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Antipredator behaviour theory provides a framework to understand the mechanisms behind human–
wildlife interactions; however, little is known about the role of visual systems in the responses to
humans. We quantified responses of brown-headed cowbirds, Molothrus ater (Boddaert), and mourning
doves, Zenaida macroura (Linnaeus), to object approach (a ground-based vehicle) and vehicle lighting
regimen, and we examined two visual properties (visual acuity and visual fields) that could influence
antipredator behaviour. Brown-headed cowbird groups exposed to vehicle approach and constant illu-
mination of the vehicle-mounted lamp showed alert behaviour earlier than did groups exposed to
pulsating treatments or no lamp. Interestingly, light treatments interacted with ambient light; cowbird
alert response occurred sooner under sunny conditions and constant illumination of the lamp. Mourning
doves were not affected by light treatments. Between species, mourning dove groups had a quicker alert
response (and slower flight response) than brown-headed cowbirds. Visual acuity was higher and the
visual field was wider in mourning doves than in brown-headed cowbirds. We speculate that brown-
headed cowbirds might flush sooner to reduce predation risk costs associated with a relatively lower
ability to visually track a given object. Our findings have theoretical and applied implications, as our
model species belong to families that show different antipredator responses, and provide insight as to
how object lighting might be used to reduce bird–structure/vehicle collisions, an increasing source of
mortality in birds.

The Association for the Study of Animal Behaviour. Published by Elsevier Ltd.

The interplay between animal behaviour and conservation
biology has facilitated learning about basic behavioural mecha-
nisms (e.g. mating systems, antipredator strategies, habitat
requirements) that can have a direct application to the protection
(e.g. species of conservation concern) and management (e.g.
nuisance species) of wildlife (e.g. Sutherland 1998; Buchholz
2007). For instance, the framework of antipredator behaviour
theory has been used to address not only basic (e.g. Lima 1998),
but also applied questions (e.g. Frid & Dill 2002). In an applied
context, antipredator behaviour allows us to understand the
mechanisms behind the responses of wildlife to different types of
human activities. Here, the assumption is that birds use strategies
to respond to human disturbance that are similar to those used
when reacting to a predator, which has been corroborated
empirically (e.g. Frid & Dill 2002; Møller et al. 2008). This

mechanistic approach can help predict reactions of different
species based on variations in ecological conditions and life
history traits (Blumstein 2006).

Two factors that can influence interspecific variations in
antipredator responses are the size and shape of detection
windows: areas around an animal where the probabilities of
detecting objects are higher (Blumstein et al. 2005). Character-
izing detection windows can help us understand between-species
variations in detection and reaction times to different types of
objects with which animals interact on a regular basis (e.g.
conspecifics, predators, recreationists, vehicles, etc.). Different
visual properties could affect the configuration of detection
windows. For example, visual acuity (the ability to distinguish
two objects as separate) can influence the distance at which
a bird resolves an object (Kiltie 2000), and potentially the size of
the detection window of a species. Furthermore, the configura-
tion of the visual fields determines the volume of space around
the head from which visual information can be obtained at any
given moment (Martin & Katzir 2000). The width of the visual
field can potentially affect the shape of the detection window,
depending upon body posture and head orientation in relation to
an object (Fernández-Juricic et al. 2004a).

Visual detection of an object also depends on ambient light
conditions, the contrast between the object and the background,
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and the looming effect (see Dittrich & Lea 2001). A measure of
temporal resolution that has been used with several avian
species is the critical fusion frequency (CFF), the point at which
a time-varying stimulus just appears to be steady instead of
flickering (Powell & Smith 1968; Jarvis et al. 2003). Species-
specific CFFs are intensity (contrast) dependent, with higher
CFFs under brighter light intensities (Powell & Smith 1968).
Furthermore, contrast sensitivity, the ability to discriminate
between adjacent stimuli (e.g. an approaching object and the
surrounding environment) is affected by ambient light condi-
tions and distance to the object (Ghim & Hodos 2006). Finally,
the symmetrical expansion of an object’s image (looming) on
the avian retina is a critical variable in determining whether an
object is on a collision course (see Gibson 1966, 1979; Wang &
Frost 1992; Sun & Frost 1998). Large, expanding flow-fields
might precipitate manoeuvres such as turning or landing (Wang
& Frost 1992).

Understanding the factors limiting (or enhancing) the
responses of species with different visual systems can have
implications for manipulating their behaviour in applied
contexts (e.g. reducing the frequency of human–wildlife inter-
actions). In this study, we questioned whether a lighting
regimen might enhance detection of (and reaction to) the
approach of a ground-based vehicle in two species with
different visual sensory constraints. Our goal was two-fold. First,
we assessed between-species differences in two visual proper-
ties related to detection windows: visual acuity and configura-
tion of visual fields. Second, we quantified species-specific
behavioural responses to the approach of a vehicle and lighting
regimen. We conducted our experiments under semicontrolled
conditions, and we used two model species, brown-headed
cowbirds, Molothrus ater (Boddaert), and mourning doves, Zen-
aida macroura (Linnaeus).

We chose these model species for several reasons. First, they
belong to families that have different antipredator behaviours
(e.g. Lima 1993), which allowed us to explore whether there
might be an association (not causation) between detection and
response behaviours, and visual acuity and visual fields (Fer-
nández-Juricic et al. 2004a). Second, both species are ground
foragers and, consequently, the receptors involved in motion
detection are likely to be distributed in similar areas of the
retina (Hart 2001), which minimizes the biases associated with
the detection of an approaching object. Third, both species
belong to families (Icteridae and Columbidae) that are frequently
involved in bird–aircraft collisions (e.g. bird strikes; Allan 2002;
Dolbeer & Wright 2008). Furthermore, bird collisions with
communication towers have resulted in as many as 2000
mortalities annually at some structures (Evans et al. 2007), and
collisions with static structures and vehicles result in approxi-
mately 500 million bird mortalities annually in the U.S.A.
(Erickson et al. 2005).

