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Abstract
Based on applications of the 1996 Na-

tional Research Council (NRC) Nutrient
Requirement of Beef Cattle (2000 up-
date) model at our laboratories and on
use of the model to evaluate published
literature, it is our assessment that the
NRC model (Level 1) represents an ad-
vancement in nutrient requirements of
grazing cattle. We evaluated 8 published
studies (35 treatment observations) to
compare observed changes in body condi-
tion score (BCS) to those predicted by the
NRC model, and to develop criteria to
help with application of the model to
range cattle nutrition. When in vitro or-
ganic matter disappearance (IVOMD) of
grazed diets was converted to DE [DE =
(1.07 × IVOMD) − 8.13] and used as a
proxy for TDN, there were no differences
in observed vs. predicted BCS change
(P = 0.44). A critical component of the
1996 NRC model is the incorporation of
the metabolizable protein system. An ac-
curate estimate of microbial efficiency is
key to application of the metabolizable

1A contribution of the Univeristy of Ne-
braska Agricultural Research Division, Lin-
coln, NE 68583. J. Series. No. 14224.
2To whom correspondence should be ad-
dressed: trey@padlockranch.com

protein system. We propose the use of an
equation to adjust microbial efficiency
for diets less that 65% TDN. The NRC
model should be applied to 30-d time in-
tervals if animal requirements or forage
quality are changing rapidly. Accurate in-
puts for stage of gestation, days into lac-
tation, breed, milk production, dietary
TDN, and microbial efficiency are neces-
sary for the model to yield accurate re-
sults. Work is needed to define and
model microbial efficiency, nitrogen re-
cycling, and the quality of diets selected
by grazing livestock in various envi-
ronments.

Key words: metabolizable protein; Na-
tional Research Council, cattle, range

Introduction
In 1996 the National Research

Council (NRC) published the seventh
edition of the Nutrient Requirements
of Beef Cattle (NRC, 1996), which in-
cluded a computer model to generate
requirements and evaluate rations
(1996 NRC model). The computer
software allows nutrient modeling us-
ing both empirical (Level 1) and
mechanistic (Level 2) methods. The
scope of the discussion in this paper
is limited to application of Level 1 of
the NRC model (2000 update). Level

1 is similar to previous publications
(NRC, 1984) in use of tabular values
for the nutrient content of feedstuffs,
but the model has added predictive
functions to increase the accuracy of
animal requirement and intake predic-
tions. These predictive functions are
only as good as the user inputs. It is
important that model users under-
stand the appropriate inputs into the
NRC model, including animal inputs,
energy values, the activity feature, en-
vironmental adjustments, and model-
ing periods. In addition, there is need
to understand the accuracy of energy
intake predictions and nutrient bal-
ance estimates generated by the 1996
NRC model. The NRC adopted the
use of a metabolizable protein (MP)
system (NRC, 1996). This system dis-
tinguishes between the nitrogen (pro-
tein) requirements of the rumen mi-
crobes and the animal. The 1996
NRC model requires a value for pro-
tein degradability in the feed matrix.
Although the data base needs to be
expanded, more protein degradability
data have become available since the
inception of the 1996 NRC model. A
deficiency in the application of the
MP system in the 1996 model is the
lack of an equation to model micro-
bial efficiency for cattle consuming
low-quality diets.
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The objective of this paper was to
evaluate and discuss the application
of the 1996 NRC model to range cat-
tle nutrition, with special consider-
ation for inputs, energy intake predic-
tions, nutrient status predictions, and
the MP system.

Review and Discussion
Energy Intake. The use of body

condition score (BCS) is an appro-
priate tool to gauge cow energy status
as it relates to reproductive function
(Richards et al., 1986). The NRC
model calculates cow BCS change
(days to gain or lose a BCS) from ani-
mal and dietary inputs. Predictions of
changes in BCS are particularly valu-
able to model users in building or
evaluating nutritional programs for
appropriate cow BCS management,
designing experiments, and evalua-
tion of published literature.

The BCS prediction feature of the
model was used to evaluate published
literature with the following objec-
tives: 1) to compare outputs from the
model to published results and 2) to
develop recommendations for model
application to cow-calf production.
Studies with grazing cows were identi-
fied that met the following criteria: 1)
cow BCS or BCS change was reported;
2) energy and protein content of
grazed forage were or could be de-
fined; and 3) cattle production traits
were or could be defined, including
BW, age, breed type, days in lacta-
tion, and days pregnant. Studies used
in the analysis (Adams et al., 1989,
1993; Hollingsworth-Jenkins et al.,
1996; Lamb et al., 1997; Villalobos et
al., 1997; Lardy et al., 1999; Ciminski
et al., 2002; Jordan et al., 2002) were
conducted in Nebraska or Montana
and included data generated across
various forage maturities, cow biologi-
cal types, stages of gestation, and en-
vironmental conditions. When inade-
quate data were available to describe
cattle diets, models were used to
more precisely describe diets (Adams
and Short, 1988; Lardy et al., 2004).
Forage intake by grazing livestock was
predicted using the NRC Model

TABLE 1. Body condition score (BCS) change observed in 35 study
periods compared to BCS change predicted using the 1996 NRC
Model using either in vitro organic matter disappearance (IVOMD)
as forage TDN or with IVOMD converted to DE for entry as forage
TDN.a

Item Observed TDN = DEb TDN = IVOMD

Mean BCS change −0.209 −0.114 0.322
P value — 0.44 0.001
Minimum

BCS change −1.3 −1.2 −0.41
Maximum

BCS change 0.63 0.80 1.2
Correlationc — 0.73 0.74

aAdams et al. (1989); Adams et al. (1993); Hollingsworth-Jenkins et al. (1996);
Lamb et al. (1997); Villalobos et al. (1997); Lardy et al. (1999); Ciminski et al.
(2002); Jordan et al. (2002).
bIVOMD converted to DE for use as TDN in the model using equation of
Rittenhouse et al. (1971): DE = (1.07 * IVOMD) − 8.13.
cObserved to predicted.

