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Abstract

Four feeding regimens were evaluated
in two different outside facilities [tree
windbreak provided (SP) vs no wind
protection provided (NP)] over two winter
seasons. Feeding regimens were 1) 7.5%
(DM basis) alfalfa hay (AH) diet (Low-
Low); 2) 15% (DM basis) AH diet
switched to a 7.5% (DM basis) AH diet
under cold stress conditions (High-Low);
3) 7.5% (DM basis) AH diet switched to
a 15% (DM basis) AH diet under cold
stress conditions (Low-High); and 4) 15%
(DM basis) AH diet (High-High). For
feeding regimens High-Low and Low-
High, cold stress was determined by use
of a model, based on weather conditions
and previous DMI, to predict lower
critical temperature. Cattle fed in
facilities with SP tended to perform better
under a Low-Low feeding regimen; cattle
fed in facilities with NP tended to benefit
from the extra energy provided by
switching to a lower fiber diet (High-Low
feeding regimen) during cold stress.
Across both facilities, the 5-d moving
averages of wind chill index (WCI) and
WCI >800 units had the best correlation
with change in DMI. All diets except the
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High-High diet displayed significant
linear relationships with increases in
DMI and climatic variables in the NP
facility, whereas cattle fed only the High-
High diet displayed significant relation-
ships in the SP facility. Heat production
associated with the added fiber does not
appear to be greater than that from
added grain. Switching feedlot cattle,
under cold stress, to higher fiber diets
was not beneficial.

(Key Words: Fiber Level, Cold Stress,
Wind Protection, Feedlot, Finishing.)

Introduction

Heat increment, as defined by the
NRC (24), is the increase in heat
production following consumption
of feed by an animal in a
thermoneutral environment. In-
cluded in heat increment are heat of
fermentation and energy expenditure
in the digestive process, as well as
heat produced as a result of nutrient
metabolism. During cold stress, heat
increment is useful in offsetting
increased rate of heat loss. Con-
versely, heat increment aggravates
heat stress at high temperatures by
adding more heat to an already heat-
stressed system. Fluctuations in
environmental conditions that result
from seasonal changes in weather are
known to alter maintenance energy

requirements, possibly necessitating
changes in beef cattle diets (10, 22,
23). The common practice of decreas-
ing dietary energy density (adding
fiber) during periods of changing
weather patterns and cold stress in
the winter might not be beneficial
when metabolic rate and animal
maintenance energy requirements are
increasing (4). Heat increment
differences resulting from increasing
levels of fiber in higher energy
finishing diets are assumed to en-
hance animal energy balance and
performance during cold stress (23).
Heat produced anaerobically by
microbes in the digestive tract is
called the heat of fermentation (8).
Rate of heat production of ruminal
ingesta (heat of fermentation), just
after eating, in ruminants limit-fed
concentrate has been observed to be
greater (per unit weight basis) than
that of the same animals full-fed
forage (11); this was seemingly related
to higher substrate fermentation in
the ruminal contents from the
concentrate diet rather than related
to the feeding method. However,
Webster (29) found the heat incre-
ment of fiber in ruminants was
higher than that of concentrates at
intake levels above the maintenance
requirement.

The objective of this research was
to evaluate the effects of changing
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TABLE 1. Ingredient and nutrient composition (DM basis) of diets.

Alfalfa hay level (%)

IU vitamin D/kg, and 35 IU vitamin E/kg.

tylosin (88.2 g/kg).

Item 11.25 (common) 7.50 15.00

Ingredients, %
Dry rolled corn 84.08 87.05 81.16
Ground alfalfa hay 11.25 7.50 15.00
Liquid supplement? 2.21 2.21 2.21
Soybean meal 0.70 1.36 -
Monensin/tylosin supplementb 1.63 1.63 1.63
Limestone 0.13 0.25 -

Calculated nutrient analysis©
ME, Mcal/kg 3.08 3.12 3.05
NE,, Mcal/kg 1.43 1.46 1.40
CP,q% 12.00 12.00 12.00
Ca, % 0.50 0.50 0.50
P, % 0.35 0.36 0.34
K, % 0.63 0.59 0.66

aMolasses, urea supplement containing 50.8% crude protein equivalent, 12.69% Ca,
0.79%P, 4.77% K, 0.16% Mg, 0.35% S, 7.93% NaCl, 138,800 IU vitamin A/kg, 27,760

b98.36% fine ground corn, 1.13% monensin concentrate (132.3 g/kg), and 0.51%

“Based on NRC (1984) values for dietary ingredients.

energy level in response to cold stress
on feedlot cattle performance during
the finishing period.

