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and the structure of a Canis hybrid zone
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Abstract. It is widely recognized that protected areas can strongly influence ecological
systems and that hybridization is an important conservation issue. However, previous studies
have not explicitly considered the influence of protected areas on hybridization dynamics.
Eastern wolves are a species of special concern and their distribution is largely restricted to a
protected population in Algonquin Provincial Park (APP), Ontario, Canada, where they are
the numerically dominant canid. We studied intrinsic and extrinsic factors influencing survival
and cause-specific mortality of hybrid and parental canids in the three-species hybrid zone
between eastern wolves, eastern coyotes, and gray wolves in and adjacent to APP. Mortality
risk for eastern wolves in areas adjacent to APP was significantly higher than for other
sympatric Canis types outside of APP, and for eastern wolves and other canids within APP.
Outside of APP, the annual mortality rate of all canids by harvest (24%) was higher than for
other causes of death (4–7%). Furthermore, eastern wolves (hazard ratio ¼ 3.5) and
nonresidents (transients and dispersing animals, hazard ratio ¼ 2.7) were more likely to die
from harvest relative to other Canis types and residents, respectively. Thus, eastern wolves
dispersing from APP were especially vulnerable to harvest mortality. For residents, eastern
wolf survival was more negatively influenced by increased road density than for other Canis
types, further highlighting the sensitivity of eastern wolves to human disturbance. A cycle of
dispersal from APP followed by high rates of mortality and hybridization appears to maintain
eastern wolves at low density adjacent to APP, limiting the potential for expansion beyond the
protected area. However, high survival and numerical dominance of eastern wolves within
APP suggest that protected areas can allow rare hybridizing species to persist even if their
demographic performance is compromised and barriers to hybridization are largely absent in
the adjacent matrix.

Key words: Algonquin Provincial Park, Ontario, Canada; Canis latrans; Canis lupus; Canis lycaon;
competing risks; conservation reserves; eastern coyote; eastern wolf; gray wolf; harvest; hybridization;
survival.

INTRODUCTION

The evolutionary and practical implications of inter-

breeding between species are strongly influenced by the

relative fitness of parental and hybrid genotypes within a

hybrid zone (Allendorf et al. 2001, Burke and Arnold

2001). An important consideration when studying

hybrid zones is to determine whether demographic

performance of individuals is driven primarily by

endogenous (intrinsic) or exogenous (extrinsic) factors

(Barton and Hewitt 1985, Ross and Harrison 2002).

Hybrids may exhibit increased fitness due to heterosis or

decreased fitness due to genetic mismatches between

parental types (Burke and Arnold 2001). Alternatively,

fitness in hybrid zones is often influenced more strongly

by environmental conditions that vary over time (Grant
and Grant 1992) or space (Moore 1977). Identifying

environmental conditions influencing genotype-specific
survival and reproduction improves our understanding

of hybrid zone structure and can provide critical
information for the conservation of rare hybridizing

species.
Protected areas have become crucial to the persistence

of species that are sensitive to environmental perturba-

tion and human disturbance (Diamond 1975, Soulé and
Simberloff 1986). Additionally, studies comparing

ecological systems in and adjacent to protected areas
facilitate understanding the effects of human distur-

bance on a range of processes, including population
dynamics (e.g., Knight and Eberhardt 1985), animal

behavior (e.g., Schtickzelle and Baguette 2003), and
community structure (e.g., Shears and Babcock 2002).

Hybridization is an important and enigmatic issue
impacting conservation, with potentially positive and

negative outcomes for the persistence of species (Allen-
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dorf et al. 2001, Seehausen 2004). Rates of hybridization

are often increased in disturbed areas (Anderson 1948,

Lamb and Avise 1986), and hybrids sometimes thrive in

habitats that are marginal for parental species (Moore

1977), so it follows that hybridization should be more

prevalent outside of protected areas. However, despite

recognition of the important practical and theoretical

implications of hybridization, and the potentially strong

influence of protected areas on the structure and

function of ecological systems, we are unaware of

studies explicitly considering the role of protected areas

in influencing hybridization.

The diverse hybrid zone between eastern wolves

(Canis lycaon), eastern coyotes (C. latrans), and gray

wolves (C. lupus) in and around Algonquin Provincial

Park (APP), Ontario, Canada, allowed us to investigate

the influence of a protected area on interspecific

hybridization dynamics. Eastern wolves are a ‘‘species

of special concern’’ in Ontario under the provincial

Species at Risk Act (COSSARO 2004 [Committee on the

Status of Species at Risk in Ontario], available online).5

They are also listed as a ‘‘species of special concern’’ by

the federal Species at Risk Act (COSEWIC 2001

[Committee on the Status of Endangered Wildlife in

Canada], available online).6 Their current distribution

appears to be largely restricted to a genetically distinct

population within APP, where they are the numerically

dominant canid (Rutledge et al. 2010, Benson et al.