(1996). Predictions of BCS change
from the NRC model were compared
to published values with dietary TDN
entered into the feed matrix as either
in vitro OM disappearance (IVOMD)
equal to TDN or with IVOMD con-
verted to DE [DE = (1.07 × IVOMD) −
8.13 (Rittenhouse et al., 1971)], as-
suming DE equal to TDN. Predicted
BCS change for each evaluated experi-
mental period was calculated by divid-
ing the NRC model reported days to
change a BCS into the number of
days in the experimental period. The
relationship between predicted and re-
ported BCS change was analyzed by
ANOVA in PROC GLM of SAS (SAS
Inst. Inc., Cary, NC). Adjustments for
activity were not used (Lardy et al.,
2004), and environmental conditions
were as follows: previous temperature,
−4.4°C; current temperature, −1.1°C;
and wind, 8 km/h. Actual breed types
were entered into the model, and the
model predicted the magnitude and
duration of lactation.

When the calculated DE (Ritten-
house et al., 1971) value was entered
into the model as TDN, observed BCS
change was not different (P = 0.44)
than predicted by the NRC model (Ta-
ble 1). The minimum and maximum

BCS changes were similar for pre-
dicted and observed values, and the
correlation between predicted and ob-
served BCS change was 0.73. These re-
sults indicate the model reliably pre-
dicted energy intake, nutrient status,
and BCS change. When IVOMD was
used as TDN, the model overesti-
mated (P = 0.001) BCS change (overes-
timate of energy intake) compared to
reported values (Table 1).

Scientists often report chemical con-
tent and digestibility estimates of mas-
ticate samples on an OM basis be-
cause such samples may contain sig-
nificant ash contamination (Wallace
et al., 1972). Chemical content of for-
ages can be converted back to a DM
basis using values reported in the liter-
ature for ash content or by measuring
the ash content of clipped samples.
The IVOMD cannot be converted to
a DM basis because the digestibility
of ash is not known. Our observa-
tions show that using IVOMD to rep-
resent TDN consistently yields a
greater TDN value than using DE
from the Rittenhouse et al. (1971)
equation. In vivo digestibility values
should be used when available. It is
important to note that the conver-
sion of IVOMD to DE is critical in
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bringing the model predictions of
BCS change in line with reported val-
ues. The model is very sensitive to
the value entered for TDN, as this
value is used in both the calculations
to predict DMI and NE content of
the feed. Consequently, an accurate
estimation of dietary TDN is critical.

All of the studies evaluated in the
above analysis were with grazing cat-
tle, but the grazing activity feature in
the model was not used. The 1996
NRC model increases energy require-
ments as much as 50% for grazing ac-
tivity. Adjustments for activity in the
experiments evaluated would have re-
sulted in greater energy requirements
and would have either reduced the
predicted number of days to lose a
BCS or increased the predicted num-
ber of days to gain a BCS.

The model adjusts energy require-
ments for environmental temperature
in 2 ways: 1) acclimatization (based
on previous temperature) and 2) cold
or heat stress (based on current tem-
perature). The model is sensitive to
wind speed when the current temper-
ature is less than the Lower Critical
Temperature. The Lower Critical Tem-
perature is calculated in the model
based on heat increment and the in-
sulation factor. The model is also sen-
sitive to hide, hair, mud, and BCS en-
tries because these factors are used in
calculating the insulation factor and
cold stress. Wind speed and tempera-
ture effects on the animal based on re-
ported weather observations would
be expected to be less than predicted
because cattle adjust to temperature
by changing their orientation to
wind (i.e., wind breaks and herd posi-
tioning) and shade (NRC, 1996).

The combination of inputs used for
energy intake, wind speed, hair, hide,
mud, and current temperature did
not result in cold stress in any of the
experiments modeled (Table 1), so
these factors did not adjust basal
maintenance requirements. In the
model results reported here, only the
previous temperature entry adjusted
NEm requirements for environmental
conditions, which increased NEm re-
quirements by 14% for acclimatiza-

tion. Across the summer and winter
studies we modeled, this adjustment
appeared appropriate. Surely cattle in
the winter-grazing experiments experi-
enced cold stress on some days, but
we considered these effects to be
nominal. The model uses both mud
and current temperature to adjust
DMI. With the temperature entered
for the modeling described above,
there was a 5% increase in predicted
DMI due to current temperature. It is
recommended that long-term
monthly averages be used when ambi-
ent temperature and wind speed are
inputs into the model. For environ-
mental conditions normally encoun-
tered in the Northern Great Plains, us-
ing normal hide thickness, clean and
dry hair, and a hair depth of 0.5
inches in the winter and 0.2 inches
in the summer is recommended.

There are situations where weather
stress (CSIRO, 1990) and grazing activ-
ity (NRC, 1996) increase the energy
requirements of cattle. The 14% in-
crease in maintenance requirements
used in the analysis reported here ap-
propriately accounted for any in-
crease in maintenance requirements.

The studies chosen to evaluate
model predictions of BCS change had
complete descriptions of animal BW,
age, breed type, and physiological
state. These are critical inputs for the
model to work correctly. The model
requires inputs of shrunk BW (usually
0.96 × full weight), both current and
mature. Weights entered into the
model need not include the BW of
the conceptus, as the model calcu-
lates conceptus BW based on stage of
gestation. Cow BW taken in the first
trimester of pregnancy likely reflect
true cow BW. The age entry is also
important, as cows less than 60 mo
old are assumed to have a require-
ment for growth. The entry for age
also affects milk production esti-
mates. The milk production entry
into the model is for a mature cow
(greater than 47 mo old), regardless
of the age entered. Cattle that are up
to 36 mo old are assumed to have
74% of the peak milk production of a
mature cow, so in generating the

milk production curve the model mul-
tiplies the entry by 0.74 to obtain the
peak milk production estimate. Cows
that are between 36 and 47 mo old
are assumed to have 88% of the peak
milk production of a mature cow.
The entry for age does not affect in-
take predictions, but the entry in the
“Animal Type” category does. Replace-
ment heifers have different require-
ments and intake predictions than
cows.

