Characterization of 24 Microsatellite Loci in Delta Smelt, *Hypomesus transpacificus*, and Their Cross-Species Amplification in Two Other Smelt Species of the Osmeridae Family

Kathleen M. Fisch
Scripps Research Institute, kfisch@scripps.edu

Jessica Lynn Petersen
University of Nebraska-Lincoln, jessica.petersen@unl.edu

Melinda R. Baerwald
University of California - Davis

John K. Pedroia
University of California - Davis

Bernie May
University of California - Davis

Follow this and additional works at: http://digitalcommons.unl.edu/animalscifacpub

Part of the Aquaculture and Fisheries Commons, Biodiversity Commons, Cellular and Molecular Physiology Commons, Molecular Genetics Commons, Terrestrial and Aquatic Ecology Commons, and the Zoology Commons

http://digitalcommons.unl.edu/animalscifacpub/820

This Article is brought to you for free and open access by the Animal Science Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Papers and Publications in Animal Science by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
PERMANENT GENETIC RESOURCES

Characterization of 24 Microsatellite Loci in Delta Smelt, *Hypomesus transpacificus*, and Their Cross-Species Amplification in Two Other Smelt Species of the Osmeridae Family

Kathleen M. Fisch, Jessica L. Petersen, Melinda R. Baerwald, John K. Pedroia and Bernie May
Department of Animal Science, University of California-Davis, Davis, California, USA

Abstract

We characterized 24 polymorphic tetranucleotide microsatellite loci for delta smelt (*Hypomesus transpacificus*) endemic to the San Francisco Bay Estuary, California, USA. Screening of samples (*n* = 30) yielded two to 26 alleles per locus with observed levels of heterozygosity ranging from 0.17 to 1.0. Only one locus deviated from Hardy–Weinberg equilibrium, suggesting these individuals originate from a single panmictic population. Linkage disequilibrium was found in two pairs of loci after excluding the locus out of Hardy–Weinberg equilibrium. Twenty-two primer pairs cross-amplified in wakasagi smelt (*Hypomesus nipponensis*), and 15 primer pairs cross-amplified in longfin smelt (*Spirinchus thaleichthys*).

Keywords: Cross-species amplification, Delta smelt, *Hypomesus transpacificus*, Microsatellites, Osmeridae, Primers

Article history: Received April 10, 2008; revision accepted April 23, 2008.

The delta smelt (Osmeridae: *Hypomesus transpacificus*) is an annual planktivorous fish endemic to the Sacramento–San Joaquin River delta and upper San Francisco Bay Estuary of central California (Moyle et al. 1992). Delta smelt have been in rapid decline since they were listed as threatened by the U.S. Fish and Wildlife Service (U.S. FWS) under the U.S. Endangered Species Act in 1993 (U.S. FWS 1993; Feyrer et al. 2007). A major threat to delta smelt is water diversion by the Federal and California State Water Projects, which export water from the delta to central and southern California for agricultural use and urban drinking water. Additional threats include reduced water quality from urban and agricultural runoff, and competition and predation by introduced species (Moyle et al. 1992; Feyrer et al. 2007). Microsatellite markers characterized for delta smelt will allow us to assess population structure and conduct genetic studies relevant to the conservation of this species.

Whole genomic DNA was extracted from fin tissue of delta smelt collected near Decker Island in the lower Sacramento River, California, using QIAGEN’s DNeasy Tissue Kit protocol. Eight libraries enriched for tetranucleotide repeat motifs [(AAAC)/*n*, (CAGA)/*n*, (CATC)/*n*, (TAGA)/*n*] (at two different annealing temperatures), (AAAG)/*n*, (TACA)/*n*, and (TGAC)/*n*] were constructed, screened, and sequenced by Genetic Identification Services according to Meredith & May (2002). The library with tetranucleotide repeat (CAGA) was particularly rich in microsatellites and 584 clones of that library were sequenced.