Materials and Methods

Two trials were conducted to
evaluate the effects of adjusting the
fiber level in the feedlot finishing
diet for steers fed under cold stress
conditions as determined by calcu-
lated lower critical temperature (LCT),
an indicator of cold stress. Four
feeding regimens, using AH as a fiber
source, were evaluated in two outside
feedlot facilities (SP vs NP) during the
winter season. Protected cattle were
fed in a facility south of the
shelterbelt, whereas unprotected
cattle were fed in a facility north and
east of the shelterbelt. Facilities were
described in detail by Mader et al.
(16). Feeding regimens were 1) 7.5%
AH diet (Low-Low); 2) 15% AH diet
switched to a 7.5% AH diet under
cold stress conditions (High-Low); 3)
7.5% AH diet switched to a 15% AH
diet under cold stress conditions

(Low-High); and 4) 15% AH diet
(High-High). Cold stress was defined
as the point at which ambient
temperature was less than the
animal’s LCT. The LCT was deter-
mined by use of equations from the
NRC (23) and further refined by Fox
et al. (9, 10). An automated weather
station was set up in the center of
each facility to monitor continuously
(sampled every minute and integrated
to hourly observations) temperature,
relative humidity (RH), wind speed,
and wind direction.

The LCT was estimated from

LCT =T, -1 (HP) (1)

where LCT is measured in °C, T.=
core temperature (39°C), I = total
insulation [i.e., tissue plus external
(°C/Mcal per m® per d), and HP = heat
production (Mcal/m’ per d).

The value HP was estimated from
values from the NRC (22) for ME
intake and NE, as follows:

HP = (ME - NE)/A (2)

where HP = heat production (Mcal/m’
per d), ME = ME intake (Mcal/d), NE .
= NE, intake (Mcal/d), and A =
surface area (m’).

Values for tissue insulation were
based on age and body condition,
whereas values for external insulation
were based upon hair coat depth,
hair coat condition (e.g., degree of
mud on cattle), hide thickness, and
wind speed (9). Surface area was
calculated from BW according to the
formula A(m?) = 0.09 kg®7s.

For feeding regimens High-Low
and Low-High, each day before
feeding, average temperature, wind
speed, and hair coat condition from
the previous 24 h (0800 to 0800 h),
along with previous DMI (feed
remaining in bunk weighed daily),
were used in the equations to deter-
mine cold stress status and subse-
quent diet to be fed. The DMI were
based on pen values; therefore, LCT
and cold stress status were determined
for the average of the pen of steers
rather than individual steers. As a
result of day-to-day fluctuations in
feed intake, which can be indepen-
dent of climatic conditions, a
weighted [(three times the previous
24-h DMI plus two times the previous
24- to 48-h DMI plus the previous 48-
to 72-h DMI) =+ 6] intake value was
used. Once a diet change was made,
cattle remained on the diet a mini-
mum of 3 d regardless of cold stress
status.

The two trials were conducted in
consecutive years using 264 (8 or 9
animals per pen, Trial 1; 8 animals
per pen, Trial 2) predominantly
Continental x English crossbred steers
(average initial BW = 422 kg). Before
beginning each trial, steers were
adapted to a common 11.25% (DM
basis) AH diet (Table 1). Starting date
and days on feed for Trials 1 and 2
were December 6 and 70 d and
December 7 and 109 d, respectively.
At the time of initiation of each trial,
steers were implanted with Synovex-
S® (Fort Dodge Animal Health,
Overland Park, KS). Each year, steers
were blocked by BW into a light and
heavy group and allotted randomly
by breed and BW within a block to
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16 pens in a 2 x 4 factorial arrange-
ment of treatments with facility and
feeding regimen as factors. Initial
BW was the average of BW taken on
2 consecutive d. Hot carcass weight
adjusted for a 62% dress was used to
calculate final BW. Liver abscess
scores were assigned at the time of
slaughter; marbling score, yield grade,
and twelfth rib fat thickness were
obtained following a 24-h chill.
Solar radiation and precipitation
data were obtained from the High
Plains Climate Center automated
weather station located 0.7 km west
and 1.6 km north of the feedlot
facilities. Snowfall data were re-
corded by a National Weather Service
observer 0.7 km west of the feedlot.
Temperature humidity index (THI)
was calculated according to the
formula (5, 21, 28):

THI = 0.8 T,, + RH x (T, — 14.3) +
66.3 3)

where T, = dry-bulb temperature
(°C), and RH is expressed as a deci-
mal.