This study has implications for predator–prey interactions, as
we quantified visual properties that could influence the costs of
gathering personal and social information about a threat (e.g.
Fernández-Juricic et al. 2004b). Our approach is novel in that we
combined key factors in avian visual cognition (vision and
behaviour; Lea & Dittrich 2000; Dittrich & Lea 2001) to better
understand the mechanisms involved in avian responses to object
approach and, particularly, the visual signals that could enhance
avoidance responses. Consequently, although our study revolves
around a basic question, it has realistic conservation applications,
such as reducing bird collisions with aircraft (Dolbeer 2006;
Dolbeer & Wright 2008), communication towers (Manville 2000;
Evans et al. 2007), wind turbines (Drewitt & Langston 2006) and
other vehicles (Erickson et al. 2005).

METHODS

Study Area

We conducted our study at California State University, Long
Beach, and the National Aeronautic and Space Administration’s
(NASA) Plum Brook Station (PB), Erie County, Ohio, U.S.A. (41�220N,
82�410W). The 2200 ha PB is enclosed by a 2.4 m high chain-link
fence with barbed-wire outriggers. Habitat within PB differs from
the surrounding mix of agricultural and suburban area, comprising
canopy-dogwood (Cornus spp.; 39%), old field and grasslands (31%),
open woodlands (15%) and mixed hardwood forests (11%) inter-
spersed by abandoned and actively used structures relating to
NASA and prior operations, and paved roads that circle and bisect
the station. Plum Brook Station has restricted public access.

Bird Capture and Maintenance

We captured 336 male brown-headed cowbirds on PB (27
March–29 June 2006) by using decoy traps. We held the birds in
2.4 � 2.4 � 1.8 m cages in an outdoor aviary on the station, where
they received black oil sunflower, millet, grit and water ad libitum.
We live-trapped 240 mourning doves by using walk-in traps on PB
and Cleveland Hopkins International Airport, Cleveland, Ohio (03
July–08 September 2006). We transferred the birds to
2.4 � 2.4 � 1.8 m cages in the outdoor aviary on the station. The
birds were maintained on millet, cracked corn, safflower, black oil
sunflower, grit and water ad libitum. Because of limited availability
of mourning doves, our experimental groups of doves comprised
adults and, probably, juvenile birds. However, we considered that
possible variation in experience with ground-based vehicles had
a negligible effect on our results because all individuals were
captured from areas with active roads.

We also captured 16 brown-headed cowbirds and 15 mourning
doves to characterize visual acuity and visual fields. These birds
were captured in decoy traps from populations in Los Angeles and
Orange Counties, California, U.S.A. Different numbers of individuals
were used for the different visual physiology procedures (see
below). Animals were housed on the California State University
Long Beach Animal Research Facilities with two to four birds per
cage (0.80 � 0.55 m � 0.60 m). The birds were kept on a 12:12 h
light:dark cycle at approximately 25�C. Food and water was
provided ad libitum. Brown-headed cowbirds were fed mixed
birdseed (Royal Feeds Leech, Feed, and Milling Co., Downey, CA),
whereas mourning doves were fed dove mix (Black Smith’s Corner
Feed Store, Bellflower, CA).

Visual Acuity

We estimated visual acuity based on the density of retinal
ganglion cells (see formula below). Pettigrew et al. (1988)
concluded that the use of retinal ganglion cell density as a proxy of
visual acuity is appropriate under certain conditions (e.g. species
with a defined area of high concentration of ganglion cells, etc.). We
met these conditions (see below). Furthermore, Reymond (1985)
noted a close correspondence between behavioural (via a two-
choice discrimination task) and anatomical measures (photore-
ceptor distribution) of visual acuity, and linked the spatial resolving
power of the retina to the distribution of ganglion cells involved in
spatial processing (see also Martin 1986a). Similarly, avian use of
frontal or lateral viewing areas in response to static, slow moving or
rapidly moving objects is related to foveal densities of photore-
ceptors and retinal ganglion cells (Maldonado et al. 1988; Wathey &
Pettigrew 1989; Hodos et al. 2002; Gaffney & Hodos 2003).
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We used five brown-headed cowbirds and four mourning doves.
From each individual, we extracted one retina, except for one
mourning dove from which both the left and right retinas were
extracted. We attempted to extract both retinas from each indi-
vidual; however, sometimes the retinal tissue ruptured making it
unusable to characterize cell density in specific parts of the retina.
Overall, we studied three left and two right retinas for brown-
headed cowbirds and four right and one left retinas for mourning
doves. Animals were euthanized with CO2, eyes were immediately
extracted, and eye axial length was measured using digital calipers.
We multiplied the eye axial length by 0.6 to estimate the average
posterior nodal distance (PND, distance between the back of the
lens and the anterior reflective surface of the retina; Reymond
1985), following Hughes (1977), Martin (1993) and Boire et al.
(2001).

We hemisected eyes and placed the posterior portion in 2.5%
gluteraldehyde in 0.1 M solution of Sorensen’s Phosphate Buffer at
a pH of 7.2 for 5 min. After rinsing the posterior portion of the eye
(pH 7.2), we dissected the retina out and placed it in 4% para-
formaldehyde for at least 24 h, then rinsed it in Phosphate Buffered
Saline (PBS). We made radial cuts to allow the retina to lay flat on
a gelatinized slide with a coverslip on top, then placed the slide in
a vessel containing a few drops of formalin and placed the vessel on
a hot plate at 50�C for 2 h to ensure that the retina adhered to the
slide. The retina dried in the vessel for another 24 h (following
Stone 1981; Hart 2002).

We cleared the retina for 20 min with Histo-Clear� (National
Diagnostics, Atlanta, GA, U.S.A.), and rinsed it twice in 100% ethanol
(2 min each). We then placed the retina in the following sequence
of solutions for 2 min each: 95% ethanol with a few drops of glacial
acetic acid, 80% alcohol, 70% alcohol, and distilled water with a few
drops of glacial acetic acid. The retina was then immersed in 0.25%
cresyl violet for approximately 6 min depending on the quality of
the staining achieved, as cresyl violet strength changes over time
(D. Lee, personal communication). After staining, we rinsed the
retina in distilled water with drops of glacial acetic acid, dehydrated
it in 70% ethanol and 80% ethanol (30 s each) and placed it in 95%
ethanol with drops of acetic acid (60 s), then rinsed it twice in 100%
ethanol (60 s each), differentiated the tissue in 95% ethanol with
drops of acetic acid (1 min) and performed two quick rinses in 100%
ethanol, and placed it back in Histo-Clear for two 10 min rinses
(Stone 1981; Boire et al. 2001; Hart 2002). We coverslipped the
retina out of Histo-Clear and allowed it to dry for at least 3 days. The
excess mounting media was cleaned off the slide using Histo-Clear
on a cotton swab.

