr  5-Jun 22-May      18-Oct 

 38.1 11-Apr 23-Apr  2-Jun 22-May      19-Oct 

 39.6 12-Apr 23-Apr  30-May 23-May      18-Oct 

 40.6 8-Apr 25-Apr  23-May 24-May      18-Oct 

 41.3 8-Apr 22-Apr  21-May 22-May      18-Oct 

 43.2 4-Apr 24-Apr  22-May 23-May      16-Oct 

 44.4 7-Apr 25-Apr  23-May 24-May      15-Oct 

 45.4 11-Apr 25-Apr  27-May 26-May      15-Oct 

 46.4 12-Apr 24-Apr  31-May 25-May      19-Oct 

 47.6 6-Apr 27-Apr  25-May 27-May      13-Oct 

       Latitude effect  0 -4  7 -3      10 

             

Species effect  21.9 20.4         4.7 

mailto:friedmanj@usgs.gov


individuals of both species (Online Resource 1). The species effect for a given character is the 

difference in days between the values for cottonwood and saltcedar averaged across all common 

latitudes of origin. 



Online Resource 4 for “Genetic and environmental influences on leaf phenology and cold 

hardiness of native and introduced riparian trees” by JM Friedman, JE Roelle and BS Cade, in 

International Journal of Biometeorology. Corresponding author: Jonathan M Friedman, US 

Geological Survey, friedmanj@usgs.gov. A figure showing overwinter survival in the first year 

(2005–2006) for plains cottonwood (Populus deltoides subsp. monilifera) and saltcedar (Tamarix 

ramosissima, Tamarix chinensis, and hybrids) in the common garden (latitude 40.58°N) as a 

function of latitude of origin. Survival is the proportion of plants alive on 5 September 2005 that 

were still alive on 30 May 2006. Winter damage to plants in the common garden was related to 

latitude in saltcedar but not in cottonwood. In the first winter after planting, 2005–2006, over-

winter survival of saltcedar was low for the three southernmost latitudes (29.2, 32.0, and 

33.1°N), but there was no relation between over-winter survival of cottonwood and latitude of 

origin. During the winters of 2006–2007 and 2007–2008 over-winter survival of whole plants 

was >99% and unrelated to latitude for both species (data not shown).  
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In addition to the observations of whole plant mortality reported in the figure above, we 

made observations of stem mortality. Saltcedar from the southernmost latitude (29.2°N) 

commonly died back to the ground in winter and then resprouted (13 of 17 plants in 2006–2007 

and 7 of 16 of plants in 2007–2008). Such dieback was rare for other latitudes of origin in both 

species, which is consistent with the fact that measured stem killing temperatures for all latitudes 

tested were always below the daily minimum temperature on the day of sampling (Fig. 1). The 

decrease in winter damage to both species over the 3-year period is not related to a trend in 

temperatures. Extreme cold temperatures were similar for the three winters (Colorado Climate 

Center, unpublished data). Instead, the plants became hardier as they grew older and larger. Stem 

death in saltcedar from latitude 29.2°N occurred in mid-winter. In the winter of 2006–2007 we 

began observing dead stems from latitude 29.2°N on February 28, and in the winter of 2007–

2008 we began observing dead stems on January 28. No comparable observations were made 

during the winter of 2005–2006. In both the 2006–2007 and 2007–2008 winters dead stems 

appeared after the day of the coldest minimum temperature of the winter (-24.9°C on 2 February 

2007 and -24.7°C on 22 January 2008). These minimum temperatures apparently caused 

mortality of saltcedar stems from latitude 29.2°N even though our measured mid-winter killing 

temperature for such stems was about -30°C (Fig. 2), suggesting that the brief exposure to cold 

in our freezing trials may result in slight underestimation of the killing temperature.  
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