Wind chill index was calculated
according to the formula by
Maybank and McKercher (17):

WCI = (10 VS -V +10.45) 33 - T,)

where V = wind velocity (m/s), and
T, = dry-bulb temperature (°C).
Analysis of variance of steer
performance and carcass data was
calculated using the GLM procedure
of SAS (26). Analysis was performed
as outlined by Steel and Torrie (27)
for a randomized complete block
design with a 2 x 4 factorial arrange-
ment of treatments. Independent
variables were BW (covariate), trial,
facility, feeding regimen, and the
two- and three-way interactions
involving trial, facility, and feeding
regimen. Facility x feeding regimen
interactions (P<0.10) and trial x
facility x feeding regimen interactions
(P<0.10) were found for daily gain,
measures of efficiency, and some
carcass traits in preliminary analyses;
hence, subsequent analyses were

TABLE 2. Mean climatic conditions for winter feeding study.
Wind protection (SP) No wind protection (NP)
Trial Trial

Item 1 2 Mean 1 2 Mean
Temperature, °C -5.13 -3.64 —4.39 -5.15 -3.85 -4.50
Relative humidity, % 78.97 80.54 79.76 78.93 80.36 79.65
THI2 26.56 28.48 27.52 26.53 28.23 27.38
Precipitation, cm 3.99 3.94 3.97 3.99 3.94 3.97
Snow, cm 48.64 43.84  46.24 48.64 43.84 46.24
Wind speed, km/h 9.41 9.13 9.27 13.30 13.70 13.50
Wind directionP

Numeric value, ° 236.9 210.8 223.9 321.7 319.0 320.4

Sector Sw Sw Sw NW NW NW
Solar radiation® 72.3 87.0 79.7 72.3 87.0 79.7
Wind chill index (WCl)d 880.5 837.6 859.1 953.4 924.3 938.9
Proportion of days

with WCI >800 41/69 55/108  48/88.5 50/69 64/108 57/88.5
Proportion of days

with WCI >1,000 14/69 24/108 19/88.5 23/69 40/108 31.5/88.5
Proportion of days

with WCI >1,200 6/69  6/108 6/88.5 8/69 13/108 10.5/88.5
Proportion of days

with THI <35 45/69 65/108  55/88.5 47/69 66/108 56.5/88.5
aTHI (temperature humidity index) = 0.8T y, + RH x (T, - 14.3) + 46.3, where T, = dry
bulb temperature (°C) and RH = relative humidity expressed as a decimal [Thom (28);
NOAA (21)].
bResultant wind direction (north = 0°); SW = South west and NW = North West.
“Measured in kcal/m?2 per h.
dWCl = (10-V0-3 -V + 10.45)(33 - T,.), where V = wind velocity (m/s).

conducted within the facility. Inde-
pendent variables included BW
(covariate), trial, feeding regimen,
and the interaction between trial and
feeding regimen. For steers fed in the
facility with SP, trial x feeding regi-
men interactions were not found;
however, for cattle fed in facilities
with NP, a trial x feeding regimen
interaction (P<0.10) was found for
liver abscess (LA) percentage. Correla-
tion coefficients between climatic
variables and increases in DMI were
determined each day that DMI
increased 5%. These coefficients were
determined within the facility and
year. Additionally, regression esti-
mates between climatic variables and
percentage increase in daily DMI were
determined for each feeding regimen
within a facility for those days in
which an increase in DMI occurred.

Results and Discussion

Average temperature and solar
radiation during the trials (Table 2)
were similar to 30-yr normal tempera-
ture (-5.5°C) and solar radiation
(79.2 kcal/m? per h) found during the
3 mo of December, January, and
February. However, in both years, RH
tended to be greater than normal
(71.5%), whereas wind speed tended
to be less than normal (17.9 km/h).
Wind speed was 31.3% (9.27 vs 13.50
km/h), and WCI was 8.5% (859.1 vs
938.9 kcal/m’ per h) less in the SP
facility than in the NP facility.
Restricting winter winds from the
north and west resulted in the
prevailing winter wind coming from
the southwest in the SP facility.