A significant advancement to graz-
ing cattle nutrition in the 1996 NRC
model is in the ability to generate re-
quirements and predict intake across
a continuum of animal weights and
physiological states. The NEm require-
ments of a 550-kg cow across days
since calving from the 1984 NRC ta-
bles and from the 1996 NRC model
is given in Figure 1. Use of the 1996
model allows requirements to be cal-
culated at any given point across an
animal’s production cycle. This is pos-
sible by generation of conceptus
growth curves and lactation curves.

Working with the model in our lab-
oratories and in validating data for
this review, it was observed that short
modeling periods were essential in
late gestation and early lactation
when requirements change rapidly.
For example, Figure 1 shows the re-
quirements of a pregnant cow change
markedly as she advances from the
ninth through the 12th mo post-calv-
ing. The use of an average number to
represent stage of gestation or days in
lactation during the last trimester of
gestation or early lactation is impre-
cise because requirements change
greatly during these time periods.
Modeling in 30-d intervals or less was
preferable to longer periods in late
gestation and early lactation because
it more closely approximates day-to-
day changes in requirements.

Accurate inputs for breed types are
important as well. In this validation
modeling, actual breed types were
used and the model predicted the re-
quirements for conceptus growth and
lactation. Based on results in Table 1,
it was concluded that the model ap-
propriately predicted these require-
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Figure 1. Monthly net energy requirements of a 550 kg cow with a 10-kg peak milk
production reported by NRC (1984) or NRC (1996).

ments for the experiments analyzed.
The NRC (1996) predicts BW, peak
milk productions, and maintenance
multipliers for various breeds. Data
used to build the NRC model indi-
cated some breeds have different
maintenance requirements than oth-
ers (i.e., Simmental 20% greater, Brah-
man 10% less, etc.). Breed inputs
should be chosen carefully. Users
should be aware that variation in
milk production exists within breeds.
If milk production is expected to vary
from predictions in the model, peak
milk production can be predicted
from mature cow BW and 7-mo
weaning BW of calves (NRC, 1996).

It is also important to consider rap-
idly changing nutrient content of
grazed forage. The monthly protein
content of the Nebraska Sandhills
range is presented in Figure 2 (Lardy
et al., 2004). Nutrient quality changes
rapidly during plant growth and se-
nescence. When forage quality is
changing, it is important to model
short time intervals to ensure output
accuracy. As with nutrient require-
ments of the animal, the shorter the
time period to be modeled, the closer
a given nutrient composition will rep-
resent day-to-day changes in forage
nutrients.

Metabolizable Protein. The MP sys-
tem distinguishes between the pro-
tein requirements of the animal and
that of the rumen microbes, and it ac-
counts for differing ruminal protein
degradability in various feedstuffs. De-
gradable intake protein (DIP) is the
portion of ingested protein that sup-
plies nitrogen to the rumen environ-
ment that can thus be incorporated
into microbial protein. Adequate sup-

Figure 2. The CP, degradable intake protein (DIP) and undegradable intake protein
(UIP) content of Nebraska Sandhills range (Lardy et al., 2004).

ply of DIP is essential for sufficient
utilization of ingested feedstuffs (Kös-
ter et al., 1996). Rumen microorgan-
isms flow from the rumen attached
with feed and in fluid. The NRC
(1996) reported that microorganisms
are 80% true protein, which is 80%
digestible. Rumen microorganisms
can supply 50 to 100% of the protein
required by the animal (NRC, 1996).
A portion of ingested protein is unde-
gradable intake protein (UIP) that es-
capes rumen degradation and sup-
plies amino acids to the animal. The
NRC (1996) assumes UIP is 80% di-
gestible. Metabolizable protein, or ab-
sorbed protein, is comprised of micro-
bial CP (MCP) and UIP. The equation
to predict MP supply is as follows:

Eq. 1. MP (g/d) = [MCP (g/d) × 0.80 ×
0.80] + [UIP (g/d) × 0.80]

A cornerstone to application of the
MP system is an accurate estimate of
MCP production. Microbial CP pro-
duction is important to determine
both MP supply and DIP require-
ments. After reviewing the literature,
The Subcommittee on Beef Cattle Nu-
trition chose TDN intake as the deter-
minant of MCP production (NRC,
1996). Microbial CP production is pre-
dicted by the less of the following 2
equations:
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Eq. 2. MCP (g/d) = TDN intake (kg/d)
× microbial efficiency (g/kg)
Eq. 3. MCP (g/d) = DIP intake (g/d)

Level 1 of the NRC model assumes
DIP deficiencies will be met through
supplementation; thus, Eq. 2 is used
regardless of DIP balance. The require-
ments for DIP are likewise deter-
mined by Eq. 2 (DIP requirement is
assumed to be equivalent to MCP pro-
duction).

