January 2008

Isolation of microsatellite loci from the coqui frog, *Eleutherodactylus coqui*

Maureen B. Peters
Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC

Karen H. Beard
Utah State University, Logan, UT

Cris Hagen
Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC

Eric M. O’Neill
Utah State University, Logan, UT

Karen E. Mock
Utah State University, Logan, UT

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/icwdm_usdanwrc

Part of the [Environmental Sciences Commons](http://digitalcommons.unl.edu/icwdm_usdanwrc)

http://digitalcommons.unl.edu/icwdm_usdanwrc/792

This Article is brought to you for free and open access by the U.S. Department of Agriculture: Animal and Plant Health Inspection Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USDA National Wildlife Research Center - Staff Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Isolation of microsatellite loci from the coqui frog, Eleutherodactylus coqui

MAUREEN B. PETERS,* KAREN H. BEARD,† CRIS HAGEN,* ERIC M. O’NEILL,‡ KAREN E. MOCK,† WILLIAM C. PITT§ and TRAVIS C. GLENN*

*Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC 29802, USA, †Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT 84322-5230, USA, ‡Department of Biology, Utah State University, Logan, UT 84322-5305, USA, §USDA/APHIS/WS/National Wildlife Research Center, Hilo Field Station, HI 96721, USA

Abstract

Thirteen microsatellite loci were isolated from the coqui frog (Eleutherodactylus coqui) and optimized for future research. The loci were screened across 37 individuals from two Puerto Rican populations. Loci were variable with the number of alleles per locus ranging from three to 38. Polymorphic information content ranged from 0.453 to 0.963 and observed heterozygosity for each population ranged from 0.320 to 0.920.

Keywords: amphibian, conservation genetics, invasive species, population structure, primer, Puerto Rico

Received 17 May 2007; revision accepted 11 June 2007

The most abundant and widely distributed frog species endemic to Puerto Rico, Eleutherodactylus coqui, has recently invaded Florida and several islands in the Caribbean, and was accidentally introduced to Hawaii in the late 1980s (Kraus et al. 1999), where it is considered a pest species. In both Puerto Rico and Hawaii, E. coqui reaches densities of > 20,000 individuals/ha (Woolbright et al. 2006). Direct development, lack of a breeding chorus, and year-round breeding are thought to contribute to its ability to invade new areas (Beard & O’Neill 2005). Despite an apparently continuous distribution, pronounced spatial genetic structure has been described in Puerto Rico: the eastern and central-western regions of the island are occupied by distinct mitochondrial cytochrome b clades (approximately 5–7% sequence divergence) (Velo-Antón et al. in press). Phylogeographical patterns in nuclear markers have not been investigated. Here, we describe microsatellite loci that can be used to investigate nuclear genetic structuring, assess demographic expansions and bottlenecks, characterize fine-scale landscape genetic patterns, and potentially identify source populations in this important species.

For initial microsatellite development, we used toe-clips from two individuals: one from El Yunque Caribbean National Forest (eastern part of Puerto Rico) and one from the Maricao Forest Reserve (western part of Puerto Rico). All tissues were collected into 95% ethanol and DNA was extracted using a salt–chloroform protocol with isopropanol precipitation (Mullenbach et al. 1989). To develop microsatellite loci, pooled DNA was serially enriched twice for microsatellites using three probe mixes (2, 3 and 4) following Glenn & Schable (2005; see www.uga.edu/srel/DNA_Lab/protocols.htm for updates and probe mixes). Briefly, DNA was digested with restriction enzyme RsaI (New England Biolabs) and simultaneously ligated to double-stranded SuperSNX linkers. Linker-ligated DNA was denatured and hybridized to biotinylated microsatellite oligonucleotide mixes, which were then captured on magnetic streptavidin beads (Dynal). Unhybridized DNA was washed away and remaining DNA was eluted from the beads, amplified in polymerase chain reactions (PCR) using the forward SuperSNX24 as a primer, and cloned with TOPO TA Cloning Kits (Invitrogen). A total of 192 plasmids were sequenced with M13 forward and reverse primers using BigDye version 3.1 (Applied Biosystems) and an ABI PRISM 3130xl sequencer. Sequences from both strands were assembled and edited in sequeencer 4.1 (Gene Codes Corp.) and exported to msatcommander version 0.4 (Faircloth 2007; available at http://code.google.com/p/msatcommander/) for microsatellite searching (note:
version 0.4 did not include primer design). PCR primers were designed using o[ligo](6.67 (Molecular Biology Insights). One primer in each pair was modified on the 5' end with an engineered sequence (CAG tag or M13R tag; see [Schable et al. 2002](#)).