2012). Eastern wolves are rarer in areas immediately

adjacent to APP, where the hybrid zone comprises a

mosaic of eastern wolves, coyotes, gray wolves, and

hybrids (Benson et al. 2012). Wolf and coyote ancestry

in resident animals was negatively and positively

associated, respectively, with road densities outside of

APP (Benson et al. 2012). This suggests that wolves are

more sensitive to human disturbance than other canids

in the APP region, consistent with the widespread

elimination of wolves and increase in coyotes across

North America in the 20th century that was concurrent

with intense human persecution and habitat alteration

(Fritts et al. 2003). However, the extent to which

spatially varying fitness among Canis types influences

the genetic structure of the hybrid zone remains unclear.

Accordingly, we modeled and estimated survival and

cause-specific mortality of radio-collared wolves, coy-

otes, and hybrids by combining telemetry, genetic, and

environmental data from areas inside and adjacent to a

large protected area (APP). Based on the limited and

patchy distribution of eastern wolves outside of APP,

and their negative association with areas with greater

access for trapping and hunting (Benson et al. 2012), we

hypothesized that (1) eastern wolves outside of APP

survive poorly compared with sympatric Canis types

adjacent to APP and eastern wolves within APP; (2)

eastern wolves survive poorly relative to other Canis

types in areas of higher road densities; and (3) eastern

wolves are more susceptible to harvest mortality than

other Canis types outside of APP. The federal conser-

vation status for eastern wolves in Canada is currently

(as of 2013) being reviewed and our results inform this

process by clarifying whether patchily distributed

eastern wolves in unprotected landscapes adjacent to

APP can contribute positively to the viability of this

genetically distinct wolf population. More broadly, our

study elucidates demographic mechanisms by which a

large protected area can influence the structure of hybrid

zones and dynamics between hybridizing species.

METHODS

Study area

We studied wolves and coyotes from October 2004 to

May 2011 in four study units: western Algonquin

Provincial Park and the surrounding harvest ban area

(APP, 2006–2011, 7780 km2); Wildlife Management

Unit 49 (WMU49, 2006–2011; 2720 km2); Kawartha

Highlands (KH, 2009–2010, 1810 km2); and Wildlife

Management Unit 47 (WMU47, 2004–2007, 1800 km2);

see Fig. 1. In Algonquin Park and the surrounding

FIG. 1. The four study units (APP, Algonquin Provincial
Park; WMU47 and WMU49, Wildlife Management Units 47
and 49; KH, Kawartha Highlands) in central Ontario, Canada,
denoted by minimum convex polygons (dotted outlines) created
using telemetry data from study animals (Canis spp.). Dark gray
shading represents areas where wolves and coyotes were
protected from harvest, whereas light gray shading indicates
that trapping (but no hunting) was allowed. The white outline
shows the APP boundary, and black lines represent major roads.

5 http://www.rom.on.ca/ontario/risk.php?doc_type¼fact&
id¼287&lang¼en

6 http://www.cosewic.gc.ca/eng/sct1/SearchResult_e.cfm
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harvest ban area (park plus ban area¼15 623 km2), wolf

and coyote harvest was illegal (Fig. 1). Wolf and coyote

harvest by trapping and hunting was allowed, on a

seasonal or year-round basis, in the three study units

adjacent to APP, except in several smaller areas within

KH (Fig. 1). However, all study animals that we

monitored outside of APP were at risk of harvest as

their movements and home ranges extended into

unprotected areas. Additional information on the study

area can be found elsewhere (Benson et al. 2012, 2013,

Benson and Patterson 2013).

Field methods

We captured 147 canids using padded foothold traps

or nets fired from helicopters. We estimated age classes

of captured animals, using tooth wear (Gipson et al.

2000) and staining, as pups (0–1 year), yearlings (1–2

years), or adults (.2 years old). We deployed mortality-

sensitive Global Positioning System (GPS) or Very High

Frequency (VHF) radio collars on captured animals (see

collar details in Appendix A). We targeted locations

within our study units for trapping to capture animals in

areas not covered by our active telemetry collars. In the

central Ontario hybrid zone, all canid packs are spatially

segregated regardless of genetic ancestry (Benson and

Patterson 2013). Thus, when we successfully captured

and collared resident animals in a given area (1–4 per

pack), we relocated our trapping efforts to new areas.

With this strategy, we captured individuals from a high

proportion of the resident canid packs across our study

units, as evidenced by the relatively contiguous arrange-

ment of territories estimated from GPS telemetry data

(Appendix B). Although our sample was relatively small

from a statistical perspective, it is representative and

should allow for biologically meaningful inference.

Additionally, we captured nonresident (dispersing or

transient animals) opportunistically. All capture and

handling of animals was approved by Trent University

and Ontario Ministry of Natural Resources Animal

Care Committees. We monitored survival and move-

ments of radio-collared animals at least once per week

by fixed-wing aircraft. We investigated mortalities and

retrieved carcasses promptly (generally within 24 hours

of detection). We assigned cause of death using field

evidence and/or necropsies by experienced veterinarians

and pathologists (Canadian Cooperative Wildlife Heath

Center, Guelph, Ontario). We captured most pups

during den visits, which were only conducted in APP

and WMU49, where canids were mostly eastern wolves

and coyotes or hybrids, respectively (Benson et al. 2013).