We analyzed sequences using SEQUENCHER version 4.7 (Gene Codes Corporation) to compare sequences for duplicates and employed MREPS version 2.5 (Kolpakov et al. 2003) to identify repeat regions. PRIMER 3 (Rozen & Skaletsky 2000) was used to create primer pairs flanking the repeat regions of interest for 163 loci. Primer pairs were initially tested on five delta smelt individuals to determine microsatellite amplification and polymorphism. Polymerase chain reaction (PCR) was performed with the following conditions: 5 ng DNA template, 1 × *Taq* DNA polymerase buffer B, 2.0 mm MgCl₂, 0.2 mm of each dNTP, 10 µM of each primer and 0.38 U *Taq* DNA polymerase (all reagents from Promega), for a total reaction volume of 10 µL. PCR was performed using a Bio-Rad DNA Engine Dyad thermal cycler under the following conditions: 95 °C
<table>
<thead>
<tr>
<th>Locus</th>
<th>GenBank Accession no.</th>
<th>Primer sequence (5’–3’)</th>
<th>Dye</th>
<th>n</th>
<th>Repeat motif</th>
<th>No. of alleles</th>
<th>Estimated allele size range (bp)</th>
<th>H_o</th>
<th>H_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>HtrG103</td>
<td>EU621763</td>
<td>F: GCACGCATCATGTCAGAAATA R: *TCAGGCTAAGAGGACCTGGA</td>
<td>6-FAM</td>
<td>30</td>
<td>(GACA)$_{10}$</td>
<td>13</td>
<td>91–150</td>
<td>0.87</td>
<td>0.86</td>
</tr>
<tr>
<td>HtrG104</td>
<td>EU621764</td>
<td>F: GTGCTGACAGGTAGGCAAAGT R: *CCAGTGGCTAAGAGGAAGT</td>
<td>6-FAM</td>
<td>30</td>
<td>(CAGA)$_3$(AG)$_5$</td>
<td>6</td>
<td>113–160</td>
<td>0.53</td>
<td>0.60</td>
</tr>
<tr>
<td>HtrG105</td>
<td>EU621765</td>
<td>F: *CTGGGACAGACACCTCTGAGT R: TCCCTAACGCTAAACCATCT</td>
<td>6-FAM</td>
<td>5</td>
<td>(CTGT)$_8$</td>
<td>4</td>
<td>75–200</td>
<td>0.40</td>
<td>0.64</td>
</tr>
<tr>
<td>HtrG106</td>
<td>EU621766</td>
<td>F: *TCCCTCAAACGGTTCCTTAC R: GCTGAGAAGCTGAACACTGG</td>
<td>6-FAM</td>
<td>24</td>
<td>(GTCT)$_8$</td>
<td>2</td>
<td>75–200</td>
<td>0.17</td>
<td>0.16</td>
</tr>
<tr>
<td>HtrG107</td>
<td>EU621767</td>
<td>F: *TGGACAGACAGCAAGCAAGCAG R: GACATAGCTGGACTGAGGAAGT</td>
<td>PET</td>
<td>25</td>
<td>(CAGA)$_7$</td>
<td>9</td>
<td>100–215</td>
<td>0.68</td>
<td>0.75</td>
</tr>
<tr>
<td>HtrG108</td>
<td>EU621768</td>
<td>F: *TGGGACAGACAGCAAGCAAGCAG R: AGCCTGGACAGAGGAAGAT</td>
<td>PET</td>
<td>22</td>
<td>(GT)$_8$(TCTA)$_8$</td>
<td>12</td>
<td>75–250</td>
<td>0.86</td>
<td>0.87</td>
</tr>
<tr>
<td>HtrG109</td>
<td>EU621769</td>
<td>F: *GGACAGACAGCAAGCAAGCAG R: CCACCTGGACAGAGGAAGAT</td>
<td>PET</td>
<td>30</td>
<td>(TCTG)$_{11}$(GTCT)$_4$</td>
<td>15</td>
<td>145–218</td>
<td>0.90</td>
<td>0.89</td>
</tr>
<tr>
<td>HtrG110</td>
<td>EU621770</td>
<td>F: *AAACGTGTCTGTGCTGTCTGA R: CCCACCTGGACAGAGGAAGAT</td>
<td>PET</td>
<td>28</td>
<td>(CAGA)$_{17}$</td>
<td>21</td>
<td>100–275</td>
<td>0.96</td>
<td>0.94</td>
</tr>
<tr>
<td>HtrG112</td>
<td>EU621771</td>
<td>F: *AGTCTTACCGCATCCACAGC R: ACTGTTCTGGACTGAGGAC</td>
<td>PET</td>
<td>29</td>
<td>(CAGG)$_4$</td>
<td>2</td>
<td>100–299</td>
<td>0.21</td>
<td>0.19</td>
</tr>
<tr>
<td>HtrG113</td>
<td>EU621772</td>
