
Dennis J. Richardson
Quinnipiac University, dennis.richardson@quinnipiac.edu

Scott Lyell Gardner
University of Nebraska - Lincoln, slg@unl.edu

Jonathan W. Allen Jr.
Quinnipiac University, Jonathan.Allen@quinnipiac.edu

Follow this and additional works at: http://digitalcommons.unl.edu/parasitologyfacpubs
Part of the [Biodiversity Commons](http://digitalcommons.unl.edu/biodiversity), [Parasitology Commons](http://digitalcommons.unl.edu/parasitology), and the [Zoology Commons](http://digitalcommons.unl.edu/zoo)

http://digitalcommons.unl.edu/parasitologyfacpubs/773

This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Redescription of *Oligacanthorhynchus microcephalus* (Rudolphi, 1819)

DENNIS J. RICHARDSON,1,3 SCOTT L. GARDNER,2 AND JONATHAN W. ALLEN, JR.1

1 Quinnipiac University, Department of Biological Sciences, BC-SCI, 275 Mt. Carmel Avenue, Hamden, Connecticut 06518, U.S.A. (e-mail: Dennis.Richardson@quinnipiac.edu; Jonathan.Allen@quinnipiac.edu) and
2 Harold W. Manter Laboratory of Parasitology, University of Nebraska State Museum, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0514, U.S.A. (e-mail: slg@unl.edu)

ABSTRACT: *Oligacanthorhynchus microcephalus* (Rudolphi, 1819) Schmidt, 1972 was originally described from the philander opossum *Caluromys philander* from Brazil. *Oligacanthorhynchus tortuosa* (Leidy, 1850) Schmidt, 1972 was originally described from the Virginia opossum (*Didelphis virginiana*) in North America. Six years after describing *O. tortuosa*, Leidy indicated the synonymy of *O. tortuosa* with *O. microcephalus*. This taxonomic view persisted for decades until Van Cleave, in 1924, recognized the validity of *O. tortuosa*, apparently without examining the type material of *O. microcephalus*. Subsequent workers have recognized 2 species of *Oligacanthorhynchus* from New World opossums: *O. microcephalus* from South American opossums and *O. tortuosa* from North American opossums. In this study, comparison of individuals of *O. tortuosa* from *D. virginiana* from the United States with the type specimen of *O. microcephalus* revealed the worms to be conspecific. It was thus determined that *O. tortuosa* is a junior synonym of *O. microcephalus* and *O. microcephalus* is redescribed on the basis of both laboratory-reared material and the type specimen. Additionally, comparison of the type material of *Oligacanthorhynchus tumida* (Van Cleave, 1947) Schmidt, 1972 revealed these specimens to be conspecific with *O. microcephalus*; thus *O. tumida* (Van Cleave, 1947) Schmidt, 1972 is considered a junior synonym of *O. microcephalus*. Analysis of the literature and museum specimens reveals that *O. microcephalus* exhibits a broad distribution throughout much of the New World, utilizing an array of hosts with substantially overlapping ranges.

KEY WORDS: *Oligacanthorhynchus microcephalus*, *Oligacanthorhynchus tortuosa*, *Didelphis virginiana*, *Didelphis marsupialis*, *Caluromys cayopollin*, *Oligacanthorhynchidae*, *Acanthocephala*.