Steers were on cold stress diets an
average of 28 and 58 d (mean =43 d
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(SP)—2-yr summary.

TABLE 3. Effect of winter feeding regimen on performance and carcass
characteristics of steers fed in area with wind protection provided

“Based on 62% dressing percentage.

Alfalfa hay (%)
7.5 15 7.5 15

Item and 7.52 and 7.5 and 15 and 15 SE
Initial wt., kg 424 423 423 421 3.2
Daily intake

DM, kg 9.72 9.79 9.85 9.94 0.17

ME, McalP 30.33 30.14 30.41 30.26 0.50
Daily gain, kg 1.24 1.10 1.17 1.20 0.05
Efficiency

Gain/DMI 0.127 0.113 0.119 0.121 0.004

Gain/ME intakeb 0.040 0.036 0.038 0.040 0.001
Final wt, kg¢© 535 521 528 529 4.4
Actual dressing percentage  60.91 61.28 60.95 61.37 0.23
Carcass traits

Fat thickness, cm 1.63d 1.44¢ 1.55de 1.57d 0.04

Marbling scoref 541 547 540 546 9

Yield grade 3.7h 3.39 3.49 3.59h 0.1

Liver abscess, % 0 0 0 3.1 1.6

aThe first number in the pair represents the percentage of alfalfa in the normal diet; the
second number represents the percentage of alfalfa in the cold stress diet.
bDietary ME was calculated from NRC (22) values of ME for dietary ingredients.

d.eMeans within a row lacking a common superscript letter differ (P<0.10).
f550 = average small; 650 = average modest.
9.hMeans within a row lacking a common superscript letter differ (P<0.05).

or 48% of time on feed) in Trials 1
and 2, respectively. The proportion
of days with a THI = 35 tended to
overestimate the number of days
steers were on cold stress diets (55 to
56.5 d), whereas the proportion of
days that the WCI was >1,000
tended to underestimate the number
of days (19 to 31.5 d) steers were on
cold stress diets. The proportion of
days that the WCI was >800 overesti-
mated the number of cold stress diet
days in Trial 1 (28 vs 45.5 d) but was
reasonably close to the mean number
of days cattle were on cold stress diets
in Trial 2 (58 vs 59.5 d). The propor-
tion of days that the WCI was >800 is
likely the best indicator of when
cattle begin experiencing cold stress.
Levels of WCI >1,000 and >1,200
would possibly provide an indication
of when cattle are under severe (WCI
> 1,000) and extreme (WCI > 1,200 )
cold stress. Although THI = 35 and

WCI are suggested indicators of
environmental stress, an index
including three factors (wind, tem-
perature, and humidity) instead of
two would likely be a better indicator
of cold stress. In addition, body
condition and pen condition would
influence the degree to which cli-
matic conditions are stressful to the
animal.

In Trial 1 (Yr 1), steers assigned to
High-Low and Low-High dietary
regimens were each switched to the
cold stress diets seven times within
each facility and were on those diets
27 and 28 d, respectively, when fed in
the SP facility and 28 d each when
fed in the NP facility. In Trial 2 (Yr
2), steers fed in the SP facility as-
signed to the High-Low and Low-
High dietary regimens were switched
to cold stress diet six and eight times,
respectively, but were fed those diets
for 52 d each. For steers fed in the

NP facility during Trial 2, eight diet
switches were made with the cold
stress diet being fed 62 and 67 d for
steers assigned to the High-Low and
Low-High dietary regimens, respec-
tively. During both trials, cattle were
fed the cold stress diets for an average
of 6 d each time they were switched
to that diet.

As a result of facility and feeding
regimen interactions (P<0.10), data
are presented within the facility. For
steers fed in the SP facility (Table 3),
no differences were detected in DMI,
ME intakes, and ADG, as influenced
by winter feeding regimen. Dry
matter intake numerically increased
with increasing amounts of fiber fed,
whereas ME intakes were very similar
among treatment groups. Steers
assigned to the low fiber level (7.5%
AH) throughout the trial were the
most efficient numerically. Switching
from high to low fiber levels (High-
Low) tended toward lower (P<0.15)
efficiency of feed and energy conver-
sions compared with groups that
were maintained on either the Low or
High feeding regimens. Switching
from low to high fiber levels (Low-
High) during periods of cold stress
did not alter (P>0.20) feed or energy
conversions compared with steer
groups fed constant fiber levels.
Steers assigned to the High-Low
dietary regimen tended to have lower
(P<0.10) fat thicknesses (backfat)
than did steers fed constant fiber
levels, which is indicative of the
numerically lower gains and lighter
carcass weights experienced by the
steer group fed the High-Low dietary
regimen (Table 3). Steers assigned to
the Low dietary regimen had greater
(P<0.05) yield grades than steers
assigned to the diet-switching regi-
mens. Yield grades of steers assigned
to the High dietary regimen were
intermediate. Differences in LA
incidence among dietary regimens
were not detected.