<td>F: *GCTGCGTCTGCTAGCTGAC R: CGTCTTCACCCCTACATGT</td>
<td>VIC</td>
<td>6</td>
<td>(AGAC)$_6$</td>
<td>3</td>
<td>100–300</td>
<td>0.50</td>
<td>0.68</td>
</tr>
<tr>
<td>HtrG114</td>
<td>EU621773</td>
<td>F: *ACCATGGGAGACAAGTCTGCA R: TCACTGGACGAACAAGGAAG</td>
<td>VIC</td>
<td>28</td>
<td>(TCTA)$_3$(TCTG)$_1$</td>
<td>19</td>
<td>175–272</td>
<td>1.00</td>
<td>0.95</td>
</tr>
<tr>
<td>HtrG115</td>
<td>EU621774</td>
<td>F: *CTGTCTTTCGGACGTCTCTC R: CTGCTTTCGGACGTCTCTC</td>
<td>VIC</td>
<td>29</td>
<td>(CTGT)$_{18}$</td>
<td>12</td>
<td>175–240</td>
<td>0.79</td>
<td>0.90</td>
</tr>
<tr>
<td>HtrG116</td>
<td>EU621775</td>
<td>F: *CGTCTTTTACCCGTCTTTAC R: GCTGCTGGCTGCTGAC</td>
<td>6-FAM</td>
<td>18</td>
<td>(TGTC)$_5$</td>
<td>3</td>
<td>175–250</td>
<td>0.33</td>
<td>0.37</td>
</tr>
<tr>
<td>HtrG117</td>
<td>EU621776</td>
<td>F: *CACACACTCCAAAGACGAGGA R: CTGTCTTGCTGCACCTTCC</td>
<td>NED</td>
<td>24</td>
<td>(GACA)$_{17}$</td>
<td>12</td>
<td>150–300</td>
<td>0.96</td>
<td>0.91</td>
</tr>
<tr>
<td>HtrG118</td>
<td>EU621777</td>
<td>F: *GGTGGCGGATCTTCAAACCA R: CCCACGACGAGAAAGTGAT</td>
<td>VIC</td>
<td>30</td>
<td>(ACAG)$_5$</td>
<td>4</td>
<td>150–300</td>
<td>0.37</td>
<td>0.32</td>
</tr>
<tr>
<td>HtrG119</td>
<td>EU621778</td>
<td>F: *AAGCTTCTGTGGAGAGAC R: ACTCTACCGAACGCGTATG</td>
<td>NED</td>
<td>29</td>
<td>(ACAG)$_{21}$</td>
<td>6</td>
<td>179–272</td>
<td>0.97</td>
<td>0.96</td>
</tr>
<tr>
<td>HtrG120</td>
<td>EU621779</td>
<td>F: *ACACGGGAAACACACCATCA R: GCGTGGTCTAGGGCTAAAA</td>
<td>NED</td>
<td>30</td>
<td>(AGAC)$_6$</td>
<td>8</td>
<td>230–279</td>
<td>0.60</td>
<td>0.74</td>
</tr>
<tr>
<td>HtrG122</td>
<td>EU621780</td>
<td>F: *AACACATTGAGCAAGGGCTA R: TGACCTAGTGGCTGGAGA</td>
<td>NED</td>
<td>24</td>
<td>(TGTC)$_{30}$</td>
<td>8</td>
<td>250–300</td>
<td>0.42</td>
<td>0.86</td>
</tr>
<tr>
<td>HtrG123</td>
<td>EU621781</td>
<td>F: *TGAAGCCAGCTGCTGCTGGA R: GATCCTTTTTTCTACTTCAAG</td>
<td>6-FAM</td>
<td>30</td>
<td>(GACA)$_{12}$</td>
<td>22</td>
<td>240–349</td>
<td>0.93</td>
<td>0.95</td>
</tr>
<tr>
<td>HtrG126</td>
<td>EU621782</td>
<td>F: *TGTGCCACTGCTGCTGGA R: GATCCTTTTTTCTACTTCAAG</td>
<td>6-FAM</td>
<td>30</td>
<td>(TCTG)$_{21}$</td>
<td>25</td>
<td>243–335</td>
<td>0.87</td>
<td>0.95</td>
</tr>
<tr>
<td>HtrG127</td>
<td>EU621783</td>
<td>F: GCATCCACTGCTGCTGGA R: *CCCTTCCACCTCCATCT</td>
<td>6-FAM</td>
<td>30</td>
<td>(AGAC)$_3$(ACAG)$_5$</td>
<td>24</td>
<td>209–350</td>
<td>0.80</td>
<td>0.95</td>
</tr>
<tr>
<td>HtrG128</td>
<td>EU621784</td>
<td>F: *CTGGCTGTCACTCTGCAA R: GAAGCTGCTGCTGCTGCA</td>
<td>6-FAM</td>
<td>19</td>
<td>(ACAG)$_{26}$</td>
<td>12</td>
<td>200–375</td>
<td>0.84</td>
<td>0.84</td>
</tr>
<tr>
<td>HtrG129</td>
<td>EU621785</td>
<td>F: *ACTGCTGGAGAGCAACACT R: CAAGCTGCTGCTGCTGCA</td>
<td>PET</td>
<td>28</td>
<td>(TGTC)$_3$(CTGT)$_6$</td>
<td>306</td>
<td>360</td>
<td>0.64</td>
<td>0.66</td>
</tr>
<tr>
<td>HtrG131</td>
<td>EU621786</td>
<td>F: *GAGAGAAAGGATGGGAGTCT R: GGCCAAGGGACACATTCAAA</td>
<td>PET</td>
<td>27</td>
<td>(CAGA)$_{28}$</td>
<td>21</td>
<td>281–381</td>
<td>0.78</td>
<td>0.95</td>
</tr>
</tbody>
</table>

