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Success at first insemination in Australian Angus cattle:
Analysis of uncertain binary responses1

M. L. Spangler,2,3 R. L. Sapp,3 R. Rekaya, and J. K. Bertrand

Animal and Dairy Science Department, University of Georgia, Athens 30602-2771

ABSTRACT: Field data from Australian Angus
herds were used to investigate 2 methods of analyzing
uncertain binary responses for success or failure at first
insemination. A linear mixed model that included herd,
year, and month of mating as fixed effects; unrelated
service sire, additive animal, and residual as random
effects; and linear and quadratic effects of age at mating
as covariates was used to analyze binary data. An aver-
age gestation length (GL) derived from artificial insemi-
nation data was used to assign an insemination date
to females mated to natural service sires. Females that
deviated from this average GL led to uncertain binary
responses. Two analyses were carried out: 1) a thresh-
old model fitted to uncertain binary data, ignoring un-
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INTRODUCTION

Beef cattle fertility research has increased recently,
in part because of increased information availability.
To date, there have been several measures of fertility
that have been suggested for genetic evaluation pur-
poses. Donoghue et al. (2004) proposed a binary trait,
calving to first insemination, which would evaluate the
probability that a calving event would arise because
of a pregnancy occurring from first insemination. For
natural service (NS) matings, first insemination was
defined as becoming pregnant during the first 21 d of
the breeding season, which would correspond to the
first heat cycle of the female. With AI data, the exact
day of insemination is known; however, to derive the
day of insemination for NS data, an average gestation
length (GL) obtained from AI data is used. Misclassifi-
cation is inherent with this procedure, although at an
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certainty (M1); and 2) a threshold model fitted to uncer-
tain binary data, accounting for uncertainty via fuzzy
logic classification (M2). There was practically no differ-
ence between point estimates obtained from M1 and
M2 for service sire and herd variance; however, when
uncertain binary data were analyzed ignoring uncer-
tainty (M1), additive variance and heritability esti-
mates were greater than with M2. Pearson correlations
indicated that no major reranking would be expected
for service sire effects and animal breeding values using
M1 and M2. Given the results of the current study, a
threshold model contemplating uncertainty is sug-
gested for noisy binary data to avoid bias when estimat-
ing genetic parameters.

unknown rate, because of variation in GL. The current
study was motivated by the belief that this misclassifi-
cation occurs, and to date, there are no studies ad-
dressing this issue in field data.

One proposed way to account for this uncertainty
is to use fuzzy logic classification. Sapp et al. (2005)
evaluated different methods of analyzing such data in
a simulation study. They concluded that a threshold
model that disregarded misclassification or uncertainty
of binary responses could lead to biased inferences. In
fact, based on 10 replicates, the genetic variance was
severely biased when the data were analyzed ignoring
potential misclassifications. Based on these results,
they recommended that uncertain or potentially mis-
classified binary responses be analyzed using a thresh-
old model that contemplates misclassification. There-
fore, the objective of the current study was to apply
similar methodology to evaluate the usefulness of a
threshold model with fuzzy logic classification to ac-
count for potential miscoding of the binary trait success
or failure of first insemination in a field data set.

MATERIALS AND METHODS

Data

The data consisted of NS mating and calving records
of first-parity females from Australian Angus herds.
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Table 1. Summary of the data used in the analysis

Item No.

Herd 396
Year 13
Month of calving 12
Service sires 2,116
Daughter records 33,099
Sires of daughters with records 4,187
Animals in pedigree file 79,205

Females having their first mating record between 270
and 625 d of age were retained for analysis. Before
editing, there were 36,097 records from first-parity fe-
males mated by NS between 1987 and 2000 available
in the database. Females whose mating resulted in mul-
tiple births (n = 288) or those with incomplete records
(n = 460) were removed before analysis. Incomplete
records included those in which either the sex of calf
was unknown or the mating sire was unknown. Gesta-
tion length, computed using AI data, was defined as
the difference between the insemination date and the
subsequent calving date and was averaged by sex of
calf as reported by Donoghue et al. (2004). Average GL
(SD) was 279.2 d (5.2 d) and 280.3 d (5.2 d) for female
and male calves, respectively. Mating records where
GL was >2 SD less than the mean derived from AI data
were considered to be outliers and were removed during
the editing process (n = 225). All herd groups containing
only one record, records from service sires with <3
calves, and all records from herds resulting in extreme
category problems were removed from the data set. Fi-
nally, all service sire groups resulting in extreme cate-
gory problems were grouped together in one unknown
service sire group. After edits, the final data set in-
cluded 33,099 first-parity NS mating records represent-
ing 4,187 sires. The data structure is presented in Ta-
ble 1.