Oligacanthorhynchus microcephalus was originally described as *Echinorhynchus microcephalus* by Rudolphi (1819) from the opossum, *Didelphis cayopollin*, in Brazil. Gardner (2007) later determined *D. cayopollin* to be a synonym of the philander, or bare-tailed woolly opossum, *Caluromys philander philander*. Leidy (1850) originally described *Oligacanthorhynchus tortuosa* as *Echinorhynchus tortuosa* from the Virginia opossum (*D. virginiana*); however, the locality from which the opossum was collected was not given, nor apparently was type material deposited (Van Cleave, 1924). Leidy (1856) considered *E. tortuosa* to be a synonym of *E. microcephalus* but offered no rationale underlying this decision. The synonymy of *E. tortuosa* and *E. microcephalus* was recognized by Porta (1909) and Travassos (1917). Travassos (1915) transferred *E. microcephalus* to the genus *Hamanniella*. Van Cleave (1924) recognized the validity of *E. tortuosa* solely on the basis of comparison with eggs taken from an ancanthocephalan purported to be *H. microcephalus* collected from a black-eared opossum *Didelphis aurita* by Travassos in Brazil. Unfortunately, Van Cleave (1924) appears not to have examined the type specimen of *O. microcephalus* upon which Rudolphi based his original description. Southwell and Macfie (1925) determined that the genus *Hamanniella* was a junior synonym of *Oligacanthorhynchus*, although this synonymy was not widely accepted until its endorsement by Schmidt (1972) in his revision of the class Archiacanthocephala. In short, since the resurrection of *O. tortuosa* by Van Cleave (1924) most workers have recognized two species of *Oligacanthorhynchus* from New World opossums: *O. microcephalus* from South American opossums and *O. tortuosa* from North American opossums. For a detailed account of the sordid taxonomic history of this group see Schmidt (1972).

Representatives of the genus *Caluromys* occur as far north as southern Mexico, although *C. philander* is restricted to Venezuela, Trinidad, the Guianas, Brazil, and eastern Bolivia (Gardner, 2007). Didelphid marsupials were common in North America during the late Cretaceous, but had disappeared from

3 Corresponding author.
North America by the Eocene (Dawson, 1967). Presently, 95 species of opossums representing 19 genera occur in South America, whereas only a single species of marsupial, *D. virginiana*, the largest marsupial occurring in the New World, occurs as far north as the United States. The genus *Didelphis* is represented by 3 groups of opossums comprised of 6 species: the black-eared opossums, *Didelphis marsupialis* and *D. aurita*, and the white-eared opossums *Didelphis albiventris*, *Didelphis pernigra*, and *Didelphis imperfect*, all of which occur in South America. Of these, only *D. marsupialis* also occurs in North America, with a range extending northward well into Mexico. The sixth species, *D. virginiana*, occurs throughout much of North America. The range of *D. virginiana* extends as far south as Nicaragua and thus substantially overlaps the range of *D. marsupialis* in much of southern Mexico (Lowery, 1974). *Didelphis virginiana* is thought to have entered North America only after the Pliocene union of South and North America via land bridge (Gilmore, 1977) and was initially restricted to the eastern United States. However, the distribution of *D. virginiana* now includes the entire Pacific coast from southern California southward into Mexico. The western population of *D. virginiana* is presumably the result of opossums introduced by immigrants entering California from the eastern United States between 1870 and 1915, with the founding opossum populations being primarily from Missouri and Tennessee (Grinnell et al., 1937; Gilmore, 1977). *Didelphis virginiana* has also recently been introduced into Grand Junction, Colorado and parts of Arizona, New Mexico, and Idaho (Gardner, 1973; Gilmore, 1977; Sealander, 1979). In addition, within the past century, *D. virginiana* has extended its range north-eastward throughout much of New England as far north as extreme southern Maine (Whitaker and Hamilton, 1998).

The purpose of this paper is to clarify the taxonomic status of the putative North American *O. tortuosa* and South American *O. microcephalus* by critical comparison of North American material with both the type specimen of *O. microcephalus* and with material recently collected from South American opossums. Additionally, a brief review of previous reports of *O. microcephalus* is provided.