*labelled primer.
for 1 min, 30 cycles at 95 °C for 30 s, 50 °C for 1 min, 72 °C for 1 min, followed by 60 °C for 10 min, and held at 10 °C. Amplified products were diluted 1:1 with 98% formamide loading buffer, denatured at 95 °C for 2 min, and chilled immediately on ice before electrophoresis. PCR products were separated on a 5% denaturing polyacrylamide gel at 50 W for 70 min, visualized using the SYBR-Green-agarose overlay protocol (Rodzen et al. 1989), and scanned with a GE Healthcare FluorImager 595. Product sizes were estimated by comparison with a standard 400 bp ladder (The Gel Company).

Twenty-four of the 163 loci were polymorphic and well-resolved in the initial screening (Table 1). Those 24 loci were screened with an additional 25 delta smelt individuals (total \(n = 30 \)) also collected near Decker Island. We also tested the 24 polymorphic loci for cross-species amplification in six individuals of longfin smelt (\(H. \) transpacificus) and wakasagi smelt (\(S. \) thaleichthys) and wakasagi smelt (\(H. \) nipponensis).

Multiplex PCR amplifications were performed using the same conditions described above for the initial screening, except that the cycle number was increased to 31 and 1 \(\mu \)m of fluorescently labeled primer [NED, VIC, and PET from Applied Biosystems (ABI), 6-FAM from Integrated DNA Technologies] was added into a total reaction volume of 15 \(\mu \)L. One microliter of multiplexed PCR product was run undiluted on an ABI 3130xl Genetic Analyzer with a LIZ600 size standard (ABI). Data analysis was performed using genetic data analysis (GDA; Lewis & Zaykin 2001). MICRO-CHECKER version 2.2.3 (Van Oosterhout et al. 2004) was used to estimate the probability of the occurrence of null alleles. Hardy–Weinberg equilibrium (HWE) and linkage disequilibrium (LD) significance was evaluated using Fisher’s exact test with 10,000 permutations, and missing data discarded. Characteristics of the microsatellite loci amplifying in \(H. \) transpacificus are presented in Table 1. One locus, HtrG122, deviated from HWE expectations \((P < 0.05)\) after applying sequential Bonferroni correction (Holm 1979). Heterozygote deficiency at this locus suggests the presence of null alleles \((P < 0.001)\). However, 23 of 24 loci con-

form to HWE expectations, suggesting the 30 individuals included in the analysis may originate from a single panmictic population. Significant pairwise genotype LD \((P < 0.05)\) was found in two pairs of loci after applying a sequential Bonferroni correction and excluding HtrG122: HtrG115/HtrG131 and HtrG127/HtrG131.