Fifty five primer pairs were tested for amplification and polymorphism using a subset of seven samples from Puerto Rico: El Yunque Forest Reserve (EYL) (eastern n = 4) and Rio Abajo State Forest (RAL) (western n = 3). PCR amplifications were performed on an Applied Biosystems 9700 using 12.5 µL reactions [10 mM Tris pH 8.4, 50 mM KCl, 25.0 µg/mL BSA, 0.4 µM unlabeled primer, 0.08 µM tag-labelled primer, 0.36 µM universal dye-labelled primer, 1.2–2 mM MgCl₂, 0.15 mM dNTPs, 0.5 U JumpStart Taq DNA Polymerase (Sigma), and 20–40 ng DNA]. Touchdown thermal cycling programmes (Don et al. 1991) encompassing annealing temperatures of 65–55 °C, 60–50 °C or 55–45 °C were used for the amplification (Table 1). Cycling parameters were 21 cycles of 96 °C for 30 s, highest annealing temperature (decreased 0.5 °C per cycle) for 20 s, and 72 °C for 30 s; and 15 cycles of 96 °C for 20 s, lowest annealing temperature for 20 s, and 72 °C for 30 s. PCR products were run on an ABI PRISM 3130xl sequencer and sized with Naurox size standard prepared as described in [DeWoody et al. 2004](#), except that unlabelled primers started with GTTT. Results were analysed using [GeneMapper](#) version 4.0 (Applied Biosystems).

Thirteen of these 55 primer pairs amplified high quality PCR product showing polymorphism across seven individuals.

© 2007 The Authors

Journal compilation © 2007 Blackwell Publishing Ltd

Table 1 Characterization of 13 polymorphic microsatellite loci genotyped in 37 individuals of *Eleutherodactylus coqui* from two populations in Puerto Rico, El Yunque Forest Reserve (EYL) and Rio Abajo State Forest (RAL)