Adherence of the retina onto the gelatinized slide was meant to
reduce shrinkage (Hughes 1977; Stone 1981). However, measure-
ments of retinal area were made before and after processing to
determine the correction factor to account for tissue shrinkage
using ImageJ area function (http://rsb.info.nih.gov/ij). When tissue
shrinkage occurred, we adjusted the area of each picture to reflect
the original retina size by estimating a percentage change in tissue
size. The area captured in the photographs was 0.022 mm2, so the
correction was 0.022 þ (0.022 � % shrinkage). The density of cells
was then calculated by dividing the number of cells in each
photograph by the corrected tissue area in each picture.

Stained ganglion cells were then examined under the micro-
scope at 400� power. A 1 � 2 mm grid was drawn on the
coverslip to divide the retina into quadrats. We photographed the
ganglion cell layer with a Moticam 2000 microscope camera
(Motic Instruments, Richmond, BC, Canada) using the shareware
Motic Image Plus 2.0. Each quadrat was approximately seven
images wide and three images high. We photographed the cell
layers following a specific order to avoid overlap and to track the
location of each image. We counted the number of retinal

ganglion cells per image with ImageJ to later estimate density.
We used retinal ganglion cell density and eye size to estimate the
upper levels of visual acuity (Collin & Pettigrew 1989). The retinal
ganglion cell layer also includes cells other than retinal ganglion
cells, such as, amacrine and glial cells. We established standard
criteria for identifying ganglion cells based on the large soma
size, Nissl accumulation in the cytoplasm and staining of the
nucleus (Hughes 1977; Freeman & Tancred 1978; Stone 1981;
Rahman et al. 2006, 2007). To estimate cell density (and visual
acuity), we only used areas of the retina with a high concentra-
tion of retinal ganglion cells. Cell types different from retinal
ganglion cells (e.g. amacrine cells, glial cells) are less abundant in
areas of high cell density (Hayes & Holden 1983), thereby
reducing the bias associated with cell misidentification.

Previous studies have estimated the fovea (area with the highest
concentration of photoreceptors) as having the highest 50
percentile of cell density (e.g. Franco et al. 2000). We were not able
to establish in the retina of either species the presence of a pitted
area (e.g. fovea); thus, we calculated two estimates of areas of high
concentration of retinal ganglion cells (HRGC). We estimated cell
density from areas in the retina with the highest 50 (HRGC50) and
25 (HRGC25) percentile cell density. These areas were located in the
central and dorsal parts of the retina (T. Dolan & E. Fernández-
Juricic, unpublished data).

To estimate visual acuity from ganglion cell density, we first
estimated the retinal magnification factor (RMF), which is the
linear distance on the retina that subtends 1� (Pettigrew et al.
1988), as:

RMF ¼ 2pPND
360

;

where PND is the posterior nodal distance, as defined above. We
estimated visual acuity by estimating Fn, the highest spatial
frequency that can be detected, measured in cycles per degree, as:

Fn ¼
RMF

2

ffiffiffiffiffiffiffi
2Dffiffiffi

3
p

s
;

where D represents retinal ganglion cell density, cells/mm2

(Williams & Coletta 1987).

Visual Fields

We established the retinal visual field using an ophthalmoscopic
reflex technique (Martin 1984), which estimates whether the retina
can capture visual stimuli at different directions around the head.
This technique has been widely used to characterize interspecific
variations in the configuration of visual fields and foraging behav-
iour (e.g. Martin 2007). Bischof (1988) reported close correspon-
dence between an estimate of the visual field in the zebra finch,
Taeniopygia guttata, and visually guided behaviours that included
movement detection, pecking and courtship singing. However,
unlike our technique, Bischof used a dissecting microscope,
a coordinate system and an optokinetic approach to estimate the
visual fields.

An individual was secured with Velcro straps on a foam cradle at
the centre of the visual field apparatus (Martin et al. 2007). The
animal was restrained 15–30 min. The beak was fixed at the posi-
tion adopted in the wild by taping it to a specially designed metal
beak holder. We used a coordinate system in which 0� was directly
above the bird’s head, and 90� was at the horizontal plane. We were
not able to record the projections of the retinal margins from 160�

to 240� (and 120� in the brown-headed cowbird) below the bill tip
because of feather, body and tripod obstructions.
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We recorded the position of the projection of the retinal margin
of each eye with a Keeler Professional ophthalmoscope (Keeler
Instruments, Broomall, PA, U.S.A.) to an accuracy of �0.5� at each
elevation, which varied in 10�-increments in the median sagittal
plane of the bird. We measured the maximum and minimum limits
of the visual fields produced by eye movements. We took into
account eye movement variations in the estimation of visual fields
because they differ between passerine and nonpasserine birds
(Martin 1986b; Martin & Katzir 1999; Appendix 1 in Martin &
Coetzee 2004) and, therefore, are necessary for between-species
comparisons.

In four brown-headed cowbirds and three mourning doves,
we elicited eye movements by producing slight sounds and
flashes of a small light source presented to the side of the bird’s
head. We recorded the extreme positions of the retinal field
margins produced by the movement of the eyes, and calculated
the difference between these values as the maximum amplitude
of eye movement at different elevations. We calculated the extent
of the binocular and lateral visual fields, and the extent of the
blind areas behind the head in the horizontal plane, under the
following assumptions: (1) the maximum binocular overlap is
produced when eyes are converged (i.e. rotated maximally
forward) and (2) the minimum binocular overlap is produced
when eyes are diverged (i.e. rotated maximally backwards). To
calculate the extent of the lateral field (monocular field–binocular
field) for each eye, we used the following formula: (360 � (mean
blind field þmean binocular field)/2), and represented graphi-
cally the configuration of all areas in the approximately hori-
zontal plane (following Martin & Katzir 1999). We also
determined the average eye movement amplitude at all eleva-
tions. In another group of 12 individuals of each species, we
measured the vertical extent of the binocular field to establish
the ability of each species to detect stimuli around their sagittal
plane. We calculated the vertical extent for each bird as the
number of consecutive 10� elevations that had binocular overlap.