In the NP facility (Table 4), DM
and ME intakes were greater (P<0.10)
by steers assigned to the High-High
dietary regimen when compared with
steers assigned to the Low-Low and
High-Low dietary regimens. Although
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no differences were found in ME
intakes that could be attributed to
dietary regimen, ME intakes were
numerically greater for the High
treatment group, a trend slightly
different from that found for steers
fed in the SP facility. Differences in
efficiency of gain among dietary
regimens also were not detected.
Although steers assigned to the High-
Low dietary regimen were numerically
the most efficient when compared
with the other dietary regimens, a
trend opposite to that was observed
for steers fed in the SP facility. From a
performance standpoint, these data
suggest that, in protected facilities,
switching diets under cold stress is
not beneficial, but switching from
High to Low fiber diets might be
beneficial in facilities in which wind
protection is not provided.

In the NP facility, dressing percent-
age tended (P<0.10) to be lower for
steers assigned to the Low-High
dietary regimen compared with steers
assigned to the High-Low and High
dietary regimens, which was the same
as the trend found in the SP facility.
Fat thickness, marbling score, and
yield grade differences among dietary
regimens were not evident, although
a trial x feeding regimen interaction
(P<0.05) was found for percentage LA
(Table 4). Although trial in the
analysis was considered a random
variable, it should be noted that the
highest incidence of LA (18%) oc-
curred in Trial 1 for steers fed the Low
dietary regimen in the NP facility.
The potential for cattle to go off-feed
during cold stress would be greatest
under the latter conditions. How-
ever, reasons to switch diets (increase
fiber level) of cattle under cold stress
likely would be to decrease variation
in feed intake or to increase heat
increment. These data suggest that
no benefits to an increase in fiber
level exist other than possibly a
decrease in the incidence of LA.

Diet-switching programs, indepen-
dent of climatic factors, have been
considered (1, 2). Switching from
one fiber level to another during the
finishing period has been considered
to decrease both diet cost per unit of

(NP)—2-yr summary.

TABLE 4. Effect of winter feeding regimen on performance and carcass
characteristics of steers fed in area with no wind protection provided

®Based on 62% dressing percentage.

Alfalfa hay (%)
7.5 15 7.5 15

Item and 7.52 and7.5 and 15 and 15 SE
Initial wt., kg 424 421 420 425 3.4
Daily intake

DM, kg 9.79b 9.68bP 9.93bc 10.28¢ 0.14

ME, Mcald 30.55 29.82 30.64 31.29 0.45
Daily gain, kg 1.13 1.20 1.12 1.13 0.06
Efficiency

Gain/DMI 0.116 0.123 0.113 0.111 0.005

Gain/ME intake 0.036 0.040 0.036 0.036 0.002
Final wt., kg® 525 528 521 526 6.2
Actual dressing percentage ~ 60.73bc 61.02¢ 60.32P 60.93¢ 0.17
Carcass traits

Backfat, cm 1.51 1.54 1.48 1.56 0.05

Marbling scoref 548 540 540 546 18

Yield grade 3.6 3.7 3.5 3.6 0.1

Liver abscess, %9 9.0 3.1 6.3 3.1 29

aThe first number in the pair represents the percentage of alfalfa in the normal diet; the
second number represents the percentage of alfalfa in the cold stress diet.

b,cMeans within a row lacking a common superscript letter differ (P<0.10).
dDietary ME was calculated from NRC (22) values of ME for dietary ingredients.

f550 = average small; 650 = average modest.
9Trial x feeding regimen interaction (P<0.10).

energy (decrease fiber level) and
digestive upsets (increase fiber level).
Providing low fiber levels (2% rough-
age) in finishing diets early in the
feeding program followed by high
fiber levels (10% roughage) fed later
in the feeding program tended to
produce more efficient gains than a
feeding regimen in which high fiber
levels were fed initially followed by
low fiber or a feeding program in
which a constant (10% roughage)
fiber level was fed throughout the
feeding period. Effects of alternating
fiber levels throughout a finishing
period have not been thoroughly
evaluated. Potential benefits might
be realized by modifying fiber level,
particularly when cattle performance
“stalls-out” or when the feeding
period is extremely long (>150 d).
However, in studies reported herein,

neither of these conditions was
evident.