MATERIALS AND METHODS

Sixty-four 68-d-old adults of *O. tortuosa* were taken from laboratory-infected opossums (*D. virginiana*) infected with cystacanths taken from millipedes (*Narcus americanus*) collected from Honey Island Swamp on the Pearl River, east of Slidell, St. Tammany Parish, Louisiana (Richardson, 2006). These specimens were compared with the single type specimen, an immature male, originally described as *E. microcephalus* by Rudolph (1819) and deposited in the helminth collection of the Zoologisches Museum, Berlin, now Museum für Naturkunde, Berlin, Germany, catalogue number 1154 (Hartwick et al., 1998). Additional specimens were obtained from the Colección Nacional de Helminos, IBUNAM, Mexico, Distrito Federal (collection numbers 610, 611, 618, 2965, 4497, 4779, and 5074); the Harold W. Manter Laboratory, University of Nebraska State Museum (HWML; collection numbers 35092, 49770, 60308, and 60060, 67230, 67231, 67232, and 67233); the Museu de Zoologia Universidade de São Paulo, São Paulo, Brazil (MZSP; collection numbers 131, 189, 190, 336, 390, 680, and 964); the United States National Parasite Collection (USNPC); collection numbers 8916, 28526, 30815, 37606, 38336, 44224, 61134, 61194, 61195, 61196, 61197, 61198, 61500, 61501, 61502, 61503, 61504, 61505, 61506, 61507, 69862, 74429, 74430, 83346, 90910, 97972, 97973, 97974, 97975, 97976, and 97977); and the personal collection of Dr. Brent B. Nickol, University of Nebraska-Lincoln, Lincoln, Nebraska.

Unmounted specimens were prepared, examined, and drawn as described by Richardson and Barger (2006). Measurements were made as described by Richardson (2005), are in micrometers unless otherwise stated, and are given as range followed by mean in parentheses. Terminology for plane shapes follows Clopton (2004).

RESULTS AND DISCUSSION

Specimens of putative *O. tortuosa* from Louisiana collected in this study were morphologically consistent with the type specimen of *O. microcephalus*, and thus in agreement with Leidy (1856), Porta (1909), and Travassos (1917). *O. tortuosa* was determined to be a junior synonym of *O. microcephalus*. In addition, contemporary specimens of *Oligacanthorhynchus* sp. collected from Bolivia were determined to be conspecific with *O. microcephalus*. Examination of the type series of *Hamanniella tumida* described by Van Cleave (1947) as *Travassosia tumida* from *D. virginiana* in Oklahoma, U.S.A. and transferred since first to the genus *Hamanniella* by Van Cleave (1953) and then to the genus *Oligacanthorhynchus* by Schmidt (1972), who revealed the 2 species to be conspecific. Thus, *O. tumida* is considered a junior synonym of *O. microcephalus*. Table 1 gives morphometric comparison of *O. tortuosa* from Louisiana, the type specimen of *O. microcephalus*, the type material of *O. tumida*, and contemporary specimens of *O. microcephalus* collected from Bolivia. Specimens collected from Bolivia were not included in the redescriptions of *O. microcephalus*, even though there were slight differences in ranges of proboscis length and width and lengths of hooks 1–4. In short, some of the Bolivian specimens were immature. Nevertheless, morphomet-
ric data for these specimens are provided in Table 1 to facilitate any future comparative analysis of North American and South American specimens of *O. microcephalus* as more material becomes available.

Table 1. Summary of morphometric data for the holotype of Oligacanthorhynchus microcephalus (Rudolphi, 1819) (specimen 1154 Museum für Naturkunde, Berlin, Germany), holotype and allotype of Travassosia tumida (Van Cleave, 1947) (USNPC37606), laboratory-reared specimens from Louisiana, United States of America (Yale Peabody Museum numbers YPM 68124-YPM68194 and YPM68466-YPM68468), and specimens collected from Bolivian opossums in the present study (Harold W. Manter Laboratory, University of Nebraska State Museum, Lincoln, Nebraska numbers HWML35092, 60308, and 60600). All measurements in micrometers unless otherwise stated.