Our experimental protocol (no. 220) was approved by the
Institutional Animal Care and Use Committee of California State
University Long Beach.

Behavioural Experiments

We conducted our behavioural experiments under seminatural
conditions. Our experimental protocol comprised the exposure of
wild-caught brown-headed cowbirds and mourning doves to the
approach of a ground-based vehicle (i.e. a 2002 Ford Ranger pickup
truck) and four vehicle-mounted lighting treatments. We used
a flight cage placed on pavement to remove visibility barriers
between an experimental group and the approaching vehicle,
reduce their foraging opportunities and increase the time that the
birds would spend vigilant (see Elgar 1989).

To create the specific lighting treatments we used an Altman
Steel Par 46 lighting can (Altman Lighting, Inc., Yonkers, NY, U.S.A.)
housing a 13 V Philips Sealed Beam 4049 Automotive Lamp (Philips
Lighting Company, Somerset, NJ, U.S.A.). The lamp is comparable in
voltage and wattage to other PAR 46 Sealed Beam lighting designed
specifically for small aircraft. We wired the lamp to the pulse-
control device, a Pulselite� (Precise Flight, Inc., Bend, Oregon,
U.S.A.), from which leads were connected to the battery of the truck.
On the front of the lighting can, we mounted a flat, 0.5 cm thick,
clear glass plate. The plate served to reduce insect and dust accu-
mulation on the lamp and within the lighting can. The lighting can
was mounted atop the cab of the truck, approximately 1.7 m above
ground level and centred. We used a Fluke 110 True RMS Multi-
meter (Fluke Corp., Everett, WA, U.S.A.) connected to the Pulselite to
monitor pulse rate.

We randomly assigned groups (six birds per group per species)
to four treatments: (1) vehicle approach without the lamp illumi-
nated, thus controlling for movement effect; (2) vehicle approach
with a 2 Hz pulse of the lamp; (3) vehicle approach with a 16 Hz
pulse; and (4) vehicle approach with constant lamp illumination. In
all treatments, the vehicle approach speed was approximately
6.7 m/s. We based our selection of pulse rates not on avian CFF
estimates (noted above), but on the Pulselite� product application
range, the approximate human CFF threshold (Sokol & Riggs 1971;
Seitz et al. 2005), and ranges that would meet pilot safety
requirements (Rash 2004).

We held each experimental group within a 2.4 � 2.4 � 1.8 m
outdoor flight cage during the vehicle approach. The cage dimen-
sions and group size allowed us to minimize distance-to-neighbour
effects and the effects of individual variance in vigilance (e.g. Fer-
nández-Juricic et al. 2007). For brown-headed cowbirds, we posi-
tioned a 2.4 m long perch approximately 15.2 cm high and 20.3 cm
from the cage front. However, because of the ground-dwelling
habits of the mourning dove, we did not include a perch for this
species. For all groups, the flight cage was 122 m from the approach
vehicle (Fig. 1).

For each day of the experiment, we randomly selected treat-
ment order. We exposed groups to treatments one group at a time;
each group of six birds represented an experimental unit within
species and treatment. Furthermore, we exposed each species
group within a treatment to one approach only. Therefore, each
bird (and group) was used only once throughout the experiment to
avoid habituation or sensitization effects. We used an equal
number of groups within each treatment and within the same
period of the day (0830–1230 h or 1300–1600 h). Transition
between groups generally required less than 30 min, and we

122 m

Flight cage

Vehicle fitted with
a PulseliteTM

system and 13 V,
150 W lamp

Approach
speed = 6.7 m/s

CCT camera

3 mEnd point of
approach

Figure 1. Schematic representation of the experimental site showing the relative
trajectory of the vehicle in relation to the position of the cage. Experiments were
conducted in Erie County, Ohio, U.S.A., from 12 June through 26 September 2006.
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completed four groups (one group/treatment) within 90 min. Also,
because of forest cover surrounding our experiment site, wind
speed variability was minimized relative to prevailing winds.
Nevertheless, we conducted vehicle approaches only when the true
wind was blowing towards the approaching vehicle and away from
the flight cage. We used the Beaufort scale for wind conditions in
decisions to hold (wind speed > Beaufort III or 19 km/h) or proceed
with a vehicle approach.

All species groups were provided ample feed and water before
and after, but not during, a given trial. Each group was allowed at
least 15 min to acclimate prior to the vehicle approach. At the
beginning of this acclimation period, the driver positioned the
truck in an area obstructed from the animals’ view, and then
checked the function of the lighting system. Next, the driver posi-
tioned the vehicle at the starting point and with the engine
running. An observer was stationed in another vehicle within an
area of scrub vegetation approximately 28 m from the side of the
experimental cage. This second vehicle housed a video monitor and
recorder. We filmed each trial using three American Dynamics
Color Camera PrePack 470 TVL High-Resolution with Night Saver
video cameras (Tyco International, Inc., Princeton, NJ, U.S.A.), and
we stored the digital data on a Pelco DX8000 16-channel, 250 gb
digital video recorder (Pelco, Clovis, CA, U.S.A.). We monitored trials
remotely via a quad split-screen Pelco 17-inch LCD Panel SXGA Flat
Panel Display. Three cameras were oriented towards the animals in
the enclosure (one elevated behind the enclosure, and the other
two from opposing sides).

A trial began with the driver accelerating to 6.7 m/s and holding
the vehicle direction on the centre of the cage (Fig. 1). Approxi-
mately 12.8 m from the cage, the driver veered the vehicle to the
right along a marked route that crossed a point 3 m from the front
corner of the cage (i.e. the end point for the approach). Each vehicle
approach required approximately 20–23 s to reach this end point.
At the completion of each approach to a group, we recorded an
index of lamp intensity (mmol/s/m2) over 15 s with a Li-Cor LI-250
Light Meter and LI-190SA Quantum Sensor (LI-COR Biosciences,
Lincoln, NE, U.S.A.). We obtained the reading by placing the sensor
in the end of a tube (2 cm inside diameter, 11 cm long), thereby
limiting outside light intrusion, and placing the opposite end of the
tube on the centre of the glass plate covering the lamp. We also
recorded an index of ambient light intensity at the flight cage, again
using the Li-Cor LI-250 Light Meter and LI-190SA Quantum Sensor.
We held the sensor at approximately 1 m above ground level, face
up, and recorded the average intensity over 15 s.