<table>
<thead>
<tr>
<th>Locus</th>
<th>GenBank Accession no.</th>
<th>Primer sequence 5'–3'</th>
<th>Repeat motif</th>
<th>N (EYL)</th>
<th>Tₐ (RAL) °C</th>
<th>MgCl₂ (mM)</th>
<th>Size (bp)</th>
<th>k (EYL)</th>
<th>Hₒ (EYL)</th>
<th>Hᵦ (EYL)</th>
<th>PIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coq-10</td>
<td>F: FamaGACCTCATTCCGATGAGT</td>
<td>(AGAT)₉₁</td>
<td>25</td>
<td>156–200</td>
<td>5</td>
<td>0.320</td>
<td>0.372</td>
<td>0.665</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EF587703</td>
<td>R: TTCCCTTTGGAACAGATGTA</td>
<td>(AGAT)₇</td>
<td>12</td>
<td>55</td>
<td>2.0</td>
<td>8</td>
<td>0.917</td>
<td>0.891</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coq-19</td>
<td>F: TTCTTTGCACTTTTATTAT</td>
<td>(AGAT)₇</td>
<td>21</td>
<td>119–263</td>
<td>24</td>
<td>0.762*</td>
<td>0.971</td>
<td>0.940</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EF587705</td>
<td>R: FamaGACCTCATTCCGATGTA</td>
<td>(AGAT)₄</td>
<td>11</td>
<td>65</td>
<td>2.0</td>
<td>13</td>
<td>0.636*</td>
<td>0.948</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coq-20</td>
<td>F: NacGACATCGACATGATAATAA</td>
<td>(AGAT)₄</td>
<td>25</td>
<td>214–236</td>
<td>10</td>
<td>0.440</td>
<td>0.452</td>
<td>0.518</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EF587706</td>
<td>R: CTGCGCTGCGTTTGTATTACG</td>
<td>(AG)₉</td>
<td>12</td>
<td>55</td>
<td>2.0</td>
<td>5</td>
<td>0.667</td>
<td>0.667</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coq-27</td>
<td>F: GATCCGAGGATTGAGAG</td>
<td>(AG)₉</td>
<td>25</td>
<td>153–174</td>
<td>9</td>
<td>0.480*</td>
<td>0.725</td>
<td>0.792</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EF587716</td>
<td>R: FamaTACCCCTCTCCTCTCTTAT</td>
<td>(AGAT)₅</td>
<td>12</td>
<td>55</td>
<td>1.6</td>
<td>5</td>
<td>0.750</td>
<td>0.768</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coq-28</td>
<td>F: NacGCTGACGTCTGACGATGTA</td>
<td>(GATG)₃</td>
<td>25</td>
<td>267–283</td>
<td>6</td>
<td>0.820</td>
<td>0.614</td>
<td>0.651</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EF587717</td>
<td>R: AGAACGCTGATTGATTATAC</td>
<td>(AATG)₇</td>
<td>8</td>
<td>55</td>
<td>2.0</td>
<td>3</td>
<td>0.250</td>
<td>0.633</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coq-31</td>
<td>F: NacGACATCGACATGATAATAA</td>
<td>(AGAT)₇</td>
<td>25</td>
<td>261–289</td>
<td>9</td>
<td>0.680</td>
<td>0.818</td>
<td>0.773</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EF587718</td>
<td>R: ACCTGCACTGAATACATATA</td>
<td>(AG)₉</td>
<td>12</td>
<td>55</td>
<td>2.0</td>
<td>5</td>
<td>0.750</td>
<td>0.699</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coq-201</td>
<td>F: AACTGCTTCATGGATATTAC</td>
<td>(AGAT)₉</td>
<td>24</td>
<td>272–421</td>
<td>27</td>
<td>0.500*</td>
<td>0.970</td>
<td>0.963</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EF587707</td>
<td>R: FamaGACCTCATTCCGATGTA</td>
<td>(CTGT)₁₄</td>
<td>12</td>
<td>60</td>
<td>2.0</td>
<td>16</td>
<td>0.667*</td>
<td>0.971</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coq-203</td>
<td>F: GTCGAACCGAACTGATGTA</td>
<td>(CTGT)₁₄</td>
<td>25</td>
<td>192–222</td>
<td>8</td>
<td>0.920</td>
<td>0.788</td>
<td>0.806</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EF587708</td>
<td>R: FamaGACCTCATTCCGATGTA</td>
<td>(CTGT)₁₄</td>
<td>12</td>
<td>60</td>
<td>2.0</td>
<td>6</td>
<td>0.750</td>
<td>0.681</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coq-208</td>
<td>F: GATCCGCGTGATGATGATGTA</td>
<td>(AC)₉</td>
<td>25</td>
<td>115–123</td>
<td>2</td>
<td>0.480</td>
<td>0.372</td>
<td>0.453</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EF587709</td>
<td>R: NacGACATCGACATGATAATAA</td>
<td>(AGAT)₇</td>
<td>12</td>
<td>60</td>
<td>2.0</td>
<td>2</td>
<td>0.917</td>
<td>0.518</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coq-211</td>
<td>F: TAAACGCAATGTCACATTAC</td>
<td>(ATCT)₁₄</td>
<td>23</td>
<td>107–213</td>
<td>13</td>
<td>0.565*</td>
<td>0.784</td>
<td>0.706</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EF587711</td>
<td>R: VicAAACGACCTGATTTAGTCT</td>
<td>(ATCT)₁₄</td>
<td>12</td>
<td>65</td>
<td>1.2</td>