Analysis of First Insemination Success
in Beef Cattle

There are only 2 sources of information available to
ascertain conception, both occurring well after the first
21 d of the breeding season: pregnancy checking by
either ultrasound or rectal palpation or a calving event.
In this study, the latter is used and the underlying
assumption is that if conception occurs, a corresponding
calving event will occur as well. This may not be true,
as it is possible for a female to conceive, but for some
reason she may not carry her pregnancy full-term. The
only information available in the current data set was
days to calving (DC), which was computed as the time
elapsed between the introduction of the bull and the
subsequent calving date (Johnston and Bunter, 1996).
Success or failure at first insemination (conception dur-
ing the first 21 d; FIS) was based on the difference
between DC and an average GL, where the average GL

differed by sex of calf. If the difference between DC and
average GL was ≤21 d, then FIS = 1; otherwise, FIS = 0.

Given the variation in GL between cows, it was possi-
ble that some cows had uncertain or miscoded FIS.
Furthermore, the variation in GL and the difference
between DC and average GL could be used to assess
the uncertainty or probability of miscoding for every
FIS record. One way to account for this uncertainty
would be to use fuzzy logic classification, which uses
imprecise propositions based on fuzzy set theory to as-
sign partial membership of a set (Chen and Pham,
2001). In the current study, fuzzy logic classification,
based on the binary response of FIS and the difference
between DC and average GL, was used to calculate the
probability of miscoding at time ti as described by Sapp
et al. (2005). Two analyses were carried out: 1) analysis
without consideration for potential misclassification,
using a threshold model (M1); and 2) analysis account-
ing for potential misclassification, using a threshold
model with fuzzy logic classification (M2).

Statistical Analysis and Computations

An animal model was used to investigate 2 methods of
analyzing uncertain binary responses for FIS. A linear
mixed model at the liability scale, which included sys-
tematic effects of herd, year, month of mating effects;
linear and quadratic covariates for age at mating; and
unrelated service sire, animal, and residual as random
effects, was used in the analyses. Threshold models are
becoming a standard tool for analysis of discrete data
in the field of animal breeding and genetics. Extensive
literature on its theoretical basis, implementation, and
application has been generated in the last 20 yr (Gia-
nola, 1982; Gianola and Foulley, 1983; Sorensen et al.,
1995). More recently, Rekaya et al. (2001) proposed a
method for analyzing binary data subject to misclassi-
fication using a threshold model. In the current study,
an extension of such a method, based on fuzzy logic
classification as presented by Sapp et al. (2005), was
extended to field data.

Threshold Model for Analysis of Uncertain
Binary Responses

A detailed description of the methodology can be
found in Rekaya et al. (2001) and Sapp et al. (2005).
The threshold concept (Falconer, 1981), as applied to
data of this type, assumes that FIS is controlled by an
underlying normal variable, commonly called a liabil-
ity, which causes the observed binary response once the
liability reaches a threshold level. Here, the basic idea
consists of assuming that the observed binary data m =
(m1, m2,, mn)′ are a sample of uncertain (misclassified)
binary responses of nonobserved real data y = (y1, y2,,
yn)′, where each yi was Bernoulli, with success probabil-
ity pi that was expressed as a function of some system-
atic and random effects. Uncertainty or misclassifica-
tion occurred if some yi was switched (e.g., yi = 0 became
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mi = 1; a 0 was coded as 1). Furthermore, for each
observation, an indicator variable αi [α = (α1, α2,...,
αn)′] was assumed, which takes the value of 1 if yi was
switched, and αi = 0 otherwise. Following notation by
Rekaya et al. (2001), each αi was assumed to be Ber-
noulli with success probability πi (probability of misclas-
sification or uncertainty) at time t such that p(αi|πt) =
παit (1 − πt)(1 − αi).

Consequently, the following relationship between yi

and mi, given αi, could be established as yi = (1 − αi)mi

+ αi(1 − mi). Note that for αi = 0 (no misclassification),
yi and mi are equal as expected. Furthermore, the likeli-
hood function can be written interchangeably as a func-
tion of yi or mi (Rekaya et al., 2001; Sapp et al., 2005).