Our experimental protocol (no. 1152) was approved by the
Institutional Animal Care and Use Committee of the United States
Department of Agriculture, National Wildlife Research Center.

Response metrics
We examined each group video at approximately 0.1 s intervals,

a period that allowed for slight variation in time per camera for
storage of the digital data to the hard drive. We recorded the time
(seconds into an approach) that each individual within a group
showed an alert response and a flight response, relative to the
marked end point (noted above) for the vehicle approach. Alert and
flight response times were correlated with alert and flight response
distances; specifically, high values of these variables indicated
quick alert and flushing reactions.

We measured alert and flight responses at the individual (e.g.
the first individual in the group that reacted) and group (e.g. the
overall reaction of the individuals in the group) levels, as birds
may react to threats using different combinations of behaviours
(Lind & Cresswell 2005). Alert behaviour is defined as the
increase in vigilance-related behaviours (rate and proportion of
time head-up scanning) in response to a threat. We considered

an alert response as a marked transition in an individual’s
behaviour (e.g. pecking, preening or loafing), in response to the
initiation of a treatment, to behaviours that might include head-
up with neck extended, sudden and increased scanning behav-
iour, or sudden crouching (Fernández-Juricic et al. 2001). In
addition, we required that the individual alert behaviours be
maintained throughout the vehicle approach or that a bird
transitioned from alert behaviour to a flight response. In this
manner, we controlled for inclusion of alert responses to factors
other than the vehicle approach.

We defined flight response as a marked transition in behaviour
(e.g. from perching, pecking or alert scanning) in response to
vehicle approach, to a behaviour that could propel the bird away
from the vehicle or road. However, we recognized that flight
response would differ between species (Lima 1993). For example,
the typical escape response by brown-headed cowbirds within
a cage is flight to the highest point (Blackwell & Bernhardt 2004).
Also, Blackwell & Bernhardt (2004) noted that mourning doves
within a cage walk or run from an approaching vehicle, showing
flight as a secondary response (possibly an initial attempt to seek
cover before flushing). Furthermore, we recognized that the
boundaries of the cage probably affected the initiation of the flight
response of some individuals; thus, by our definition of flight
response, we considered only those individuals within a group that
were on the pavement (or the low perch for brown-headed
cowbirds) at the initiation of the vehicle approach. We considered
birds perched high within the cage prior to the initiation of an
approach as showing alert behaviour in response to other factors,
limited on escape routes and, therefore, ‘outside’ the framework of
our definition of alert or flight response. Importantly, seminatural
conditions (including use of enclosures) have been used success-
fully in research examining avian social foraging and vigilance
(Fernández-Juricic & Kacelnik 2004; Fernández-Juricic et al. 2004b,
2007), as well as predator detection and response (Van Der Veen &
Lindström 2000; Cresswell et al. 2003; Fernández-Juricic & Tran
2007). Because we were interested in comparing between-species
responses to vehicle approaches, it was essential to provide similar
experimental conditions to minimize the bias associated with
characterizing these responses in free-ranging birds (e.g. distance
to protective cover, grass height, flock size, etc.).

Analyses

Differences in retinal ganglion cell densities and visual acuities
between species were calculated with two-sample t tests. We
compared the average widths of the binocular field, blind areas and
eye movement amplitude between species with general linear
models, and added elevation to the model to control for its effects.
For this analysis, we averaged the binocular and blind widths when
the eyes were converged and diverged, and among individuals at
each elevation. The average vertical extent of the binocular area
was compared between species with a two-sample t test. We
conducted each general linear model (GLM) with type III sums of
squares because of the unbalanced number of observations per
combination of factors (e.g. elevation and species).

For the behavioural experiments, each group within a treatment
represented an experimental unit. We calculated individual alert
response and flight response times for each member of a treatment
group, and relative to the vehicle position in the approach.
Specifically, our behavioural measurements reflect the time
between response and the vehicle reaching the end point (see
above) of the approach. For each group, we then calculated means
for alert and flight response metrics (i.e. our group response vari-
ables reflected the group mean). We used the following response
factors for each species: first alert response and group alert
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response. However, given potential cage effects on flight response
(noted above) we used group flight response only in a compar-
ison between species. We used a mixed linear model (MLM), type
III sums of squares (SAS ver. 8.2, SAS Institute, Cary, NC, U.S.A.)
and, because of lack of normality, log-transformed our data.
Treatment served as the fixed effect, ambient lighting and the
interaction of treatment and ambient lighting as random effects.
For purposes of between-species comparisons, we compared
ambient light intensity and lamp intensity within treatment,
respectively, using a GLM and type III sums of squares (SAS ver.
8.2, SAS Institute).

RESULTS

Visual Acuity

Mean � SD cell densities within the HRGC50 areas of brown-
headed cowbirds (16 359.59 � 3242.95 cells/mm2) and mourning
doves (15 783.93 � 787.47 cells/mm2) did not differ (two-sample t
test: t8 ¼ 0.39, P ¼ 0.709). However, mean � SD visual acuity based
on HRGC50 areas was higher in the mourning dove
(6.53 � 0.01 cycles/degree) than in the brown-headed cowbird
(4.81 � 0.53 cycles/degree; two-sample t test: t8 ¼ 7.03, P < 0.001).

Similarly, cell densities within the HRGC25 areas for brown-
headed cowbirds (18 286.16 � 3587.70 cells/mm2) and mourning
doves (17 501.82 � 1141.56 cells/mm2) were not different (two-
sample t test: t8 ¼ 0.46, P ¼ 0.654). Visual acuity based on HRGC25

areas was again higher in the mourning dove (6.89 � 0.21 cycles/
degree) than in the brown-headed cowbird (5.10 � 0.55 cycles/
degree; two-sample t test: t8 ¼ 6.77, P ¼ 0.001). Given the lack of
difference in cell density between species, the differences in visual
acuity were probably caused by differences in eye size (see Kiltie
2000).