This meant that our sample of pups was genetically

stratified between protected and unprotected portions of

the study area and was not conducive to testing our

current hypotheses regarding survival in relation to

genetic ancestry and harvest protection. Thus, we

excluded pups from our analyses and focused on adult

survival, the most important demographic parameter

influencing population growth of eastern wolves (Pat-

terson and Murray 2008). However, all nine radio-

collared pups that became yearlings were entered into

our models when they reached 1 year of age. We used

data from 139 adult and yearling canids.

Ancestry, age, sex, residency, and harvest protection

We used capture, telemetry, and environmental data

to create a number of discrete and continuous indepen-

dent variables (Table 1) for use in regression-based

survival and competing risk models. All study animals

were eastern wolves, coyotes, coyote 3 eastern wolf

hybrids, or admixed gray wolves, based on genetic

analysis of blood samples from captured animals

described in detail in Benson et al. (2012). The admixed

gray wolf class included gray wolves, gray wolf3 eastern

wolf hybrids, gray wolf 3 coyote hybrids, and hybrids

admixed between all three Canis types, which we

combined into a single ancestry category due to small

sample sizes. We dummy-coded the ancestry variables

with 1 for their assigned genotype and 0 for all other

genotypes. We included all four dummy-coded ancestry

variables in global models and considered models

retaining 0–3 of these variables, such that at least one

group was always withheld as the reference category in

our regression models (Table 1). This strategy meant

that the reference category could change depending on

the relative survival of each ancestry group, allowing us

to objectively compare survival among groups and

explicitly test our hypotheses regarding eastern wolf

survival in relation to harvest and human disturbance.

We created dichotomous age (yearlings coded 0,

adults coded 1) and sex (females coded 0, males coded 1)

variables (Table 1). We created a resident variable by

classifying all animals as residents (1) or nonresidents

(0). Residents were associated with social groups (packs)

and restricted movements to well-defined home ranges,

whereas nonresidents were solitary and exhibited tran-

sient or dispersing behavior. We created an APP

variable by classifying all radio-collared animals that

entirely, or primarily, restricted movements to APP and

the surrounding harvest ban area as APP (coded 1) and

all radio-collared animals outside of APP as non-APP

(coded 0; see additional details in Appendix A). Twelve

animals dispersed in or out of APP during the study and

we reclassified their APP and non-APP variables

accordingly. Sample sizes for all categorical variables

are provided in Appendix C.

Landscape variables

Moose (Alces alces) and deer (Odocoileus virginianus)

are important prey for canids in and adjacent to APP

(Forbes and Theberge 1996). We estimated moose

density (number/km2) within home ranges of resident

canids, using aerial survey data collected by the Ontario

Ministry of Natural Resources. We used a Geographic

Information System (GIS) to estimate the proportion of

each home range comprising deer wintering habitat as

an index of winter deer availability. These variables

JOHN F. BENSON ET AL.256 Ecology, Vol. 95, No. 2



allowed us to test the hypotheses that moose density

and/or deer availability influenced survival of resident

canids. We estimated road densities (km/km2) for each

wolf and coyote range by developing a GIS layer for

secondary roads to test the hypothesis that the density of

these roads across home ranges increased mortality risk

for canids. Secondary roads were mostly paved roads

that were classified as arterial, collector, or local roads.

Secondary roads can influence wolf and coyote survival

directly through collisions with vehicles or indirectly by

allowing access for harvest and/or through fragmenta-

tion (Thiel 1985, Fuller et al. 2003). Additional details

regarding prey and road variables are in Appendix A.

Survival models

We modeled survival and investigated factors influ-

encing mortality risk using the Anderson-Gill (AG)

extension to Cox proportional hazards (Cox PH)

regression modeling (Therneau and Grambsch 2000).

We tested the proportional hazards assumption of Cox

PH using the formal test recommended by Therneau and

Grambsch (2000) and found no significant violations of

proportionality in any of the predictor variables

included in our survival models (all P . 0.05). We used

a 365-day (recurrent) time scale to model the baseline

hazard (Fieberg and DelGiudice 2009), standardized to

a biological year beginning on 1 May (approximate

mean birthdate for canids in our study area) and ending

on 30 April. Newly captured animals were entered into

the models the day following capture and, if still alive,

were right-censored on 30 April and entered into the

models again on 1 May the following year. We right-

censored animals whose radio collars dropped off or

failed, or if they dispersed outside of the study area on

the last day that we recorded an active signal. We

assumed that censoring was independent of fate, and

this assumption appeared to be justified (Appendix A).

To accommodate state changes for the resident and APP

variables, we censored animals on the day prior to

detecting the state change and entered them into the

model again with their new covariates on the day of

detection. All other time-varying covariates (i.e., age

class, landscape variables associated with annual home

ranges) varied on an annual basis. Preliminary modeling

indicated that survival was similar across years of the

study, except for 2010, during which we observed higher

mortality for radio-collared animals (in terms of raw

number of deaths) compared to previous years. We

included a dichotomous temporal variable that separat-

ed data from 2010 (coded 1) vs. data from earlier years

of the study (coded 0) to test and account for this

potential temporal variation.