Microbial efficiency is the rate of
energy incorporation into MCP. The
model assumes microbial efficiency is
130 g/kg TDN intake (13%) unless ef-
fective NDF (eNDF) is less than 20%.
Dietary eNDF levels less than 20% oc-
cur when concentrate feeds make up
a high percentage of the diet, and
these situations are associated with de-
creased ruminal pH. At low rumen
pH, rumen microbes expend energy
maintaining intracellular pH and con-
sequently are less efficient in produc-
tion of MCP. The model reduces effi-
ciency of MCP production by 2.2%
for every 1% decrease in forage eNDF
below 20%. Research data indicates
microbial efficiency is also reduced
with lesser quality forages as a slower
rate of passage results in slower micro-
bial turnover and elevated microbial
maintenance requirements. The Sub-
committee on Beef Cattle Nutrition
(NRC, 1996) reviewed 5 studies
(Stokes et al., 1988; Krysl et al., 1989;
Hannah et al., 1991; Lintzenick et al.,
1993; Villalobos, 1993) to evaluate mi-
crobial efficiency at various diet di-
gestibilities. Across experiments, diet
OM (DOM) disappearance ranged
from 49.8 to 64.7%. Microbial CP pro-
duction ranged from 5.0 to 11.4% of
DOM, with an average of 7.82%. The
authors were not able to develop a re-
lationship between diet digestibility
and MCP production from these stud-
ies. Subsequent work with spring-calv-
ing cows grazing winter range (Hollin-
gsworth-Jenkins et al., 1996) reported
a DIP requirement (assumed MCP pro-
duction) of 6.65% of DOM (diet
DOM = 55.8%). Work with summer-
calving cows in late winter and

spring (Lardy et al., 1997) showed a
DIP requirement of 9.45% of DOM
(diet DOM = 53.5%). It is apparent
that microbial efficiency is reduced
with lower quality diets; however the
NRC (1996) did not model the rela-
tionship at the time of publication.
The 1996 NRC model requires a man-
ual adjustment in microbial efficiency
for lesser quality diets.

Recent work has evaluated urinary
allantoin, a byproduct of purine me-
tabolism, as marker for MCP produc-
tion (Lamothe et al., 2002, 2003).
Urine was collected from cows graz-
ing range in the Nebraska Sandhills
for 5 consecutive d following adapta-
tion in each of the months of May,
June, July, August, September, and De-
cember. Creatinine was used as a
marker to determine urine output
(creatinine output assumed at 0.14
mmol/kg BW). The ratio of allantoin
to creatinine was used to estimate
MCP production. Diets were collected
using esophageal-fistulated cows dur-
ing each month, and samples were
analyzed for IVOMD. Intake was pre-
dicted by the NRC model. Microbial
efficiency was expressed as MCP pro-
duction across DE (IVOMD converted
to DE by equations of Rittenhouse et
al., 1971). The relationship between
DE and microbial efficiency calcu-
lated from the urinary allantoin data
(P = 0.05) is shown in Figure 3. Varia-
tion in the data (R2 = 0.32) is not sur-
prising given the assumptions and cal-
culations used to calculate MCP pro-
duction (intake, diet digestibility,
creatinine as a measure of urine out-
put, and allantoin as a measure of
MCP). Of importance, however, is
that a relationship was developed (in
a production setting) between diet di-
gestibility and microbial efficiency.

Based on data showing reduced mi-
crobial efficiency with lesser quality
diets (NRC, 1996) and urinary allan-
toin data showing a relationship be-
tween diet digestibility and microbial
efficiency (Lamothe et al., 2002,
2003), we propose the use of an ideal-
istic equation (Figure 4) for diets less
than 65% TDN, as first described by
Klopfenstein et al. (2000):

Eq. 4: Microbial efficiency (g/100 g
TDN intake) = 2.62 + (1.78 × %TDN)
− [(9.60 × 10−2) × %TDN2] + [(1.78 ×

10−3) × %TDN3] −
[(1.05 × 10−5) × %TDN4].

The use of this equation allows ap-
plication of the MP system to situa-
tions where diet TDN is less than
65%, and gives scientists a model
useful in design of validation exper-
iments.

The estimate of microbial effi-
ciency used in the model is im-
portant in determining both MP
supply and the requirement for
DIP. For spring calving cows graz-
ing winter range in the Nebraska
Sandhills, the model is sensitive to
estimates of microbial efficiency
(Table 2; Lardy et al., 2004). For ex-
ample, when a microbial efficiency
of 13% is used, the model pre-
dicted that cows are over 150 g/d
deficient in DIP and positive in
MP. If microbial efficiency is as-
sumed to be 8% of TDN intake,
DIP balance was 100 g/d positive,
whereas MP was over 100 g/d nega-
tive. A supplementation regimen
would be very different depending
on the microbial efficiency value
used. The relationship between MP
supply and DIP requirement makes
an accurate estimate of microbial ef-
ficiency important to effective ap-
plication of the MP system. It is
also important to remember that
Level 1 of the NRC model does not
adjust MP supply or digestibility of
feedstuffs for a DIP deficiency,
which are 2 things known to be im-
pacted when DIP is inadequate.
Model users can adjust MP supply
for DIP deficiency using the as-
sumption that 1 g DIP = 0.64 g of
MP. Estimates of reductions in di-
gestibility and intake in DIP defi-
cient situations are more difficult
to assess and likely depend on the
degree of DIP deficiency, character-
istics of the diet in question, and
the supplementation program. Kös-
ter et al. (1996) reported that DIP
supplementation for cattle consum-
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Figure 3. Relationship between diet digestibility and microbial efficiency (g/100 g of DE
intake) as determined by urinary allantoin (Lamothe et al., 2002, 2003).

ing low-protein forage increased di-
gestibility and forage intake,
whereas other reports have shown
variable responses to protein sup-
plementation (Rittenhouse et al.,
1970; Kartchner, 1981). Although
difficult to assess, differences be-

Figure 4. An idealistic equation describing the relationship between diet TDN and
microbial efficiency (g/100g TDN intake) for diets less than 65% TDN (Klopfenstein et
al., 2000).

tween studies on the effects of sup-
plemental protein on forage digest-
ibility and intake may be due to dif-
ferences in DIP deficiency and DIP
supply from supplements.

It is important to note that Level
1 of the NRC model assumes no

net N recycling when DIP intake =
MCP production. When ruminal N
is at balance, recycling of N via sa-
liva, diffusion, or both is assumed
to be equivalent to the amount of
ammonia-nitrogen leaving the ru-
men in digesta flow. In the current
version of the model, there are no
assumptions regarding situations
when ruminal N is not at balance.
In addition, recycling of excess MP
(MP above the animal’s require-
ment) is not modeled, but likely oc-
curs on a variety of diets. Little re-
search exists which has attempted
to quantify these processes.