Visual Fields

In the approximately horizontal plane, the binocular field width
differed between species when the eyes were converged maxi-
mally, being 364% higher in the brown-headed cowbird than in the
mourning dove (Fig. 2a, c). However, the binocular field width
when the eyes were diverged maximally was 400% higher in the
mourning dove than in the brown-headed cowbird (Fig. 2b, d).

The blind area width was 215% and 105% higher in the brown-
headed cowbird than in the mourning dove, when the eyes were
converged and diverged maximally, respectively (Fig. 2). Eye
movements changed the width of the blind area by 29% in the
mourning dove and by 98% in the brown-headed cowbird. The
cyclopean areas (the area around the head with visual coverage,
including both binocular and lateral fields) were 21% and 7% wider
in the mourning dove (converged eyes, 333�; diverged eyes, 339�)
than in the brown-headed cowbird (converged eyes, 275�; diverged
eyes, 317�) when the eyes were converged and diverged,
respectively.

Averaging values between converged and diverged eyes and
considering all elevations, we found that the maximum width of
the binocular field occurred above the projection of the bill at an
elevation of 40� in the mourning dove, and at an elevation of 60� in
the brown-headed cowbird. Controlling for elevation (GLM:
F1,24 ¼ 0.01, P ¼ 0.973), the average� SD width of the binocular
field was larger in the brown-headed cowbird (15.70 � 2.22�) than
in the mourning dove (7.99 � 2.13�; F1,22 ¼ 6.25, P ¼ 0.019). The
averaged maximum width of the blind area occurred behind the
head at the approximate horizontal plane at an elevation of 260� for
the mourning dove and 270� for the brown-headed cowbird.
Controlling for elevation (GLM: F1,22 ¼ 0.66, P ¼ 0.426), the

average � SD width of the blind area was larger in the brown-
headed cowbird (42.73 � 4.76�) than in the mourning dove
(13.47 �4.57�; F1,22 ¼ 19.66, P < 0.001).

The average� SD maximum eye movement amplitude for
mourning doves was recorded at 20� above the horizontal, whereas
that for brown-headed cowbirds was recorded at 20� below the
horizontal. Eye movements in brown-headed cowbirds (19.17 �
0.65�) were on average larger than those in mourning doves
(3.11 � 0.62�; GLM: F1,49 ¼ 319.04, P < 0.001), controlling for
elevation (F1,49 ¼ 2.02, P ¼ 0.162). The average vertical extent of the
binocular field did not differ between species (mourning
dove, 170.83 � 7.12�; brown-headed cowbird, 169.17 � 7.23�;
two-sample t test: t22 ¼ 0.16, P ¼ 0.871).

Behavioural Experiments

We completed our experiment with brown-headed cowbirds
using 14 groups per treatment, but removed some groups from the
analysis because of erratic flight behaviour that prevented the
measurement of alert and flight responses under the criteria out-
lined above. We completed our analysis with the following sample
sizes: control,14 groups; 2 Hz,11 groups; 16 Hz,13 groups; constant
illumination,13 groups. We obtained data from at least two birds per
treatment group (X � SE ¼ 5:3� 0:5 birds per group). Ambient
light conditions among treatments in the brown-headed cowbird
experiment were similar (GLM: F3,55 ¼ 0.21, P ¼ 0.887).

In our experiment with mourning doves, we used 10 groups per
treatment and recorded observations of six birds per group, with
the exception of a single group in the constant illumination treat-
ment that comprised seven birds. The group with seven birds
included one bird (unidentified) that was mistakenly not removed
from the cage after the previous 16 Hz treatment group; however,
we found no extremes in behavioural response metrics for this
group that would indicate bias. Ambient light conditions among
treatments in the mourning dove experiment were similar (GLM:
F3,39 ¼ 0.10, P ¼ 0.958).

Brown-headed cowbird experiment
The general reaction of brown-headed cowbirds to vehicle

approach was a marked transition from loafing and active ground
searching to alert status and, subsequently, flight. Across treat-
ments, the mean � SE first alert response of brown-headed
cowbird groups occurred 11.5 � 1.5 s before the vehicle reached the
end point. Groups exposed to constant illumination had a mean
first alert response that occurred 2.7–3.1 s before that of other
groups (MLM: F3,43 ¼ 2.26, P ¼ 0.095; Table 1), with responses by
constant illumination and 2 Hz groups differing (F1,43 ¼ 6.31,
P ¼ 0.016; Table 1). In addition, we found a significant interaction
effect of ambient light and constant illumination on first alert
response (Table 1, Fig. 3a, b); brown-headed cowbirds became alert
sooner as ambient light intensity increased. The interaction effect
of ambient light and the 2 Hz treatment on first alert response was
marginally nonsignificant (Table 1, Fig. 3a, b); here, brown-headed
cowbirds showed alert behaviour generally sooner as ambient light
intensity decreased.

Groups exposed to constant illumination had a mean group alert
response that was 1.2–1.3 s faster than that of other treatment
groups (MLM: F3,43 ¼ 1.81, P ¼ 0.159; Table 1), and responses by
constant illumination and 2 Hz groups also differed (F1,43 ¼ 4.82,
P ¼ 0.034). Furthermore, the interaction effect of ambient light and
constant illumination on mean group alert response was significant
(Table 1): brown-headed cowbirds reacted 0.16–0.34 s
(0.24 � 0.54 s) sooner for every 50 mmol/s/m2 increase in light
intensity (Fig. 3a, b).
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Mourning dove experiment
During the vehicle approach, mourning doves generally

remained in close proximity to other group members, loafing and
pecking. However, upon initiation of the flight response, we often
observed a mixed response by group members (X � SE birds per
group showing a specific flight response behaviour: run
only ¼ 4.0 � 0.8 birds; run, then fly ¼ 1.8 � 0.7 birds;
fly ¼ 0.2 � 0.1 birds; seek cover against cage wall ¼ 0.1 � 0.1 birds).
Again, we attribute these varied flight response behaviours to the
lack of cover within the flight cage and the confines of the cage.

Mean � SE first alert response of mourning dove groups
occurred 14.8 � 0.6 s before the vehicle reached the end point, with
negligible differences between treatments (range 0.5–1.3 s; MLM:
F3,32 ¼ 1.02, P ¼ 0.3963; Table 1). Mean group alert response
differed between treatments by only 0.5–1.1 s, and without signif-
icant differences (MLM: F3,32 ¼ 0.71, P ¼ 0.5516; Table 1).