We conducted survival modeling in a hierarchical

manner, which allowed us to effectively test our

hypotheses. First, we conducted an overall analysis with

data from all radio-collared resident and nonresident

animals (n ¼ 139) to test the hypothesis that mortality

risk was greater in areas adjacent to APP compared with

the protected area. Next, we modeled non-APP (here-

after non-APP analysis) and APP (hereafter APP

analysis) separately to isolate potentially different

factors influencing mortality risk within the two areas.

TABLE 1. Variables included in analyses with overall data, all data separated by study unit in and
adjacent to Algonquin Provincial Park (APP and non-APP), and data from residents only for
models of mortality risk of radio-collared adult and yearling wolves, coyotes, and hybrids, 2004–
2010.

Variables and interaction Reference group

Variables included, by model set

Overall APP and non-APP Residents

Discrete variables

Residency status nonresidents yes yes no
APP non-APP yes no yes
Male female yes yes yes
Adult yearling yes yes yes
2010 2004–2009 yes yes no
Eastern wolf varied� yes yes no
Eastern wolf 3 coyote varied� yes yes yes
Coyote varied� yes yes yes
Admixed gray wolf varied� yes yes yes

Continuous variables

Moose density NA no no yes
Deer availability NA no no yes
28 road density� NA no no yes

Interaction

28 road density 3 eastern wolf other genotypes§ no no yes

Note: We considered models with all possible combinations of four or fewer variables for both
model sets; NA means not applicable.

� The reference group changed depending on which ancestry variables were retained in a given
model.

� Density of secondary roads.
§ Coyotes, eastern wolf 3 coyotes, admixed gray wolves.
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This approach eliminated the confounding issue of

different harvest regulations and their potentially strong

influence on survival. Conducting only a single overall

analysis would have necessitated multiple interactions

between APP and variables of interest, which would

have greatly increased the chance of over-fitting models.

Finally, we conducted an analysis restricted to resident

animals in packs for which we had sufficient GPS

telemetry data to estimate home ranges and associated

prey availability and road density (n¼87). We could not

include the environmental variables in the overall, non-

APP, and APP analyses because we did not have

suitable telemetry data to reliably estimate environmen-

tal conditions associated with space use of nonresidents.

In the global model set for residents, we included an

interaction between eastern wolf and secondary road

density to test the hypothesis that eastern wolf survival

was more negatively influenced by human disturbance

than other Canis types (Table 1).

For all global model sets, we considered models with

all possible combinations of 0–4 variables relevant to

our hypotheses (Table 1). We did not consider

individual models with more than four variables to

avoid over-fitting models. We ranked models using

Akaike’s information criteria corrected for small sam-

ples (AICc; Burnham and Anderson 2002), with the

number of mortalities as the sample size in our

calculation of AICc (Therneau and Grambsch 2000).
Using number of mortalities as the sample size (rather

than number of animals or number of records) was

conservative and further emphasized parsimony in our

model selection process. We considered models with

DAICc , 2 to have strong empirical support (Burnham

and Anderson 2002). We assessed significance of

variables retained in supported models with robust z

tests, hazard ratios (hazard; exponentiated b coeffi-

cients), and 95% confidence intervals for hazard ratios

(shown in brackets after each hazard ratio; Therneau

and Grambsch 2000). For categorical variables, the

hazard ratio provides an estimate of the ratio of the

instantaneous risk of mortality relative to the reference

group. For continuous variables, we report the hazard

ratios corresponding to a 0.1 unit change in the

covariate. We selected increments of 0.1 to provide

hazard ratios that were easily interpreted biologically,

because differences of this magnitude in the estimates of

prey availability and road density were common among

individuals in our data set. We estimated robust

(‘‘sandwich’’) standard errors for parameter estimates

based on data clustered by individual (for the overall

analysis) or pack (for resident analysis; Therneau and

Grambsch 2000). To assess the relative importance of

individual variables based on the model selection results,

we summed Akaike model weights across all models

retaining a given variable, following Burnham and

Anderson (2002). We calculated these variable weights

for all model sets for which we identified factors that

influenced survival during model selection. Finally, we

also derived annual survival rates by harvest protection

(APP and non-APP) and genetic ancestry categories
using the Kaplan-Meier product limit estimator gener-

alized for staggered entry. These survival rates were
equivalent to null Cox PH models with data separated

into categories (Therneau and Grambsch 2000). We
provide these estimates as intuitive measures of annual

survival, but restrict inferences to our models of
instantaneous mortality risk with strong empirical
support, which are more powerful and appropriate for

assessing the influence of multiple covariates on survival
(Therneau and Grambsch 2000).