As previously mentioned, it is im-
perative that an accurate estimate
of TDN concentration be used in
the model. Dietary TDN has multi-
plicative effects on MP, as it affects
both TDN intake (through TDN
concentration and DMI) and micro-
bial efficiency. The influence of di-
etary TDN on microbial efficiency
(using the equation of Klopfenstein
et al., 2000), predicted DMI, DIP
balance, and MP balance for a cow
that is 225 d in gestation is given
in Table 3. When dietary TDN is
47%, DIP balance is 48 g/d and MP
balance is −177 g/d. This is contra-
dictory to reports that DIP is the
first-limiting nutrient for spring-
calving cows grazing native winter
range (Hollingsworth-Jenkins et al.,
1996). Results in Table 3 show that
MP may be limiting before DIP
when energy intake is low. When
dietary TDN is 52%, DIP and MP
are −55 and −73 g/d, respectively.
Modest changes in dietary TDN
concentration result in different
conclusions based on output from
the 1996 NRC model. It is also im-
portant to realize dietary fat and
UIP contribute to the TDN value of
a feedstuff but do not provide fer-
mentable substrate for MCP produc-
tion. Therefore, using book values
for the TDN concentration of feed-
stuffs high in fat or UIP may result
in overestimation of MP supply
and DIP requirements.

The 1996 NRC model was used
to describe diets in the work of Hol-
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TABLE 2. Effect of microbial efficiency on degradable and
metabolizable protein requirement, supply, and balance for a
gestating spring calving cow consuming dormant winter range.a

Microbial Efficiency, %

Itemb 8% 9% 10% 11% 12% 13%

DIP supply, g/d 518 518 518 518 518 518
DIP requirement, g/d 422 475 528 581 633 686
DIP balance, g/d 96 43 −10 −62 −115 −168

MP supply, g/d 355 388 422 456 490 524
MP requirement, g/d 470 470 470 470 470 470
MP balance, g/d −116 −82 −48 −14 20 54

aLardy et al. (2004).
bDIP = degradable intake protein; MP = metabolizable protein.

lingsworth-Jenkins et al. (1996) in
order to evaluate nutrient balances
in relation to treatments and to
compare predicted and actual per-
formance data (Table 4). In this ex-
periment, graded levels of DIP were
fed to March-calving cows from No-
vember to February. Cattle BW and
BCS responded quadratically and
cubically, respectively, to increased
DIP. The authors concluded that
gestating cows grazing native Ne-
braska Sandhills range required be-
tween 62 and 140 g of DIP per day
(dietary TDN was 54%). The NRC
model predicted DIP was slightly

TABLE 3. Predictions of dry matter intake, degradable intake
protein (DIP) balance, and metabolizable protein (MP) balance of
cows grazing winter range when forage TDN ranges from 47 to
52% of DM.ab

Microbial Efficiency,
Item g/100 g TDNc DMI, kg/d DIP balance, g/d MP balance, g/d

47 7.5 9.9 48 −177
48 7.7 10.3 33 −153
49 7.9 10.7 15 −127
50 8.1 11.0 −4 −101
51 8.4 10.9 −29 −91
52 8.7 10.9 −55 −73

aAssumed cow at 225 d in gestation, diet CP of 5.5%, and diet UIP 1.5% (DM
basis).
bPredictions derived from the NRC (1996).
cMicrobial efficiency calculated using the equation of Klopfenstein et al. (2000).

deficient (−15 g/d) when 140 g DIP
was supplemented, and DIP was in
excess when DIP supplementation
exceeded 140 g/d (Table 4). Since
performance was not further im-
proved when supplemental DIP
was in excess of 140 g/d, these pre-
dicted DIP balances were consistent
with the measured responses in
weight and BCS change. However,
the model predicted BCS change to
be more positive than that ob-
served in the study. A negative MP
balance in all treatments may have
resulted in less than predicted per-
formance. It is not clear if the defi-

ciency in MP confounded results of
the study. Environmental effects
may have also caused observed BCS
changes to be less than predicted
in this particular study. The NRC
model output shown in Table 4
was generated with no adjustment
for environmental conditions, but
the experiment was conducted in
the fall and winter when cold tem-
peratures may have elevated energy
requirements.

Using the NRC model, 53 individ-
ual diet calculations were made
with experimental diets from 10
published studies (Adams et al.,
1989, 1993; Hollingsworth-Jenkins
et al., 1996; Lamb et al., 1997;
Lardy et al., 1997; Villalobos et al.,
1997; Lardy et al., 1999; Ciminski
et al., 2002; Jordan et al., 2002; Pat-
terson et al., 2003a) to evaluate MP
balance. Of the 53 diets evaluated,
47 had negative MP balances. The
expected nutrient balances of graz-
ing cows consuming winter range
at various stages of late pregnancy
are shown in Table 5 (as modeled
in the NRC, 1996). The model pre-
dicted MP and NEm to both be neg-
ative during late gestation. Interest-
ingly, at 260 d of gestation, supple-
mentation with 1.0 kg of soybean
meal would supply adequate DIP,
MP, and NEm. Some UIP in supple-
ments for gestating cows appears to
be needed, and feedstuffs such as
soybean and cottonseed meal con-
tain significant amounts of UIP
compared to supplements con-
taining non-protein N. The fact
that some UIP is necessary for preg-
nant cows grazing winter range
may partially explain why research
using non-protein N as the primary
source of DIP resulted in lesser lev-
els of performance compared to nat-
ural protein supplements for cattle
consuming poor quality forage
(Rush and Totusek, 1975). The
NRC model is a useful tool for iden-
tifying nutrient deficiencies and for
designing appropriate supplementa-
tion regimens. Use of the MP sys-
tem (NRC, 1996) in protein supple-
mentation research would avoid
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TABLE 4. Predicted nutrient balances and body condition score
(BCS) change compared to observed change for grazing cows
supplemented with graded levels of degradable intake protein
(DIP).ab