In predominantly starch-contain-
ing diets, slight to moderate increases
in fiber might not increase heat
increment substantially, provided the
fiber is not digested as a result of low
levels of fiber-digesting microbes in
the rumen. Nevertheless, MacRae
and Lobley (14) concluded that a
major cause of the differential heat
losses between fiber and concentrate
(starch) is attributable to differences
in volatile fatty acid production
between fiber and concentrate
digestion. In animals fed concentrate
diets, the larger production of propi-
onate, relative to acetate, supplies
adequate NADPH, to convert acetate
to fat. In animals fed fibrous diets,
the lack of NADPH, results in a
metabolic excess of acetate, which
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TABLE 5. Correlation coefficients associated with various climatic factors

and daily DMI.
Alfalfa hay (%)
7.5 15 7.5 15
and 7.52 and7.5 and 15 and 15
ItemP Yr 1 Yr 2 Yr1 Yr 2 Yr1i Yr2 Yrl Yr 2
SP area
Temperature -0.42d -0.09 -0.599 -0.55 -0.33 0.83 -0.44¢ 0.23
THI -0.44d —0.07 -0.58d -0.53d _0.36 0.10 -0.47¢ 0.20
WCI 0.40¢ 0.08 0.639  0.55d 0.509 -0.06 0.32 -0.21
WCI5D 0.10 0.08 0.554  0.54d 0.36 -0.21 0.34 -0.29
WCI >800 0.38< 0.19 0.62¢  0.55d 0.47¢ -0.11 0.30 -0.21
WCI5D >800 0.15 0.14 0579 0584 042 -0.23 035 -0.27
NP area
Temperature -0.30 0.07 -0.20 0.19 -0.16 0.10 -0.22 0.09
THI -0.29 0.07 -0.23 0.19 -0.16 0.13 -0.28 0.06
WCI 0.26 -0.08 0.21 -0.14 0.20 0.01 -0.08 -0.13
WCI5D 0.509 -0.06 0.599 -0.11 0.08 0.15 0.26 0.05
WCI >800 0.28 0.11 0.19 -0.05 0.23 0.03 -0.06 -0.07
WCI5D >800 0.524 -0.06 0.58d -0.13 0.08 0.18 0.27 0.01

aThe first number in the pair represents the percentage of alfalfa in the normal diet; the
second number represents the percentage of alfalfa in the cold stress diet.

bsp = feedlot area with wind protection, THI = temperature-humidity index, WCl =
windchill index, WCI5D = WCI 5-d moving average, WCI >800 = WCI >800 units,
WCI5D >800 = WCI >800 5-d moving average, and NP = feedlot area without wind

protection.
€P<0.10; rho=0
dp< 0.05; rho=0

has to be metabolized by less efficient
processes and/or eliminated as heat
(12). The heat increment caused by
the feeding of acetate was nearly 50%
greater than that caused by dietary
propionate in sheep fed above
maintenance (3). In the present
study, benefits from added heat
increment through fiber addition to
the diet were not detected. The lower
digestibility of fiber vs starch seems to
offset any efficiency enhancement
associated with feeding cold-stress
diets containing high heat increment
ingredients.

In other studies, Kappel et al. (13)
reported that increasing the dietary
crude fiber level from 4 to 16%
resulted in increased feed intake and
lower gain to feed ratios in feedlot
steers. Season and fiber level interac-
tions were not significant, indicating
that fiber heat increment did not