Cause-specific mortality

To model the relative importance of different
mortality agents affecting wolves and coyotes, we

estimated cause-specific mortality rates using the non-
parametric cumulative incidence function estimator

(CIF; Heisey and Patterson 2006). We attributed
mortality of radio-collared adults and yearlings to (1)

vehicular collisions, (2) harvest trapping or shooting, (3)
natural causes, or (4) unknown causes. Natural causes

of death included mange, starvation, being killed by
other canids or prey, and unknown natural causes

(necropsy failed to determine cause of death, but harvest
and vehicular collision were ruled out). Next, we

combined all non-harvest mortalities into a single cause
to identify classes of animals outside of APP that were
more or less likely to die of harvest; we used Cox PH

models (at P , 0.05), following methods described by
Lunn and McNeil (1995) and Heisey and Patterson

(2006). Specifically, we (1) created multiple records for
each individual (one set for each cause of death), with an

associated stratum variable indicating the specific cause;
(2) fit models that included this stratum identifier in the

model statement to allow fitting of separate hazard
functions for harvest and non-harvest mortality; and (3)

included interactions between covariates of interest and
the cause of death/stratum identifier to allow the effect

of covariates to differ for harvest and non-harvest
mortality. We conducted all survival and cause-specific

mortality analyses using the ‘‘survival,’’ ‘‘MASS,’’ and
‘‘gtools’’ packages in R version 2.15.1 (R Development

Core Team 2011).

RESULTS

Overall, non-APP, and APP survival

We documented 58 deaths of radio-collared canids
across the four study units during 2004–2010. The top

model predicting adult and yearling mortality risk
retained APP, resident, eastern wolf, and male variables

(Table 2). Based on the top model, animals in APP
survived better than animals outside of APP (z¼�4.4, P
, 0.001, hazard ratio ¼ 0.18, 95% CI [0.09–0.39]).
Additional results from the overall analysis are in

Appendix D. The top model with non-APP data (n ¼
49 deaths) retained the resident and eastern wolf

variables (Table 2). Based on the top model, residents

JOHN F. BENSON ET AL.258 Ecology, Vol. 95, No. 2



survived better than nonresidents (z ¼�4.2, P , 0.001,

hazard ¼ 0.34, [0.21–0.56]), whereas eastern wolves

survived worse than other Canis types (z ¼ 3.1, P ¼
0.002, hazard ¼ 2.12, [1.32–3.38]). No other variables

included in the non-APP analysis significantly influenced

the survival of adult and yearling canids (Appendix E).

Parameter estimates, confidence intervals, and signifi-

cance tests were very consistent for individual variables

across supported models (Appendix E). Variable

weights also identified residency status and eastern wolf

ancestry as the most influential factors in survival

outside of APP (Table 3).

For APP, the null model was strongly supported

(DAICc¼ 0.96). Thus, there was little evidence that any

of the variables considered influenced the survival of

adults and yearlings in APP. Annual survival rate for all

canids in APP was 0.852 6 0.05 (mean 6 SE; n¼ 58 [39

eastern wolves, 8 eastern wolf 3 coyote, 8 admixed gray

wolves, 3 coyotes]). Outside of APP, annual survival

rates were 0.662 6 0.07 for coyotes (n ¼ 35), 0.551 6

0.09 for eastern wolf 3 coyote hybrids (n¼ 22), 0.625 6

0.10 for admixed gray wolves (n¼ 20), and 0.388 6 0.12

for eastern wolves (n ¼ 15).

Resident survival

The top model for mortality risk of radio-collared

adult and yearling residents (n¼ 25 deaths) retained the

main effects of 2010, secondary roads, and deer

availability, as well as the interaction between eastern

wolf and secondary roads (Table 2). Residents survived

poorly in 2010 compared with other years (z¼ 3.4, P ,

0.001, hazard ratio ¼ 4.9, 95% CI [1.95–12.55]).

Secondary road density within home ranges negatively

influenced survival (z ¼ 5.0, P , 0.001, hazard ratio ¼
1.22, [1.13–1.32]), whereas deer availability within home

ranges positively influenced survival of residents (z ¼
�3.4, P , 0.001, hazard ¼ 0.34, [0.19–0.63]). The

significant interaction between eastern wolf ancestry and

secondary roads (z ¼ 4.8, P , 0.001) indicated that

TABLE 2. Candidate models of mortality risk of radio-collared adult and yearling wolves, coyotes,
and hybrids in and adjacent to Algonquin Provincial Park, 2004–2010, from model sets with all
data (Overall), all data outside APP (non-APP), and residents in and out of APP (residents).

Model set k AICc DAICc

Overall model

Resident þ APP� þ eastern wolf þ male 4 557.16 0
Resident þ APP þ eastern wolf 3 557.65 0.49
Resident þ APP þ eastern wolf þ 2010� 4 558.09 0.93
Null model 0 579.70 21.54

Non-APP

Resident þ eastern wolf 2 428.74 0
Resident þ eastern wolf þ male 3 429.59 0.84
Resident þ eastern wolf þ adult 3 429.89 1.14
Resident 1 430.39 1.64
Resident þ eastern wolf þ hybrid§ 3 430.39 1.65
Resident þ eastern wolf þ 2010 3 430.45 1.71
Resident þ eastern wolf þ coyote 3 430.67 1.93
Resident þ eastern wolf þ male þ adult 4 430.71 1.96
Null model 0 441.58 12.83

Residents

28 road density þ deer} þ 2010 þ eastern wolf 3 28
road density

4 211.41 0

Null model 0 227.45 16.05

Note: We show the number of variables retained (k), AIC for small samples (AICc), and AICc

differences (DAICc), for all models with strong empirical support (DAICc , 2), as well as the null
model.