<table>
<thead>
<tr>
<th>Character</th>
<th>O. microcephalus type</th>
<th>T. tumida</th>
<th>Louisiana specimens</th>
<th>Bolivian specimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trunk (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length, male</td>
<td>62.4</td>
<td>105.4</td>
<td>71–145 (114)</td>
<td>58.3–101.6 (76.9)</td>
</tr>
<tr>
<td>Maximum width male</td>
<td>3.3</td>
<td>3.5</td>
<td>3.2–5.5 (4.0)</td>
<td>3.1–4.9 (4.0)</td>
</tr>
<tr>
<td>Length, female</td>
<td>—</td>
<td>91.2</td>
<td>95–258 (179)</td>
<td>94–271 (143)</td>
</tr>
<tr>
<td>Maximum width female</td>
<td>—</td>
<td>3.7–6.9</td>
<td>4.0–9.0 (7.1)</td>
<td>3.9–10.0 (6.5)</td>
</tr>
<tr>
<td>Proboscis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>261</td>
<td>264–270 (267)</td>
<td>246–350 (296)</td>
<td>236–309 (277)</td>
</tr>
<tr>
<td>Width</td>
<td>249</td>
<td>228–288 (258)</td>
<td>246–390 (313)</td>
<td>222–330 (280)</td>
</tr>
<tr>
<td>Length of hooks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hook 1</td>
<td>—</td>
<td>88–100 (95)</td>
<td>75–110 (92)</td>
<td>63–100 (83)</td>
</tr>
<tr>
<td>Hook 2</td>
<td>—</td>
<td>—</td>
<td>58–89 (73)</td>
<td>53–95 (69)</td>
</tr>
<tr>
<td>Hook 3</td>
<td>68</td>
<td>51–88 (66)</td>
<td>51–76 (67)</td>
<td>50–57 (55)</td>
</tr>
<tr>
<td>Hook 4</td>
<td>—</td>
<td>60–68 (64)</td>
<td>43–76 (60)</td>
<td>40–60 (51)</td>
</tr>
<tr>
<td>Hook 5</td>
<td>—</td>
<td>51–63 (58)</td>
<td>35–65 (49)</td>
<td>35–53 (49)</td>
</tr>
<tr>
<td>Hook 6</td>
<td>—</td>
<td>45</td>
<td>33–53 (43)</td>
<td>33–50 (40)</td>
</tr>
<tr>
<td>Testes length (mm)</td>
<td>3.7</td>
<td>5.5–5.8 (5.7)</td>
<td>4.0–7.9 (6.2)</td>
<td>3.4–7.6 (5.4)</td>
</tr>
<tr>
<td>Testes width (mm)</td>
<td>1.1</td>
<td>1.5–1.6 (1.6)</td>
<td>1.3–3.3 (2.1)</td>
<td>1.1–2.6 (1.9)</td>
</tr>
<tr>
<td>Seafftigen’s pouch length (mm)</td>
<td>3.3</td>
<td>3.4</td>
<td>3.0–4.1 (3.6)</td>
<td>2.4–4.6 (3.5)</td>
</tr>
<tr>
<td>% trunk occupied by male system</td>
<td>36.3</td>
<td>34.6</td>
<td>25.7–41.9 (33.1)</td>
<td>27.2–39.0 (33.3)</td>
</tr>
<tr>
<td>% trunk occupied by female system</td>
<td>—</td>
<td>2.7</td>
<td>1.0–3.0</td>
<td>1.1–2.2</td>
</tr>
<tr>
<td>Egg length</td>
<td>—</td>
<td>—</td>
<td>83–110 (98)</td>
<td>90–101 (97)</td>
</tr>
<tr>
<td>Egg width</td>
<td>—</td>
<td>—</td>
<td>38–50 (44)</td>
<td>35–48 (42)</td>
</tr>
</tbody>
</table>

Oligacanthorhynchus microcephalus (Rudolphi, 1819) Schmidt, 1972

Syn. Echinorhynchus microcephalus

Rudolphi, 1819; Echinorhynchus tortuosa Leidy, 1850; Hamanniella microcephalus (Rudolphi, 1819) Travassos, 1915; Hamanniella tortuosa (Leidy 1850) Van Cleave, 1924; Hamanniella tumida (Van Cleave, 1947) Van Cleave, 1953; Oligacanthorhynchus tortuosa (Leidy, 1850) Schmidt, 1972; Oligacanthorhynchus tumida (Van Cleave, 1947) Schmidt, 1972; Travassosia tumida Van Cleave, 1947 (Figs. 1–5)