<td>8</td>
<td>0.583</td>
<td>0.562</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coq-219</td>
<td>F: ATGTCCTTCACATGAGT</td>
<td>(ACTG)₄</td>
<td>25</td>
<td>164–218</td>
<td>23</td>
<td>0.640*</td>
<td>0.960</td>
<td>0.941</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EF587712</td>
<td>R: VicACGACCTGAAAGATGTC</td>
<td>(ACTG)₄</td>
<td>12</td>
<td>55</td>
<td>1.6</td>
<td>11</td>
<td>0.917</td>
<td>0.870</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coq-221</td>
<td>F: VicACGACCTGAAAGATGTC</td>
<td>(ACTG)₄</td>
<td>25</td>
<td>192–252</td>
<td>26</td>
<td>0.920</td>
<td>0.969</td>
<td>0.949</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EF587713</td>
<td>R: GGCAGGCTGACAGCTGTA</td>
<td>(ACTG)₄</td>
<td>25</td>
<td>60</td>
<td>2.0</td>
<td>15</td>
<td>0.667*</td>
<td>0.957</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coq-224</td>
<td>F: TCCACAACCAATGACTACTA</td>
<td>(ACAG)₉</td>
<td>25</td>
<td>224–238</td>
<td>2</td>
<td>0.920</td>
<td>0.507</td>
<td>0.508</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EF587714</td>
<td>R: VicATGGCGACCTTTTGTAGT</td>
<td>(ACAG)₉</td>
<td>12</td>
<td>55</td>
<td>1.6</td>
<td>4</td>
<td>0.917</td>
<td>0.736</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N is the number genotyped for each population; Tₐ corresponds to highest annealing temperature for touchdown thermal cycling; MgCl₂ is an optimized concentration for magnesium chloride; size indicates the range of observed alleles in base pair; k is number of alleles observed in each population; Hₒ and Hᵦ are observed and expected heterozygosities of each population, respectively, and PIC is polymorphic information content of each locus. *Significant deviations from Hardy–Weinberg equilibrium are indicated at P = 0.0000, 0.0006, 0.0019, 0.0000, 0.0002, 0.0055, 0.0000 and 0.0006, respectively. Primers with CAG tag (5’-CAGTCGGGCGTCATCA-3’) are indicated with superscript FAM, NED, or VIC (except see below), which was used as the fluorescent dye for genotyping. Three primers (Coq-27, Coq-201, Coq-203) were tagged with M13R tag (5’-GGAAACAGCTATGACCATG-3’) and fluorescently labelled with FAM. †All repeats in clone: (AGAT)₉…(AGAT)₉…(AGAT)₇…(AGAT)₇.
Polymorphism in these 13 loci was further assessed on 30 additional coqui frogs (EYL n = 21; RAL n = 9), yielding a total of 37 analysed individuals. Conditions and characteristics of the 13 loci are given in Table 1. One locus, Coq-19, showed evidence of duplication in three individuals (three alleles), which were omitted from assessment of Hardy–Weinberg equilibrium and linkage disequilibrium. For the remaining loci, we used cervus version 2.0 (Marshall et al. 1998) to estimate alleles per locus (k), observed and expected heterozygosities, polymorphic information content, and frequency of null alleles. All loci had estimated null allele frequencies ≤ 0.27. Deviations from Hardy–Weinberg equilibrium (HWE) and linkage disequilibrium were determined using GENEPOP version 3.4 (Raymond & Rousset 1995). In Coq-19 and Coq-201, both populations deviated significantly from HWE and, in Coq-27, Coq-211, Coq-219 and Coq-221, one population deviated significantly from HWE after Bonferroni correction. Deviations from HWE are heterozygote deficiencies which may be a result of short allele dominance (Wattier et al. 1998) rather than null alleles since estimated frequencies of null alleles for the deviant loci were low (0.12–0.27). No linkage disequilibrium was detected among 66 paired loci comparisons for either population.

Acknowledgements
This work was supported by National Science Foundation award DEB-0614208, Department of Energy award DE-FC09–07SR22506, the USDA/APHIS/WS/National Wildlife Research Center, Hilo Field Station and NSF ADVANCE Collaborative Support Grant through Utah State University.

Disclaimer: This report was prepared as an account of work sponsored by an agency of the US Government. Neither the US Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favouring by the US Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the US Government or any agency thereof.

References