A mixed linear model was used for analysis of the
underlying liability of FIS. In matrix notation the model
could be written as

λ = Xβ + Zss + Zuu + e,

where λ was a vector of unobserved liabilities, β was
the vector of fixed effects, s was the vector of unrelated
random service sire effects, u was the vector of additive
effects, and e was the vector of residual effects. Further-
more, X, Zs, and Zu were the corresponding incidence
matrices with the appropriate dimensions.

Using this same notation, let m be defined as the
vector of observed uncertain FIS responses. Assuming
that y, the vector of unobserved true FIS responses,
and X are independent and using the relationship be-
tween yi and mi given earlier, the joint probability of
α = (α1, α2,..., αn)′ and m, given θ = (β′, s′, u′)′ and π =
(πt1

, πt2
,,..., πtn)′, was equal to

p(α, m | θ, π) = Π
n

i=1

παiti

(1 − πti
)(1−αi) [pi(θ)](1−αi)mi+αi(1−mi)

[1 − pi(θ)](1−[(1−αi)mi+αi(1−mi)],

where pi(θ) = Φi(x′iβ + z′sis + z′uiu) was the probability

FIS for record i. The known row vectors were x′i, z′si,

and z′ui, relating the fixed, service sire, and additive
effects to the probability of first insemination suc-
cess, respectively.

Finally, prior distributions for θ and π would com-
plete the Bayesian formulation; however, in some situa-
tions, π is known or could be inferred from external
information. In this study, a fuzzy logic approach was
used to determine the vector π.

If the absolute difference between DC and average
GL was <16 d or >26 d, there was no uncertainty about
the observed FIS response. Otherwise, the following
fuzzy logic functions were used to compute the probabil-
ity of miscoding at time ti (see Figure 1):

Figure 1. Probability that the observed binary response,
given the approximate number of days to insemination
(NDI), was maintained (MBR) or switched (SBR) using
fuzzy logic classification.

πti
= 0.5 − (21 − ti)/10 if 16 ≤ ti ≤ 21

and

πti
= 0.5 + (21 − ti)/10 if 21 < ti ≤ 26.

To ensure proper posterior distribution, the following
priors were assumed for the parameters in the model:

p(β−h) ∼ N(0, 106) and

p(βh|σ2
h) ∼ N(0, Iσ2

h),

where β = (β′−h, β′h)′, with βh being the vector of herd
effects and β−h being the vector of all fixed effects except
herd effects, and

p(s|σ2
s) ∼ N(0, Iσ2

s) and

p(u|A, σ2
u) ∼ N(0, Aσ2

u),

where I was the identity matrix and A was a known
matrix of relationships between animals. Uniform
bounded priors were assumed for σ2

s, σ2
u, and σ2

h.
The joint posterior density is proportional to the prod-

uct of the density of the conditional distribution times
the joint prior density. Samples from the conditional
posterior distribution were obtained via Gibbs sampler.
After augmentation of the joint posterior with the liabil-
ities (Albert and Chib, 1993; Sorensen et al., 1995), all
conditional posterior distributions of model parameters
were in closed form and easy to sample from as de-
scribed by Rekaya et al. (2001) and Sapp et al. (2005).
These distributions were normal for the location param-
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Table 2. Summary of the posterior mean (PM), posterior SD (PS), and lower (HL) and
upper (HU) bounds of the high posterior density 95% interval for variance components
and heritability

Parameter1 Model2 PM PS HL HU

σ2
s M1 0.135 0.009 0.117 0.154

M2 0.127 0.009 0.110 0.144

σ2
h M1 0.128 0.016 0.097 0.160

M2 0.123 0.015 0.094 0.154

σ2
u M1 0.055 0.015 0.023 0.080

M2 0.031 0.009 0.015 0.048
h2 M1 0.042 0.011 0.018 0.060

M2 0.024 0.007 0.012 0.037

1σ2
s = service sire variance, σ2

h = herd variance, σ2
u = additive variance, and h2 = heritability, calculated

as
(σ2

u)

[1 + σ2
s + σ2

h + σ2
u]

.

2M1 = analysis of uncertain binary data, without consideration for potential misclassification or uncer-
tainty, using a threshold model; M2 = analysis of uncertain binary data, accounting for potential misclassifi-
cation or uncertainty, using a threshold model with fuzzy logic classification.

eters, truncated normal for each of the liabilities, bino-
mial for the indicator parameters αi, and scaled-in-
verted χ2 distributions for the dispersion parameters.
Liabilities were sampled from their truncated normal
distribution using an inverse cumulative distribution
function technique (Devroye, 1986).