General: (on the basis of 64 68-d-old worms (25 females, 37 males, and 2 worms of undetermined sex) acquired from laboratory infections of Virginia opossums (Didelphis virginiana) infected with cystacanths taken from millipedes (Narceus americanus) collected from Honey Island Swamp on the Pearl River, east of Slidell, St. Tammany Parish, Louisiana (Richardson, 2006): Elongate, narrowly constricted at anterior end. Proboscis very broadly to broadly elliptoid to ovoid, 246–350 (296) long, 246–390 (313) wide, armed with 6 longitudinally arranged spiral rows of 6 shallowly rooted hooks each. Anterior-most hooks semifalciform to narrowly semifalciform or semiluniform to narrowly semiluniform, 75–110 (92), exceptionally as short as 65 (see Richardson, 2005); second hooks in each row deeply to very deeply semifalciform or semiluniform, 58–89 (73); third and fourth hooks in each row deeply to narrowly semifalciform or semiluniform. Third hook in each row 51–63 (58). Fourth hook in each row 43–76 (60). Fifth and sixth hooks in each row shallowly to very deeply semifalciform or semiluniform. Fifth hook in each row 33–53 (49). Sixth hook in each row 35–65 (49). Neck 180–264 (229) long by 213–360 (270) wide. Proboscis receptacle approximately 810–1,440 (1,078) long by 230–500 (333) wide with thick muscular wall. Distinct collar
formed at about or just anterior to point of origin of dorsal, ventral, and lateral protruser muscles near the base of the neck (see Schmidt, 1972). Collar variable in length and width depending on degree of extension of neck and proboscis; 30–198 (106) long by 248–540 (370) wide. Collar less distinct when neck and proboscis fully extended. Lemnisci about equal in length, often highly coiled, extending 10–24 (18) mm beyond posterior end of proboscis receptacle, each containing several conspicuous nuclei. Cerebral ganglion in posterior half of proboscis receptacle and narrowly elliptoid or fusiform to elliptoid or fusiform, 150–228 (182) long by 55–113 (81) wide.

Female: (on the basis of 25 gravid females): Trunk 95–258 (179) mm long, exceptionally females may achieve a length of up to 350 mm (see Richardson and Barnawell, 1995). Trunk 0.3–0.7 (0.4) mm wide at anterior end just posterior to collar formed at origin of protruser muscles. Width at widest point in middle portion of trunk to posterior half of trunk, 4.0–9.0 (7.1) mm. Tapering to 1.4–3.0 (2.1) mm at posterior end. Length-to-width ratio (at widest point) 17.9–33.9 (25.3:1). Reproductive tract (from anterior edge of uterine bell to genital pore) occupying 1–3% of length of trunk. Genital pore slightly subterminal. Fully embryonated eggs narrowly elliptoid to elliptoid, 83–110 (98) long by 38–50 (44) wide; outer membrane sculpted; fertilization membrane often exhibits polar thickening or prolongation.

Male: (on the basis of 37 males): Trunk 71–145 (114) mm long by 294–600 (386) wide at anterior end just posterior to collar formed at origin of protruser muscles; widest point at level of anterior testis, or exceptionally just anterior to anterior testis, 3.2–5.4 (4.0) mm. Tapering to 1.2–2.2 (1.7) mm at posterior end. Length-to-width ratio (at widest point) ratio 21.1–36.0 (28.4):1. Testes in tandem, narrowly elliptoid to elliptoid. Anterior testis 3,950–7,900 (6,209) long by 1,300–3,300 (2,151) wide. Posterior testis 4,225–7,825 (6,282) long by 1,275–2,925 (2,072) wide. Distance between posterior end of anterior testis to anterior end of posterior testis 2.3–17.3 (9.0) mm. Eight reniform cement glands, obvoid or teardrop to reniform shaped, originating 0.5–8.8 (3.4) mm posterior to posterior end of posterior testis and extending 7.0–13.5 (10.1) mm. Saefftigen’s pouch 3.0–4.1 (3.6) mm long. Copulatory bursa roughly orbicular, varying in shape from very broadly to broadly elliptoid, 0.7–2.6 (1.9) mm long by 0.8–2.5 (1.8) mm long. Entire male reproductive system occupying posterior 25.7–41.9% (33.1%) of trunk.
et al., 2013), and the brown four-eyed opossum (Metachirus nudicaudatus) from Curiche, Choco Department, Colombia (YPM68128 and YPM68129).