Of the 24 primer pairs developed for delta smelt and tested for cross-amplification in \(H. \) nipponensis and \(S. \) thaleichthys, only one (4%) resulted in no amplification in either species. Fifteen (62.5%) of the 24 primer pairs amplified in \(S. \) thaleichthys, while 22 (91.6%) amplified in \(H. \) nipponensis (Table 2).

Table 2 Cross-species amplification results of 24 microsatellite loci for the smelt family Osmeridae, genus \(H. \) nipponensis and \(S. \) thaleichthys. Species, sample size \((n)\); 'U' indicates amplification but unclear; '-' indicates no amplification; number of alleles are given with numbers in parentheses indicating size range in bp.

<table>
<thead>
<tr>
<th>Locus ID</th>
<th>(H.) nipponensis ((n = 6))</th>
<th>(S.) thaleichthys ((n = 6))</th>
</tr>
</thead>
<tbody>
<tr>
<td>HtrG103</td>
<td>U</td>
<td>2 (111–115)</td>
</tr>
<tr>
<td>HtrG104</td>
<td>2 (112–147)</td>
<td>U</td>
</tr>
<tr>
<td>HtrG105</td>
<td>1 (140)</td>
<td>1 (94)</td>
</tr>
<tr>
<td>HtrG106</td>
<td>1 (147)</td>
<td>U</td>
</tr>
<tr>
<td>HtrG107</td>
<td>3 (122–149)</td>
<td>U</td>
</tr>
<tr>
<td>HtrG108</td>
<td>4 (148–198)</td>
<td>U</td>
</tr>
<tr>
<td>HtrG109</td>
<td>4 (145–162)</td>
<td>1 (109)</td>
</tr>
<tr>
<td>HtrG110</td>
<td>2 (106–115)</td>
<td>1 (118)</td>
</tr>
<tr>
<td>HtrG112</td>
<td>1 (285)</td>
<td>U</td>
</tr>
<tr>
<td>HtrG113</td>
<td>2 (124–231)</td>
<td>2 (142–237)</td>
</tr>
<tr>
<td>HtrG114</td>
<td>1 (204)</td>
<td>1 (195)</td>
</tr>
<tr>
<td>HtrG115</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>HtrG116</td>
<td>–</td>
<td>U</td>
</tr>
<tr>
<td>HtrG117</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>HtrG118</td>
<td>7 (238–298)</td>
<td>8 (243–276)</td>
</tr>
<tr>
<td>HtrG119</td>
<td>–</td>
<td>U</td>
</tr>
<tr>
<td>HtrG120</td>
<td>2 (268–273)</td>
<td>U</td>
</tr>
<tr>
<td>HtrG122</td>
<td>2 (283–288)</td>
<td>U</td>
</tr>
<tr>
<td>HtrG123</td>
<td>12 (261–343)</td>
<td>U</td>
</tr>
<tr>
<td>HtrG126</td>
<td>4 (260–295)</td>
<td>U</td>
</tr>
<tr>
<td>HtrG127</td>
<td>3 (220–289)</td>
<td>U</td>
</tr>
<tr>
<td>HtrG128</td>
<td>10 (236–367)</td>
<td>U</td>
</tr>
<tr>
<td>HtrG129</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>HtrG131</td>
<td>5 (328–376)</td>
<td>–</td>
</tr>
<tr>
<td>Total no. of amplified loci</td>
<td>22</td>
<td>15</td>
</tr>
</tbody>
</table>
Acknowledgements

The U.S. FWS supported this research through a CESU agreement with the University of California-Davis (Agreement no. 813327J011). Funding for the microsatellite-enriched library construction came through Scott Hamelberg at the U.S. FWS Coleman National Fish Hatchery Complex. We thank Scott Hamelberg and Bill Ardren for helpful discussions. Delta smelt samples were provided by Joan Lindberg and Bradd Baskerville-Bridges at the Fish Conservation & Culture Laboratory, University of California-Davis. Samples from other species were provided by William Bennett, James Hobbs, and Kelly Souza (S. thaleichthys) and Ryon Kurth (H. nipponensis). We thank Dr. Albano Beja-Pereira for valuable comments that improved this manuscript.

References