Using RAMP® for Receiving Cattle Compared to Traditional Receiving Diets

Cody J. Schneider
University of Nebraska-Lincoln

Brandon L. Nuttelman
University of Nebraska-Lincoln, bnuttelman2@unl.edu

William A. Griffin
University of Nebraska-Lincoln, wgriffin2@unl.edu

Dirk Burken
University of Nebraska-Lincoln, dirk_burken@hotmail.com

David R. Smith
University of Nebraska-Lincoln, dsmith8@unl.edu

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unl.edu/animalscinbcr

Schneider, Cody J.; Nuttelman, Brandon L.; Griffin, William A. Griffin; Burken, Dirk; Smith, David R.; Klopfenstein, Terry; and Erickson, Galen E., "Using RAMP® for Receiving Cattle Compared to Traditional Receiving Diets" (2013). *Nebraska Beef Cattle Reports*. 738.
https://digitalcommons.unl.edu/animalscinbcr/738

This Article is brought to you for free and open access by the Animal Science Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Nebraska Beef Cattle Reports by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Using RAMP® for Receiving Cattle Compared to Traditional Receiving Diets

Cody J. Schneider
Brandon L. Nuttelman
Will A. Griffin
Dirk B. Burken
David R. Smith
Terry J. Klopfenstein
Galen E. Erickson

Summary

Performance of newly arrived 570 lb steer calves fed RAMP or a control ration was evaluated in two trials completed in 2010 and 2011. Treatment diets were fed for an average of 31 days in year 1 and 24 days in year 2. Diets included a control receiving diet consisting of alfalfa hay, Sweet Bran®, dry rolled corn, and supplement or RAMP which is a complete starter ration containing a high level of Sweet Bran and a minimal amount of forage. Across both years, RAMP improved F:G but was due to increased ADG in year 1 and decreased DMI in year 2. Feeding RAMP to newly arrived calves improved feed efficiency the first three weeks cattle were in the feedlot.

Introduction

RAMP is a complete starter ration developed by Cargill, which contains a high level of Sweet Bran and a minimal amount of forage. RAMP is intended to serve as an alternative to a mixture of grain and forage for receiving cattle or adapting cattle to a mixture of grain and forage for calves has been shown to increase Feeding RAMP to newly received lots and the need to mix a starter diet. RAMP contains a high level of Sweet Bran and a minimal amount of forage. All diets contained 25 g/ton Rumensin and 12 mg lb thiamine.

Steers were offered ad libitum access to treatment diets for 30 or 31 days in year 1 and 21, 24, or 28 days in year 2 (by block). Following the feeding period, cattle were limit-fed a common diet (47.5% Sweet Bran, 23.75% grass hay, 23.75 alfalfa hay, and 5% supplement; DM basis) at 2% of BW for five days before collecting ending BW to minimize variation in gut fill. Ending BW were averages of two-day weights. Initial BW was not shrunken because steers were weighed within 12 hours of arrival and had no access to feed before weighing.

Performance data for both years were analyzed using the MIXED procedure of SAS (Sas Inst. Inc., Cary, N.C.) with pen as the experimental unit. Treatment, year, and treatment × year were treated as fixed effects and block as a random effect. Incidence of Bovine Respiratory Disease (BRD) was evaluated as the rate of respiratory illness or the number of steers treated for BRD in a pen divided by the number of steers in that pen. Incidence of BRD was then analyzed using the GENMOD procedure of SAS. Incidence of BRD was affected by year and DMI, consequently the final model contained DMI, treatment, and year. No significant effect of block or treatment × year existed so they were removed from the model. Treatment means for BRD incidence were calculated using the PROC MEANS function of SAS.

Results

There was a year × treatment interaction for ADG (P = 0.05) and DMI (P < 0.01), therefore performance data are presented by year in Table 1. Feeding RAMP increased ADG (P < 0.01) compared to CON in year 1, but in year 2 ADG was not different (P = 0.93). In year 1, DMI was not different (P = 0.11). However in year 2, CON cattle had greater DMI.
Starting cattle on RAMP improves F:G early in the feeding period when compared to a traditional receiving diet. (P < 0.01) compared to cattle fed RAMP. No year × treatment interaction was observed for F:G or incidence of BRD. Across both years, RAMP improved (P<0.01) F:G compared to CON (4.39 and 4.05, respectively). Incidence of BRD was not different (P = 0.27) due to treatment across years (9.6 and 12.4% for CON and RAMP, respectfully). Starting cattle on RAMP improves F:G early in the feeding period when compared to a traditional receiving diet.

Table 1. Performance of cattle fed RAMP® or a control receiving diet in 2010 or 2011.

<table>
<thead>
<tr>
<th>Item</th>
<th>2010</th>
<th>2011</th>
<th>P-values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>RAMP</td>
<td>Control</td>
</tr>
<tr>
<td>Initial BW, lb</td>
<td>576</td>
<td>577</td>
<td>572</td>
</tr>
<tr>
<td>Ending BW, lb</td>
<td>673</td>
<td>686</td>
<td>658</td>
</tr>
<tr>
<td>DMI, lb/day</td>
<td>15.7𝑎</td>
<td>16.2𝑎</td>
<td>14.0𝑏</td>
</tr>
<tr>
<td>ADG, lb</td>
<td>3.24𝑎</td>
<td>3.59𝑏</td>
<td>3.51𝑎𝑏</td>
</tr>
<tr>
<td>Feed:Gain²</td>
<td>4.80</td>
<td>4.46</td>
<td>3.98</td>
</tr>
<tr>
<td>Incidence of BRD, %</td>
<td>5.5</td>
<td>7.1</td>
<td>12.7</td>
</tr>
</tbody>
</table>

¹Main effect of treatment across years.
²Data analyzed as G:F with the inverse presented as F:G.
abcMeans within a row without a common superscript are different (P < 0.10).