influence diet utilization differently
during summer and winter. However,
Rea and Ross (25) and Moose et al.
(19) reported that fiber heat incre-
ment influenced diet utilization in
sheep when fed under warm or cool
conditions. Muhamad et al. (20)
reported diet x season interactions for
feedlot steers fed different ratios of
corn and corn silage. In the winter,
ME intakes tended to be greatest by
steers fed a 55:45 corn to corn silage
ratio diet vs 25:75 and 85:15 corn to
corn silage ratio diets, whereas, in the
summer, ME intakes were greater by
steers fed the 85:15 corn to corn
silage ratio diet. Highest ME intakes
were attained by feeding the low heat
increment diet in the summer and
the moderate energy (or heat) incre-
ment diet in the winter, suggesting
some benefits might exist to feeding
diets that differ in heat increment,

depending on the season of the year.
Gains followed the same trend as ME
intakes; however, the ME to gain
ratio tended to be less and more
favorable in both seasons for steers
fed the high energy diet. In the
present study, benefits of feeding
higher fiber diets at any time were
not observed, particularly in the SP
facility.

No significant trends in correla-
tion coefficients were found between
percentage change in DMI (DDMI)
and RH or wind speed in the SP or NP
facility (Table 5). As expected, nega-
tive correlations were obtained
between DDMI and temperature and
THI. These tended to be greater (more
negative) and significant in the SP vs
NP facilities. In Canadian studies,
Milligan and Christison (18) found
high (>0.70 or =0.70) correlations
between the climatic factors, tempera-
ture, and wind chill, and the perfor-
mance factors, gain, and the feed to
gain ratio.

In the SP facility, significant
correlations were observed between
DDMI and WCI and between DDMI
and WCI that were >800 (daily and 5-
d moving average) for Low-Low and
High-Low treatment groups, which
were cattle groups fed the highest
energy (7.5% AH) diet during cold
stress. Fewer significant correlations
were noted in cattle fed the 15.0% AH
diets during cold stress (Low-High
and High-High treatment groups). In
the NP facility, very few significant
correlations were obtained between
DDMI and climatic variables. The
greatest number of significant corre-
lations were obtained between DDMI
and the 5-d moving averages of WCI
and WCI that were >800.

Across both facilities, the 5-d
moving averages of WCI and WCI
that were >800 had the best correla-
tion with DDMI, but only in the
Low-Low and High-Low feeding
regimens. If higher fiber diets were
fed under cold stress (Low-High) or
continually (High-High), fewer
significant correlations were found,
suggesting that higher fiber diets do
moderate effects that cold stress may
have on DMI.
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Linear slopes for increases in DMI
with climatic variables are presented
in Table 6. Effects of climate on DMI
were significant in SP facilities for
steers fed the High-High diet only.
For these cattle, negative slopes
(P<0.05) were noted, indicating that
increases in temperature and THI
resulted in decreases in DMI. Regres-
sion of the increase in DMI on days
when WCI was >800 and 5-d moving
average of WCI that were >800
revealed larger increases (P>0.01) in
DMI with increases in these two
weather variables for steers fed the
High-High dietary regimen in the SP
facility. An opposite effect was
observed in the NP facility. Effects of
climate on DMI were significant
when low fiber diets were fed (i.e.,
Low-Low, Low-High, and High-Low),
suggesting cattle on these diets were
more susceptible to climatic change
in the NP facilities. In the NP facility,
negative linear (P<0.05) relationships
were obtained between increases in
DMI and temperature and THI for all
treatments except steers fed the High-
High dietary regimen, whereas
positive (P<0.05) slopes were found
for WCI, 5-d average WCI, WCI
>800, and 5-d average WCI >800.

With the exception of a temporary
reduction in intake occurring with
sudden changes in temperature or
climatic conditions, cold stress tends
to stimulate intake (23) as was seen in
steers fed in the NP facility. Mader et
al. (16) concluded that, for cattle
exposed to moderate cold stress,
intakes tended to be greater in the NP
facility than in the SP facility in the
winter, but, for cattle subjected to
more severe cold stress, an opposite
trend was observed (15). The more
susceptible cattle are to acute cold
stress, the greater the initial reduction
in intake. Apparently, cattle that are
fed in more open facilities and
exposed to cold stress display typical
increases in intake during cold stress,
but fewer relationships are observed
in cattle for which the cold stress is
diminished. The absence of a rela-
tionship between increases in DMI
and climatic conditions in the SP
facility likely suggests their increases

TABLE 6. Effect (regression equation slope) of climatic conditions (indepen-
dent variable) on percentage increase in DMI (dependent variable) when
averaged across years.