Convergence

Convergence diagnostics were based on the method
of Raftery and Lewis (1992) as implemented in the BOA
software (Smith, 2003). The required burn-in period
was always <3,000 iterations for all parameters in the
analyses. Thus, a total chain length of 150,000 itera-
tions of the Gibbs sampler was run with a conservative
burn-in of 50,000 iterations. The remaining 100,000
iterations were retained without thinning for post-
Gibbs analysis.

RESULTS AND DISCUSSION

Variance Components

The posterior mean, SD, and the high posterior den-
sity 95% [HPD (95%)] interval for service sire, herd,
and additive variance are presented in Table 2. The
results suggest that both service sire and herd variance
were less affected by misclassification than additive
variance. This finding agrees with the findings of Sapp
et al. (2005), who used simulated data to determine
that both service sire and herd variances were less af-
fected by misclassification due to the large number of
records per service sire or within a given herd. However,
point estimates of service sire (0.135) and herd (0.128)
variance using M1 were slightly greater than those
obtained using fuzzy logic classification (0.127 and
0.123, respectively). The point estimate from the M1
analysis for service sire variance was close to the upper

bound of the HPD (95%) interval of the M2 analysis,
suggesting that service sire variance was overestimated
using M1 compared with M2. The point estimate for
additive variance obtained using M1 (0.055) was sig-
nificantly greater than that from M2 (0.031) because
the point estimate (0.055) of M1 fell outside the HPD
(95%) interval of M2 (0.015 to 0.048). This result indi-
cates that the additive variance was overestimated
when potential misclassification was ignored.

Rekaya et al. (2001) evaluated the possibility of mis-
coding in dairy cattle for the trait of nonreturn rate at
60 d and found the estimate of additive variance was
greater than that obtained from a method accounting
for miscoding, although the differences were not as
great as in the current study (0.068 and 0.061, respec-
tively). The results of the current study and those of
Rekaya et al. (2001) from field data are in contrast to
the simulation studies by both Rekaya et al. (2001) and
Sapp et al. (2005), which found that when miscoding
was ignored in the simulation, the sire variance was
underestimated compared with the true value used in
the simulation. The conclusion in all these studies was
that the estimates of the genetic variance were more
accurate when misclassification was accounted for ei-
ther by modeling the probability of miscoding or by
using a fuzzy classification approach. Furthermore, a
bias would be expected if misclassification was not con-
sidered in the model. The direction of that bias would
be unclear and would depend on the specific data and
model used; however, the direction of bias may depend
in part on the number of 1s and 0s that were
wrongly classified.

Heritability

The posterior mean, SD, and HPD (95%) interval for
heritability are presented in Table 2. The point estimate
of heritability obtained from M1 (0.042) was signifi-
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cantly greater than the estimate obtained from M2
(0.024) and fell outside the HPD (95%) interval for M2.
This result was expected, given that the additive vari-
ance was significantly greater using M1 compared with
M2. The HPD (95%) interval using M2 was narrower
than the corresponding interval using M1, suggesting
more certainty of the estimate obtained from the analy-
sis that accounted for potential misclassification. The
results indicated that ignoring potential misclassifica-
tions could result in an overestimation of heritability.

Pearson Correlations

Pearson correlations between M1 and M2 for esti-
mated service sire effects and predicted breeding values
of the animals in the pedigree file were 0.99 and 0.98,
respectively. These results suggest that no major re-
ranking would be expected for either service sire effects
or breeding values of animals between the 2 methods.
In field data with fewer records per service sire, as may
be the case with younger sires, a change in the rank
correlation may be anticipated because of limited infor-
mation with which to infer those effects. Furthermore,
it is known that a change in the heritability in a univari-
ate analysis generally does not profoundly affect the
ranking of animals. Nonetheless, we expect that the
change in the genetic parameters could have an effect
on the ranking if the binary trait with potential miscod-
ing is jointly analyzed with correlated traits.

IMPLICATIONS

The results from this study indicate that differences
exist between the 2 methods discussed, particularly for
additive variance and heritability, and that in this case,
a threshold model that contemplates uncertainty
should provide more reliable estimates of these 2 pa-
rameters. When estimating parameters for lowly heri-
table traits, such as those dealing with female fertility
where it is intuitive to believe that miscoding occurs,
an approach that contemplates the possibility of mis-

classification may yield more reliable results. Although
no reranking of breeding values or service sire effects
would be expected given the results of the current study,
further research using larger field data sets is war-
ranted to define more completely the benefits of meth-
ods that account for classification uncertainty.
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