Level of daily DIP supplementation (g)

Item 64 140 218 300

Predicted intake, kg/d 10.6 10.6 10.6 10.6
DIP balance g/d −92 −15 60 144
MP balance, g/d −112 −67 −61 −66
NEm balance, Mcal/d 1.63 1.63 1.63 1.63
Predicted BCS change 0.8 0.8 0.8 0.8
Actual BCS changec −0.2 0.0 −0.4 −0.3

aAdapted from Hollingsworth-Jenkins et al. (1996). Dietary CP = 4.85%; UIP =
1.0%; TDN = 54% (DM basis); microbial efficiency assumed at 9.3%
(Klopfenstein et al., 2000). Cows were supplemented November through
February and average 220 d in gestation.
bPredictions derived from the NRC (1996).
cMP = metabolizable protein.
dCubic effect, P < 0.01.

MP deficiencies that confound
results.

Recent reports evaluated the MP
system in developing supplements
for young cows. Patterson et al.
(2003b) supplemented March-calv-
ing heifers during gestation to
meet either CP or MP require-
ments. The supplement designed to
meet CP requirements was based
on cottonseed and soybean meal
and supplied 57 g of UIP/d from
October to February. The supple-

TABLE 5. Predicted degradable intake protein (DIP), metabolizable
protein (MP), and NEm balances of cows grazing native winter
range at various stages of pregnancy.ab

Item DIP balance, g/d MP balance, g/d NEm balance, Mcal/d

200 −4 −67 0.31
220 −4 −93 −0.27
240 −4 −128 −1.04
260 −4 −175 −2.02
280 −4 −239 −3.24

aAssumptions: DM intake = 11.0 kg; dietary CP = 5.5%; UIP = 1.5%; TDN =
50%; microbial efficiency = 8.1% (DM basis); 544 kg Angus cow; 36 kg birth
weight.
bPredictions derived from the NRC (1996).

ment designed to meet MP require-
ments was based on sunflower and
feather meal and supplied from 87
g UIP/d in October to 209 g UIP/d
in February. Heifers grazed native
Sandhills range and received ap-
proximately 2.0 kg of hay/d in Jan-
uary and February. One group of
heifers receiving the MP-designed
supplement did not receive hay.
The nutrient balances of the heifers
at 2 different stages of gestation are
presented in Table 6. Cows that

were supplemented to meet CP re-
quirements had a negative MP bal-
ance, especially in February when
the deficiency reached 125 g/d.
Heifers supplemented to meet MP
requirements only had an 11-g MP
deficiency in February if fed hay;
however, those heifers which did
not receive hay had greater levels
of NEm and MP deficiency. Supple-
mentation did not make up for de-
ficiencies in energy intake in the
group not receiving hay, and those
heifers lost more BW and BCS than
heifers receiving hay. Although sup-
plementing to meet MP require-
ments alleviated MP deficiencies,
there were not large differences in
BW or BCS change between CP and
MP supplemented heifers.

A simultaneous study on a com-
mercial ranch (Patterson et al.,
2003a) used 2,120 gestating heifers
over 2 yr and 2 locations to evalu-
ate effects of supplement protocols
designed to meet either CP or MP
requirements (supplement regimens
as described above for Patterson et
al., 2003b). Heifers calved in March
and April, and subsequent 2-yr-old
pregnancy rates were measured
each year. Heifers grazed range and
were fed hay from late December
until February. There were no differ-
ences between treatments in heifer
BW or BCS change from September
to February of either year. However,
cattle supplemented to meet MP re-
quirements had a greater subse-
quent pregnancy rate than those
supplemented to meet CP require-
ments (91 and 86% for MP-supple-
mented and CP-supplemented, re-
spectively). Evaluation of diets with
the 1996 NRC model revealed that
heifers supplemented to meet CP re-
quirements were markedly deficient
in MP in February (immediately
prior to calving), whereas those sup-
plemented to meet MP require-
ments had positive MP balances. In
this study, supplemental UIP to
meet MP requirements improved re-
production in young cows.

Due to the high protein require-
ments of cows during lactation,
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TABLE 6. Predicted NEm, metabolizable protein (MP), and degradable intake protein (DIP) balances of
March calving heifers supplemented to meet MP requirements and fed hay, CP requirements and fed
hay, or MP requirements and not fed hay at 2 dates during gestation.abc

December February

Item CP + Hay MP + Hay MP − Hay CP + Hay MP + Hay MP − Hay

DMI, kg/d 7.7 7.1 8.5 8.2 8.0 6.0
NEm balance, Mcal/d −0.9 −1.2 0.3 −3.3 −3.0 −5.1
DIP balance, g/d 108 68 66 122 132 101
MP balance, g/d −26 13 61 −125 −11 −82

aAdapted from Patterson et al. (2003b).
bPredictions derived from the NRC (1996).
cCP + Hay = grazing heifers supplemented to meet CP requirements and fed hay at 2.2 kg/d in February; MP + Hay =
grazing heifers supplemented to meet MP requirements and fed hay at 2.2 kg/d hay in February; MP − Hay: grazing heifers
supplemented to meet MP requirements and not fed hay. No heifers received hay in December.

many diets are deficient in MP for
young cows during the postpartum
period. Patterson et al. (2003b) fed
lactating 2-yr-olds medium quality,
meadow grass hay (9.5% CP) with
supplements fed to either meet DIP
or MP requirements. Supplemental
UIP to meet MP requirements de-
creased cow BW loss during the 64
d of the study, but there was no im-
provement in postpartum interval
with UIP supplementation.