Between-species comparison
Between experiments (i.e. between species), ambient light

conditions within treatment were similar, with the exception of
constant illumination groups (GLM 16 Hz: F1,22 ¼ 2.82, P ¼ 0.108;
2 Hz: F1,20 ¼ 1.11, P ¼ 0.306; constant illumination: F1,21 ¼ 4.29,
P ¼ 0.051; no lamp: F1,22 ¼ 0.47, P ¼ 0.501; Table 2). Also, lamp
intensity within treatment was similar (GLM 16 Hz: F1,22 ¼ 3.66,
P ¼ 0.069; 2 Hz: F1,20 ¼ 2.62, P ¼ 0.122; constant illumination:
F1,22 < 0.00, P ¼ 0.992; Table 2). Mourning doves showed first alert
response, on average, 3.3 s before brown-headed cowbirds (MLM:
F1,89 ¼ 11.56, P ¼ 0.001; Table 1), and showed group alert response,
on average, 2.1 s before brown-headed cowbirds (F1,89 ¼ 6.18,
P ¼ 0.015; Table 1). However, brown-headed cowbirds showed
group flight response, on average, 1.0 s before mourning doves

(brown-headed cowbirds: 5.4 � 0.02 s; mourning doves:
4.4 � 0.50 s; F1,89 ¼ 14.81, P < 0.001).

DISCUSSION

Within species, we found that brown-headed cowbirds, but not
mourning doves, were sensitive to the light treatments. However,
these results were influenced by ambient light intensity. Between
species, we found that the species with the higher acuity and the
wider visual fields (mourning dove) detected the approaching
vehicle sooner, but flushed later, than the species with the rela-
tively lower acuity and narrower visual fields. We first discuss
between-species differences in visual properties and behavioural
responses and then focus on the light treatments.

The density of retinal ganglion cells is a good estimate of the
upper levels of acuity (e.g. Collin & Pettigrew 1989); however, visual
acuity could vary under different light conditions (e.g. variations in
weather). This caveat applies to both species; therefore, our results
should be used as proxies of between-species differences in visual
resolution. The higher visual acuity of the mourning dove suggests
that this species would have a greater ability to resolve objects in its
visual field, and thus, may be able to detect objects from further
away than do brown-headed cowbirds (e.g. increase the depth of
the detection windows; Kiltie 2000).

The degree of eye movement of brown-headed cowbirds was
much higher than that of mourning doves, which agrees with
previous results found in other passerine and nonpasserine species
(Martin & Katzir 1999). For instance, brown-headed cowbirds can
converge their eyes to attain a higher degree of binocular overlap,
or diverge their eyes and almost abolish the binocular area. The
functional implications of this high variability in visual field

(b) Mourning dove (eyes diverged)

(a) Mourning dove (eyes converged) (c) Brown-headed cowbird (eyes converged)

(d) Brown-headed cowbird (eyes diverged)
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Figure 2. Horizontal sections through the retinal visual fields of the mourning dove (a, b) and brown-headed cowbird (c, d) at the approximately horizontal plane. For each species,
we present the average retinal field when the eyes were fully converged (eyes rotated fully forward: a, c) and fully diverged (eye rotated fully backward: b, d).

B.F. Blackwell et al. / Animal Behaviour 77 (2009) 673–684 679



configuration have not been explored, but it can be argued that eye
convergence could be used while foraging and divergence could be
used while scanning for predators (Martin 2007). Therefore,
changes in eye position in the brown-headed cowbird could
enhance focus on certain visual targets, but simultaneously
decrease the ability to gather visual information from as many
points around the head as possible. We suggest, therefore, that the
brown-headed cowbird might have a low probability of detecting
objects approaching from the rear while in head-up and head-
down positions. The high clyclopean (combination of the lateral
and binocular visual fields) area of the mourning dove, on the
contrary, can allow them to increase visual coverage at any given
body posture (e.g. increasing the area of the detection window).

Although we cannot establish causal relationships between the
visual properties measured and the behavioural responses, our
findings indicate that visual acuity and visual fields might play
a role in how these species respond to and assess risk. For example,
Frid & Dill (2002) suggested that animal response to disturbance
stimuli (e.g. recreationists, vehicles, etc.) is thought to follow
similar economic principles as when prey respond to predators (see
also Fernández-Juricic & Schroeder 2003; Fernández-Juricic et al.

2004b). Given its visual configuration (relatively higher acuity and
wider visual fields), one would expect that the mourning dove
would be able to track the movement of a vehicle more continu-
ously. The mourning dove should then rely on stillness and crypsis
(e.g. Endler 1978, 2006) when under threat, thereby conserving
energy for sudden escape bursts. Such a delayed response to
predator approach is typical of species that use ‘tall’ vegetation as
protective cover (e.g. see Whittingham & Evans 2004; Butler et al.
2005; Whittingham et al. 2006), such as the mourning dove. In
contrast, given the visual configuration of the brown-headed
cowbird (relatively lower acuity and narrower visual fields), one
would expect that the amount of visual information available about
an approaching object at any given point in time might be more
restricted, thus increasing the uncertainty about an attack. There-
fore, the brown-headed cowbird should flush earlier than the
mourning dove to reduce predation risk costs. Indeed, mourning
doves showed alert behaviour significantly sooner than brown-
headed cowbirds, but brown-headed cowbirds showed flight
response earlier than mourning doves. A correspondence between
the visual field (particularly the size of the blind area) and vigilance
behaviour has also been found in dabbling ducks (Guillemain et al.