� Coded 1 for animals in APP, 0 for animals outside.
� Coded 1 for data from 2010, 0 for data from 2004–2009.
§ Eastern wolf 3 coyote hybrid.
} Index of deer availability within home ranges of resident canids.

TABLE 3. Variable weights for all predictor variables included
in the overall analysis outside of APP and resident survival
analyses calculated by summing the Akaike model weights
across all models retaining a given variable (Burnham and
Anderson 2002).

Variable Outside APP Residents

Resident 0.97 NA
Eastern wolf 0.56 0.10
Male 0.34 NA
Adult 0.29 NA
Coyote 0.28 0.08
2010 0.25 0.97
Admixed gray wolf 0.22 0.05
Eastern wolf 3 coyote hybrid 0.22 0.05
Deer availability NA 0.96
All 28 road density variables� NA 0.94
28 road density NA 0.81
Eastern wolf 3 28

road density
NA 0.62

All eastern wolf variables� NA 0.70
APP NA 0.10
Moose density NA 0.06

� Included as a main effect or interaction.
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resident eastern wolves had lower survival at increasing

secondary road density than all other genotypes

combined. To investigate the relationships between

eastern wolf mortality risk at increased secondary road

density and that of each of the other three ancestry

groups individually, we reversed the reference group for

this interaction (i.e., from all other genotypes to eastern

wolves). Resident coyotes (z¼�5.0, P , 0.001, hazard¼
0.57, [0.46–0.71]), coyote 3 eastern wolf hybrids (z ¼
�3.9, P , 0.001, hazard ¼ 0.62, [0.48–0.79]), and

admixed gray wolves (z ¼ �2.4, P ¼ 0.017, hazard ¼
0.57, [0.35–0.90]) each survived better than resident

eastern wolves as road density increased (Fig. 2). Given

the relatively modest sample size, we repeated the

analysis while sequentially removing data from each

resident eastern wolf that died during the study to ensure

that it was not unduly influenced by any single mortality

events (Appendix F). Variable weights also indicated

that temporal effects (2010), road density, deer avail-

ability, and the eastern wolf 3 secondary road interac-

tion had the greatest influence on survival of residents.

Cause-specific mortality

Across the study area, based on the nonparametric

cumulative incidence function estimator, CIF, the

mortality rate due to harvest (CIF ¼ 15.8% 6 2.7%,

mean 6 SE; n ¼ 29, 95% CI [11.3–20.2%]) was greater

than the rate due to natural deaths (CIF¼ 6.6% 6 1.9%;

n¼ 12, 95% CI [3.6–9.7%]), vehicular collisions (4.9% 6

1.5%; n ¼ 9, 95% CI [2.0–7.5%]), or unknown causes

(4.8% 6 1.7%; n ¼ 8, 95% CI [1.6–6.7%]). Outside of

APP, the mortality rate due to harvest (CIF¼ 24.0% 6

3.9%; n¼29, 95% CI [17.6–30.5%]) was also greater than

for all other causes (Appendix G). No harvest mortality

was documented in APP (Appendix G). Outside of APP,

eastern wolves (z¼ 3.0, P¼ 0.003, hazard¼ 3.45, 95% CI

[1.52–7.84]) were more likely to be killed by harvest than

all other Canis types, whereas residents (z ¼�2.6, P ¼
0.008, hazard ratio¼ 0.37, [0.18–0.78]) were less likely to

die of harvest than nonresidents.

DISCUSSION

Adult survival is the most important demographic

parameter influencing population growth of many large

carnivores (e.g., Carroll and Miquelle 2006), including

eastern wolves (Patterson and Murray 2008). We

demonstrated that adult and yearling survival of eastern

wolves in harvested areas was poor relative to (1)

sympatric Canis types in areas adjacent to APP, and (2)

eastern wolves and other canids within APP. In APP,

annual survival was high (ŝ ¼ 0.85) for all canids and

mortality risk did not differ significantly in relation to

genetic ancestry or any other factors that we investigat-

ed. Conversely, mortality risk was strongly influenced by

residency status and eastern wolf ancestry outside of

APP, where annual survival of eastern wolves was low (ŝ
¼ 0.39) and they were more likely than other Canis types

to be trapped or shot. Eastern wolves are the dominant

canid within APP, but are rare in adjacent areas (Benson

et al. 2012) and outside of central Ontario (Rutledge et

al. 2010). Our results indicate that genotype-specific

Canis survival is environmentally mediated by variable

harvest regulations and road densities, and that this is an

important demographic mechanism underlying the

spatial genetic structure of the hybrid zone.