Wiley et al. (1991) supplemented
both thin and moderate condition
2-yr-old cows during early lactation
with either 250 g DIP/d or 250 g of
DIP plus an additional 250 g of
UIP/d. Supplementation with UIP
increased postpartum BW change
and the percentage of heifers bred
in 21 d (65.5 vs. 43.3% for DIP +
UIP and DIP, respectively). The au-
thors hypothesized that increased
insulin levels resulting from supple-
mental UIP partitioned nutrients to-
wards growth and possibly in-
creased ovarian sensitivity to lutein-
izing hormone.

Other studies have suggested re-
partitioning of nutrients associated
with UIP supplementation.
Appeddu et al. (1996) supplemented
lactating 2-yr-olds with fat, UIP, or
UIP plus fat. Supplementation with
UIP improved BCS between calving
and breeding. Fat supplementation

decreased BW gain from calving to
breeding and increased milk produc-
tion; however, addition of UIP to
the fat supplemented diet reversed
the effects of supplemental fat.
Work with mature cows grazing
smooth bromegrass supplemented
with 230 g UIP/d showed increased
milk production compared to cows
not receiving the supplement; how-
ever supplementation with 340 g
UIP/d decreased milk production
(Blasi et al., 1991).

Recommendations for Using the
Model and Developing Research.

Forage and Feed Information.
Model users should strive for accu-
rate estimates of feed digestibility
and protein content. Diet quality
data collected across multiple years
are useful in estimating the quality
of grazed forage. Forage quality pre-
diction models (Adams and Short,
1988; Lardy et al., 2004) are also a
source of diet quality data. If
IVOMD is the forage energy esti-
mate used, a conversion of IVOMD
to DE (Rittenhouse et al., 1971)
may be necessary for use as TDN in
the model.

Information is available regarding
forage protein degradability, and
methods are continually being re-
fined in quest of simple and accu-
rate methods to analyze protein de-
gradability (Klopfenstein et al.,

2001). In recent work at Nebraska
and North Dakota, protein degrada-
bility of diets collected by cows graz-
ing Northern Great Plains Range-
land was analyzed (Hollingsworth-
Jenkins et al., 1996; Lardy, 1997;
Johnson et al., 1998; Lardy et al.,
1999; Patterson et al., 2000,
2003a,b). These studies, which used
various methods of estimating pro-
tein degradability and included
both cool- and warm- season
grasses, revealed the UIP content of
dormant forage ranged from 0.5 to
2.0% of OM. Because UIP content
of dormant forages appears to con-
sistently fall within this range, and
because the UIP content of dormant
forage is a relatively small percent-
age of intake, the effects of small er-
rors in estimating the degradability
of protein in these situations would
be nominal. If more specific data
are not available, NRC model users
should use a value of 1.5% UIP (DM
basis) for dormant native forages.
Scientists need to continue to de-
fine and simplify methodologies for
measuring protein degradability in
forages and feedstuffs.

Microbial Efficiency. Unless more
specific data are available or until
validated equations are developed,
model users are encouraged to use
the equation proposed by Klop-
fenstein et al. (2000) to estimate mi-
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crobial efficiency of diets less than
65% TDN. Development and valida-
tion of microbial efficiency models
for forages of various digestibility is
critically needed. The use of urinary
allantoin (Lamothe et al., 2003) and
other methodologies may be useful
in this process.

Intake. Because of challenges
with methods to measure forage in-
take by grazing cattle in a research
setting and the impracticality of
measuring intake in production set-
tings, the NRC model is a signifi-
cant improvement in resources
available to researchers and manag-
ers for estimating forage intake. The
modeling work in this manuscript
indicates model intake predictions
are satisfactory.

Nutrient Balances. The modeling
data presented in this paper indi-
cate that the NRC model accurately
predicts cow BCS score change
when accurate inputs are available.
It is important to note that studies
were modeled only where adequate
information existed for model in-
puts. Outputs can only be expected
to be as accurate as the input data.
Users should remember that model
outputs are not perfect estimates
when evaluating the degree of pre-
dicted deficiencies. For example, a
20-g deficiency in DIP may not be
just cause for expensive changes in
a supplementation program.

Protein Recycling. The NRC
model does not include models for
recycling of excess DIP or MP. De-
velopment of robust models for pro-
tein recycling is needed.

Experimental Design. The CP sys-
tem does not accurately describe
the protein requirements of cattle
and is inadequate as a tool in pro-
tein supplementation research.
When designing experiments, scien-
tists should separate requirements
of rumen microbes from that of the
host animal. The relationship be-
tween energy intake and protein
supply and requirements should
not be ignored.

Implications
The NRC model represents a sig-

nificant advancement to grazing cat-
tle nutrition. We have demon-
strated that the model is useful in
developing hypotheses, determining
nutrient status, identifying limiting
nutrients and needed inputs, and in
evaluating published literature. The
use of the model to predict BCS
change of cattle appears to be appro-
priate if accurate inputs are used in
the model. The MP system has ap-
plication to range cattle nutrition.
Scientists and nutritionists can
more completely and accurately de-
fine protein requirements using the
MP system compared to the CP sys-
tem. Metabolizable protein may be
deficient for grazing cows in more
situations than previously recog-
nized; therefore, careful attention to
balancing MP should be given in
production and research settings.
What better resources for determin-
ing nutrient status of grazing cattle
do we have that are more reliable
than the 1996 NRC model?
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Köster H. H., R. C. Cochran, E. C. Titgem-
eyer, E. S. Vanzant, I. Abdelgadir, and G. St-
Jean. 1996. Effect of increasing degradable
intake protein on intake and digestion of
low-quality, tallgrass-prairie forage by beef
cows. J. Anim. Sci. 74:2473.