Alfalfa hay (%)
7.5 15 7.5 15
ItemP and 7.5 and 7.5 and 15 and 15
SP area
Temperature 0.069 +0.084 -0.070+0.086 -0.091+0.073 -0.150 + 0.065¢
THI 0.044 +£0.053 -0.043 +0.44 —0.065 +0.047 -0.093 +0.042¢
wWcCl -0.003+0.004 0.003+0.004 0.003+0.003 0.005+0.003d
WCI5D -0.006 +0.004 0.004 £0.004 0.001 +0.003 0.005+0.003
WCI >800 0.004 £0.006 0.006 +0.007 0.002+0.005 0.014 +0.004¢
WCI5D >800 0.001 £0.006 0.004 +0.006 -0.001+0.006 0.014 + 0.005f
NP area
Temperature -0.172 £ 0.051¢ -0.241 £ 0.058¢ -0.236 + 0.070¢ -0.103 £ 0.078
THI —0.108 + 0.033¢ -0.152+0.038¢ —0.142 + 0.045¢ -0.063 + 0.050
wWCl 0.005 + 0.002F  0.007 £0.002¢ 0.008 + 0.002¢ 0.002 + 0.003
WCI5D 0.007 + 0.002f  0.009 + 0.002¢ 0.006 + 0.003¢ 0.001 + 0.003
WCI >800 0.007 £ 0.002F  0.012+0.003¢ 0.012 +0.004" 0.005 +0.004
WCI5D >800 0.006 £ 0.003¢ 0.012+0.003¢ 0.009 +0.004¢ 0.004 + 0.005

aThe first number in the pair represents the percentage of alfalfa in the normal diet; the
second number represents the percentage of alfalfa in the cold stress diet.

bsp = feedlot area with wind protection, THI = temperature-humidity index, WCl =
windchill index, WCI5D = WCI 5-d moving average, WCI >800 = WCI >800 units, and
WCI5D >800 = WCI >800 5-d moving average, and NP = feedlot area without wind

protection.
€P<0.05.
dp<0.10.
€P<0.001.
fP<0.01.

in DMI were a result of normal daily
fluctuations in intake rather than a
response to environmental condi-
tions. The shelterbelt located to the
north of the facility was effective in
moderating the effects of increases in
WCI resulting from increasing winds.
In the SP facility, wind protection
(shelterbelt) decreased wind speed by
31.3%, whereas WCI was decreased
8.5%.

Shelterbelts are typically designed
to decrease air flow from one or two
directions, typically north and west.
However, at the research center where
these data were collected, winter wind
direction is north (13.75%), west
(7.60%), and northwest (25.46%)
46.81% of the time (National
Weather Service, Sioux City, IA; 40
km East-North East of feedlot facili-
ties). The increases in DMI associated

with increasing WCI measures in the
NP facility are needed to accommo-
date increases in metabolic rate often
associated with cold environmental
conditions. With acclimatization to
cold, sheep and cattle can show a 30
to 40% increase in resting metabolic
rate (7, 31, 32), which is independent
of feeding level (7, 30).
Christopherson and Young (6)
reported that the metabolic rate of
feedlot cattle increased ca. 2 kcal/kg
of BW?75 for each degree that the
environmental temperature is below
LCT, which would support the greater
intake response resulting from cold
stress. However, cold stress increases
passage rate and decreases digestibil-
ity (23), which would likely contrib-
ute to increased intakes when cattle
feel comfortable enough to eat.
Effects of switching diets were mini-
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mal, although opposite trends in
gain and efficiency resulting from
switching diet regimen tended to be
observed between facilities. Cattle fed
in the SP facility tended to have
better performance on a Low-Low
feeding regimen in which no changes
in fiber level occurred, whereas cattle
fed in the NP facility tended to
benefit from the extra energy pro-
vided by switching to a lower fiber
diet (High-Low feeding regimen)
during cold stress.

Implications

These results suggest that provi-
sion of added fiber during cold
environmental conditions does not
provide more heat during cold stress
than added grain. Extra energy from
grain is needed to offset the increase
in maintenance requirement of
feedlot cattle exposed to cold stress.
Increased dietary levels of grain
offered to cattle fed in areas lacking
wind protection are beneficial.
Because cold stress and fiber level
both tend to increase rate of passage,
overall diet digestibilities are likely
diminished by adding fiber to diets
of cattle exposed to cold stress.
Benefits may be obtained by switch-
ing to higher fiber diets if DMI
variation and incidence of LA are

reduced.
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