Survival in APP was not significantly higher for

eastern wolves, which raises the question of how they

have maintained their numerical dominance within the

park. Despite some hybridization with gray wolves and

coyotes (Rutledge et al. 2010, 2011), eastern wolves have

apparently been the dominant canid within APP since at

least the beginning of the 20th century (reviewed by Kyle

et al. 2006). All canids are territorial with each other

within the central Ontario hybrid zone, reducing

opportunities for entire packs of coyotes, gray wolves,

and hybrids to establish in APP where the landscape is

saturated with occupied canid territories (Benson and

Patterson 2013). Canids usually disperse individually

(Mech and Boitani 2003), such that solitary gray wolves,

coyotes, and hybrids dispersing into APP probably join

existing packs occasionally. However, most reproduc-

tion within APP involves eastern wolf pairs (Rutledge et

al. 2010, Benson et al. 2012) and eastern wolf pups

produced within the park also join existing packs (B.

Patterson and J. Benson, unpublished data). This means

that immigration of gray wolves, coyotes, and hybrids is

probably balanced by dispersal of eastern wolves within

APP. Thus, the combination of historical eastern wolf

abundance within the park, strong territoriality, assor-

tative mating, and high survival in APP probably

explains the continued numerical dominance of eastern

wolves within the park, even without surviving better

than other Canis types. Nonetheless, given the conser-

vation status of eastern wolves and their scarcity outside

of APP, it would be prudent to continue to monitor the

genetic structure of APP canids to determine whether

eastern wolves remain numerically abundant within

APP in the future.

In contrast to the apparent stability of the APP

population (Patterson and Murray 2008), our findings

indicate that the unprotected areas adjacent to APP

probably represent a population sink for eastern wolves.

Fuller et al. (2003) estimated that wolf populations

should stabilize (with no population growth or decline)

with an annual survival rate of 0.66, which is consider-

ably higher than the survival of eastern wolves that we

documented. Thus, poor survival of eastern wolves is

likely to limit population growth outside of APP and

also influences hybridization dynamics by keeping

population density low. The lower density of eastern

wolves outside of APP (Rutledge et al. 2010, Benson et

al. 2012) probably exacerbates hybridization because of

limited conspecific mating opportunities (Stephens and

Sutherland 1999, Adams et al. 2003). Indeed, Rutledge

et al. (2010) suggested that assortative mating was

responsible for the lower levels of coyote and gray wolf
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introgression in the APP population, where .70% of

breeding unions were between eastern wolves. Further-

more, high levels of human-caused mortality during

intensive wolf culls temporarily lowered eastern wolf

density in APP during the 1960s, and appears to have

facilitated increased coyote introgression during that

period (Rutledge et al. 2011). We documented definitive

(n ¼ 5, i.e., confirmed by genetic analysis of pups;

Benson et al. 2012) or apparent (n ¼ 2; telemetry data

only) breeding unions outside of APP involving eastern

wolves. Four of these unions were eastern wolves paired

with hybrids (n ¼ 3) or coyotes (n ¼ 1), supporting the

contention that assortative mating by eastern wolves is

less common at lower density outside of APP. Whereas

many wolf populations can withstand significant harvest

mortality because of their high reproductive potential

(Fuller et al. 2003), much of the eastern wolf reproduc-

tion outside APP involves hybridization and does not

contribute to eastern wolf population growth.

Populations subjected to high harvest mortality may

be sustained by sufficient immigration from nearby

reserves (Pulliam 1988, Lariviere et al. 2000), which

probably explains the persistence of eastern wolves in

patches outside of APP. Because both residency status

and eastern wolf ancestry were important predictors of

survival and harvest mortality outside of the protected

area, these nonresident eastern wolves were at especially

high risk of harvest outside of APP. Indeed, four of five

radio-collared eastern wolves that dispersed from APP

into adjacent unprotected areas during the study (but

remained within the study area) were harvested before

establishing residency less than one year after leaving

APP (175 6 47 days, mean 6 SE). The fifth dispersing

eastern wolf died of unknown causes 153 days after

leaving APP. Clearly, some eastern wolves were able to

establish residency, which reduced their risk of mortal-

ity, but their survival was still poor relative to other

Canis types in these areas. Our results with respect to

residency status were consistent with many previous

studies of wolf and coyote survival indicating that

residents survive better than nonresidents in harvested

populations (e.g., Berger and Gese 2007, Smith et al.

2010), but that residency status does not affect survival

in protected areas (e.g., Fuller et al. 1989).

Lower survival and higher harvest mortality of

eastern wolves relative to other genotypes may suggest

that most eastern wolves in adjacent, unprotected

landscapes originated from APP, and are therefore

naı̈ve regarding mortality risk from humans and roads.