Krysl, J. J., M. E. Branine, A. U. Cheema, M.
A. Funk, and M. L. Galyean. 1989. Influence
of soybean meal and sorghum grain supple-
mentation on intake, digesta kinetics, rumi-
nal fermentation, site and extent of diges-
tion and microbial protein synthesis in beef
steers grazing blue gramma rangeland. J.
Anim. Sci. 67:3040.

Lamb, J. B., D. C. Adams, T. K. Klop-
fenstein, W. W. Stroup, and G. P. Lardy.
1997. Range or meadow regrowth and wean-
ing effects on 2-year-old cows. J. Range Man-
age. 50:16.



The 1996 NRC Model for Beef Cows 317

Lamothe, M., T. Klopfenstein, D. Adams, J.
Musgrave, and G. Erickson. 2003. Microbial
protein production in gestating cows supple-
mented with different sources of rumen de-
gradable protein grazing dormant range. Ne-
braska Beef Cattle Report, MP 80-A:10.

Lamothe, M., T. Klopfenstein, D. Adams, J.
Musgrave, and G. Erickson. 2002. Urinary al-
lantoin as an estimate of microbial protein
synthesis. J. Anim. Sci. 80(Suppl. 2):242.

Lardy, G. P. 1997. Protein supplementation
of calves and cows grazing sandhills range
and subirrigated meadow. Ph.D. disserta-
tion, Univ. of Nebraska, Lincoln.

Lardy, G. P., D. C. Adams, T. K. Klop-
fenstein, and R. T. Clark. 1999. First lim-
iting nutrient for summer calving cows graz-
ing autumn-winter range. J. Range Manage.
52:317.

Lardy, G. P., D. C. Adams, T. J. Klop-
fenstein, and H. H. Patterson. 2004. Build-
ing beef cow nutritional programs with the
1996 NRC beef cattle requirements model. J.
Anim. Sci. 82:E83.

Lardy, G., T. Klopfenstein, D. Adams, J.
Lamb, and D. Clark. 1997. Rumen degrad-
able protein requirement of gestating sum-
mer calving beef cows grazing dormant na-
tive sandhills range. University of Nebraska
Beef Rep. MP 67-A:8.

Lintzenick, B. A., R. C. Cochran, E. S. Van-
zant, J. L. Beaty, R. T. Brandt Jr., G. St. Jean,
and T. G. Nagaraja. 1993. Influence of
method of processing supplemental alfalfa
on intake and utilization of dormant, blue-
stem-range forage by beef steers. J. Anim.
Sci. 71(Suppl. 1):186.

NRC. 1984. Nutrient requirements of beef
cattle. 6th ed. Natl. Acad. Press, Washing-
ton, D.C.

NRC. 1996. Nutrient requirements of beef
cattle. 7th ed. Natl. Acad. Press, Washing-
ton, D.C.

Patterson, H. H., D. C. Adams, T. J. Klop-
fenstein, R. T. Clark, and B. Teichert. 2003a.
Supplementation to meet metabolizable pro-
tein requirements of primiparous beef heif-
ers: II. pregnancy and economics. J. Anim.
Sci. 81:563.

Patterson, H. H., D. C. Adams, T. J. Klop-
fenstein, and B. Teichert. 2000. Winter sup-
plementation of primiparous heifers grazing
winter range based on the Metabolizable
Protein System versus the Crude Protein Sys-
tem. Proc. West. Sec. Amer. Soc. Anim. Sci.
51:61.

Patterson, H. H., T. J. Klopfenstein, D. C. Ad-
ams, and J. A. Musgrave. 2003b. Supplemen-
tation to meet metabolizable protein require-
ments of primiparous beef heifers: I. Perfor-
mance, forage intake, and nutrient balance.
J. Anim. Sci. 81:800.

Richards, M. W., J. C. Spitzer, and M. B.
Warner. 1986. Effect of varying levels of
postpartum nutrition and body condition at
calving on subsequent reproductive perfor-
mance in beef cattle. J. Anim. Sci. 62:300.

Rittenhouse, L. R., D. C. Clanton, and C. L.
Streeter. 1970. Intake and digestibility of
winter-range forage by cattle with and with-
out supplement. J. Anim. Sci. 31:1215.

Rittenhouse, L. R., C. L. Streeter, and D. C.
Clanton. 1971. Estimating digestible energy

from digestible dry and organic matter in
diets of grazing cattle. J. Range Manage.
24:73.

Rush, I. G., and R. Totusek. 1975. Effects of
frequency of ingestion of high-urea winter
supplements by range cattle. J. Anim. Sci.
41:1141.

Stokes, S. R., A. L. Goetsch, A. L. Jones, and
K. M. Landis. 1988. Feed intake and diges-
tion by beef cows fed prairie hay with differ-
ent levels of soybean meal and receiving
postruminal administration of antibiotics. J.
Anim. Sci. 66:1778.

Villalobos, G. 1993. Integration of comple-
mentary forage with native range for effi-
cient beef production in the sandhills of Ne-
braska. Ph.D. Dissertation, Univ. of Ne-
braska, Lincoln.

Villalobos, G., D. C. Adams, T. K. Klop-
fenstein, J. T. Nichols, and J. B. Lamb. 1997.
Grass hay as a supplement for grazing cattle
I. Animal performance. J. Range Manage.
50:351.

Wallace, J. D., D. N. Hyder, and G. M. Van
Dyne. 1972. Salivary contamination of for-
age selected by esophageal fistulated steers
grazing sandhill grassland. J. Range Manage.
25:184.

Wiley, J. S., M. K. Petersen, R. P. Ansotegui,
and R. A. Bellows. 1991. Production from
first-calf beef heifers fed a maintenance or
low level of prepartum nutrition and rumi-
nally undegradable or degradable protein
postpartum. J. Anim. Sci. 69:4279.


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2006

	Application of the 1996 NRC to Protein and Energy Nutrition of Range Cattle
	H. H. Patterson
	D. C. Adams
	T. J. Klopfenstein
	G. P. Lardy

	ARPAUG$387