Oligacanthorhynchus microcephalus has been reported from 2 species of armadillos, Dasypus novemcinctus from Texas, U.S.A. (Chandler, 1946) and Euphractus sexcinctus from Chaco Boreal, Paraguay (USNPC74429). The extent to which armadillos serve as host of O. microcephalus is unclear because the intestinal helminth fauna of armadillos is relatively understudied. Richardson et al. (1992) erroneously identified two individuals from the small intestine of a single raccoon (Procyon lotor) from Arkansas as O. tortuosa. Re-examination of these specimens (USNPC81431) revealed them to be Macracanthorhynchus ingens. Figure 6 shows the known distribution of O. microcephalus.

Specimens deposited: YPM68124–YPM68194 and YPM68466–YPM68468.

Remarks

The results of this study revealed O. tortuosa and O. tumida to be conspecific with O. microcephalus. Oligacanthorhynchus microcephalus exhibits a broad distribution throughout much of the New World (Fig. 6). In the United States, O. microcephalus has only been observed from the Southeast, Deep South, Southwest, Midwest, and California. A survey of 30 opossums from Connecticut by Richardson and Campo (2005) failed to reveal the presence of O. microcephalus, suggesting that the range of this helminth does not extend into the New England states, although D. virginiana occurs in New England as far north as southern Maine (Whitaker and Hamilton, 1998). Although the acanthocephalan reported by Feldman et al. (1972) from North Carolina opossums is listed herein as an unconfirmed report of O. tortuosa, the microphotograph provided by Feldman et al. (1972) is clearly of an individual of O. tortuosa. Because the unconfirmed report of O. microcephalus from Pennsylvania opossums by Blumenthal and Kirkland (1976) extends its known range so greatly, further surveys are warranted to confirm this report. Surveys of populations of D. virginiana throughout and particularly along the periphery of its range are warranted to delineate the range of O. microcephalus and other parasites of D. virginiana in North America. It is likely that O. microcephalus arrived in North America with D. virginiana after the Pliocene union of South America and North America. Oligacanthorhynchus microcephalus utilizes opossums as its primary definitive hosts, although there are two reports from armadillos.

The life cycle of O. microcephalus was described by Richardson (2006), who found the millipede N. americanus to serve as intermediate host. Although the range of N. americanus covers the range of O. microcephalus throughout the eastern United States (Shelley et al., 2006), surveys of millipedes throughout the range of O. microcephalus, especially in California, Mexico, and Central and South America, are warranted to identify other intermediate hosts because the range of O. tortuosa greatly transcends that of N. americanus.

The histopathology of O. microcephalus was described by Richardson and Barnawell (1995). Dunagan and Miller (1981) provided detailed anatomical description of the cerebral ganglion in O. microcephalus. Kilian (1932) described the general morphology of the body wall of O. microcephalus and Miller and Dunagan (1978) provided detailed description of the organization of the lacunar system.

ACKNOWLEDGMENTS

The following persons, agencies, and institutions provided or loaned material for this study: Birger Neuhaus, Museum für Naturkunde, Berlin, Germany; Michael A. Barger, Peru State College, Peru, Nebraska;
Brent B. Nickol, University of Nebraska-Lincoln, Lincoln, Nebraska; Patricia Pilit and Eric P. Hober, National Parasite Collection, U.S. Department of Agriculture, Beltsville, Maryland; Fernando Marques and Luiz Ricardo L. de Simone, Museu de Zoolo gia, Universidade de São Paulo, São Paulo, Brazil; Luis Garcia Prieto, Coleccion Nacional de Helmin- tos, Instituto de Biologia, UNAM, Mexico City, Mexico; and Eric Lazo-Wasem and Lourdes Rojas, Division of Invertebrate Zoology, Peabody Museum of Natural History, Yale University, New Haven, Connecticut.

LITERATURE CITED

Richardson, D. J. 2006. Life cycle of Oligacanthorhynchus tortuosa (Oligacanthorhynchiidae), an acanthocephalan of the Virginia opossum (Didelphis virginiana). Comparative Parasitology 73:1–6.