In protected areas, wolves may be attracted to roads to

facilitate rapid movement across rugged terrain and

increase predation efficiency (James and Stuart-Smith

2000, Whittington et al. 2005). In harvested areas,

trapping and shooting mortality of canids is often

FIG. 2. Genotype-specific survival rates in relation to increasing secondary road density predicted by the Cox proportional
hazard survival model for resident radio-collared Canis spp. in and adjacent to Algonquin Provincial Park, 2004–2010. Survival
rates (mean 6 robust SE) were predicted at a range of secondary road densities between 0 and 1.0. Road densities within the home
ranges of each individual are indicated below the x-axis with colors corresponding to those used to show survival trends for each
Canis type. Dashed trend lines indicate survival rates predicted above the range of road densities where animals of a given ancestry
group were monitored.
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associated with roads (Person and Russell 2008). Canids

raised in harvested areas may adopt behavioral mech-

anisms to mitigate harvest risk, such as avoidance of

roads during daytime when human activity is highest

(Hebblewhite and Merrill 2008). These behavioral

mechanisms may be absent or poorly developed in

animals originating from APP, where wolves are

accustomed to exploiting the beneficial qualities of

roads without increased risk of mortality. Thus, roads

could represent an ecological trap (sensu Gates and

Gysel 1978) or an attractive sink (sensu Delibes et al.

2001) for eastern wolves dispersing into harvested

landscapes from protected areas.

Previous research has identified two main mechanisms

leading to source–sink population dynamics: con-

strained dispersal (Pulliam 1988, Dias 1996, Diffendor-

fer 1998) and maladaptive habitat selection (Remeš

2000, Delibes et al. 2001). Generally these two mecha-

nisms have been considered as separate, alternative

explanations for source–sink dynamics, where individu-

als either move into sinks because of density-dependent

or density-independent constraints on dispersal (e.g.,

Dias 1996, Diffendorfer 1998), or because they incor-

rectly assess the mortality risk or reproductive potential

of these habitats (Remeš 2000, Delibes et al. 2001). Our

results suggest that both dispersal and poor habitat

decisions may operate in a hierarchical manner, at

different scales, to create source–sink dynamics in

systems structured around protected areas. For instance,

at the landscape level, some animals were constrained to

disperse out of the source (APP), probably due to

territoriality (Benson and Patterson 2013) and/or to

density-dependent forces operating on the stable wolf

population within the protected area (Patterson and

Murray 2008). Once outside of the protected area,

individuals dispersing through the matrix may make

maladaptive habitat choices at finer scales, such as

establishing home ranges in areas of high road density.

Given the hierarchical nature of animal habitat selection

(Johnson 1980), it makes sense that processes governing

movement from source to sink habitats would also be

hierarchical. This is especially true when mortality risk

itself is hierarchical, for example, when landscapes differ

in relative risk (protected vs. unprotected) and specific

habitat features within these landscapes further increase

risk (e.g., roads).

Two main theoretical models explain the maintenance

of stable hybrid zones. The tension zone model predicts

that a stable genetic cline is maintained by a balance

between dispersal and endogenous selection against

hybrids (Barton and Hewitt 1985). Alternatively,

environmentally mediated models predict stable hybrid

zones where hybrid and parental genotypes are favored

by different environmental conditions, rather than

because they are intrinsically superior or inferior

(Moore 1977, Rand and Harrison 1989). The structure

of the central Ontario Canis hybrid zone appears to be

maintained by regular dispersal of eastern wolves from

APP into the matrix, consistent with a tension zone.

However, in direct contrast to the tension zone model,
relative fitness of hybrid and parental types and the

structure of the Canis hybrid zone were influenced
strongly by environmental heterogeneity rather than

endogenous selection. Higher mortality of eastern
wolves in harvested landscapes and regular dispersal
from APP probably contribute to their patchy distribu-

tion, similar to mosaic hybrid zones of other species
influenced by extinction–recolonization dynamics (Bri-

dle et al. 2002). The Canis hybrid zone is structured by
spatially variable harvest regulations that appear to have

simultaneously supported the persistence of a genetically
distinct population within APP (Rutledge et al. 2010)

and maintained eastern wolves at low density adjacent
to the protected area through a cycle of dispersal, high

mortality, and hybridization. We suggest that protected
areas can influence hybrid zone structure and stability

through a combination of mechanisms that are both
consistent with and contradictory to predictions of
classical hybrid zone models.

Our results, in combination with those of Benson et
al. (2012), demonstrate that protected areas can exert a

powerful influence on hybridization dynamics between
species and suggest that rare hybridizing taxa are able

to maintain genetic distinctiveness within protected
areas, even when reproductive barriers are few, and

hybrids and other parental types are more abundant,
outside the reserve. Thus, efforts to maintain or restore

naturally regulated systems by protecting rare, hybrid-
izing species from exploitation can help to address the

challenge of conserving hybridizing species. Although
large protected areas similar to APP may be difficult to

establish in many human-altered landscapes, our
results highlight the importance of existing parks and

reserves with respect to their potential to influence the
structure of hybrid zones involving rare species.
Additionally, many hybridizing species are of taxa

(e.g., birds, fish, amphibians) with modest space
requirements compared to wolves, which may facilitate

mitigation of undesirable consequences of hybridiza-
tion through the influence of protected areas consider-

ably smaller than APP.
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