Table 1
Alert responses* and model estimates of fixed and random treatment effects for species treatment groups exposed to an approaching 2002 Ford Ranger pickup truck displaying
one of four light treatments during experiments in Erie County, Ohio, U.S.A., 12 June–26 September 2006

Experiment phase Behavioural metric Lamp effect Time (s)* Modely

Estimate SE t P

Brown-headed cowbird First alert Intercept ˙ 1.07950 0.10440 10.34 <0.001
16 Hz 10.8 (3.7) �0.12230 0.17930 �0.68 0.499
2 Hz 11.0 (3.5) 0.13520 0.14690 0.92 0.362
Constant 13.7 (5.3) �0.28270 0.16710 �1.69 0.098
No lamp 10.6 (3.6) ˙ ˙ ˙ ˙Ambient light ˙ ˙ ˙ ˙ ˙Ambient�16 Hz ˙ 0.00003 0.00009 0.37 0.714
Ambient�2 Hz ˙ �0.00012 0.00006 �1.98 0.054
Ambient�Constant ˙ 0.00019 0.00008 2.47 0.018
Ambient�No lamp ˙ �0.00005 0.00007 �0.76 0.453

Brown-headed cowbird Group alert Intercept 0.92930 0.08608 10.80 <0.001
16 Hz 8.1 (2.5) �0.04048 0.14680 �0.28 0.784
2 Hz 8.0 (1.7) 0.03150 0.12130 0.26 0.796
Constant 9.3 (3.2) �0.26910 0.13740 �1.96 0.057
No lamp 8.0 (1.6) ˙ ˙ ˙ ˙Ambient light ˙ ˙ ˙ ˙ ˙Ambient�16 Hz ˙ <0.00001 0.00007 0.01 0.992
Ambient�2 Hz ˙ �0.00004 0.00005 �0.81 0.425
Ambient�Constant ˙ 0.00017 0.00006 2.76 0.008
Ambient�No lamp ˙ �0.00002 0.00006 �0.42 0.674

Mourning dove First alert Intercept ˙ 1.2066 0.09336 12.92 <0.001
16 Hz 15.1 (5.1) 0.04642 0.12760 0.36 0.718
2 Hz 14.3 (4.4) �0.07725 0.13180 �0.59 0.562
Constant 14.4 (5.1) �0.14870 0.12400 �1.20 0.240
No lamp 15.6 (4.9) ˙ ˙ ˙ ˙Ambient light ˙ ˙ ˙ ˙ ˙Ambient�16 Hz ˙ �0.00008 0.00006 �1.39 0.175
Ambient�2 Hz ˙ <0.00001 0.00006 0.03 0.973
Ambient�Constant ˙ 0.00006 0.00006 1.08 0.288
Ambient�No lamp ˙ �0.00003 0.00006 �0.50 0.620

Mourning dove Group alert Intercept ˙ 1.0649 0.10950 9.73 <0.001
16 Hz 10.6 (5.2) 0.04954 0.14910 0.33 0.742
2 Hz 10.4 (3.7) �0.05491 0.15420 �0.36 0.724
Constant 10.0 (3.7) �0.14490 0.14500 �1.00 0.325
No lamp 11.1 (4.8) ˙ ˙ ˙ ˙Ambient light ˙ <�0.00001 0.00001 �0.16 0.875
Ambient�16 Hz ˙ �0.00010 0.00007 �1.59 0.122
Ambient�2 Hz ˙ �0.00001 0.00007 �0.17 0.865
Ambient�Constant ˙ 0.00004 0.00006 0.63 0.534
Ambient�No lamp ˙ �0.00004 0.00007 �0.62 0.539

* Mean (�SE) time from initiation of the behavioural response to the vehicle reaching the end point of the approach for each treatment (see Fig. 1).
y Analysis based on log of the observed behavioural response. Parameters that were not estimable are shown as ‘

˙
’.
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2002). Wigeons, Anas penelope, have a wider blind area and allocate
a greater proportion of their time to scanning than shovelers, which
have a narrower blind area, probably to compensate for the lack of
information.

However, there are alternative explanations for the between-
species differences in antipredator behaviour that do not neces-
sarily involve the visual properties studied. First, differences might
stem from variations in scanning behaviour: brown-headed
cowbirds with lower head-up scanning rates might experience
delayed detection (e.g. Cresswell et al. 2003). However, we did not
provide any foraging substrate or food for birds to trade-off vigi-
lance with foraging time; so, both species remained vigilant during
the trials. Second, brown-headed cowbirds are smaller (length: 17–
22 cm, wing span: 28–36 cm; body weight: 38–50 g) than

mourning doves (length: 23–34 cm, wing span: 37–45 cm; body
weight: 86–170 g; http://www.birds.cornell.edu), thus their eyes
are closer to the ground, probably changing the angle of elevation
between the birds and the approaching vehicle. But, given the
height of the vehicle (1.7 m wide � 1.7 m high), we believe the
effect of the proximity of the bird’s eyes to the ground might have
been minimal. Third, even if both species have similar distributions
of photoreceptors associated with motion detection because they
are ground foragers (Hart 2001), there could be differences
between species in the density of motion detectors (e.g. higher in
mourning doves) that might have influenced alert distances.
Notably, no study on photoreceptor density has been published on
these species. Fourth, power required for flight is affected, in part,
by drag components related to wing span, body frontal area, and
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Figure 3. (a) Log of first alert responses by brown-headed cowbird groups (N ¼ 6 birds/group) exposed to an approaching 2002 Ford Ranger pickup truck displaying one of four
lighting treatments, via vehicle-mounted lamp, during experiments in Erie County, Ohio, U.S.A., from 12 June through 26 September 2006. First alert response represented the time
(s) from initiation of the first behavioural response until the vehicle reached the end point of the approach (e.g. higher values indicate quicker detection). (b) Model (see Table 1)
estimates of the log first alert response by brown-headed cowbird groups by lighting treatment (see Table 2). Here, the coefficient for the interaction of ambient light intensity and
treatment was varied by units of 50 mmol/s/m2 while other parameters were held constant. Slopes of the response were as follows: 16 Hz ¼ 310

�5; 2 Hz ¼ �1.210
�4; constant

illumination ¼ 1.910
�4; no lamp ¼ �510

�5.
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wing lift (Pennycuick 1975; Hedenström 2002). Power require-
ments for initial climb and speed might, thus, contribute to the
different flushing behaviours between these species.

Considering each species’ visual configuration and taking into
account the histological estimates of visual acuity, we can predict
the distance at which each species would be able to resolve an
object of 2 m in height (following Gaffney & Hodos 2003):
mourning dove, 1363 m; brown-headed cowbird 1012 m. Although
these are estimates of the upper levels of visual acuity with perfect
light conditions, they indicate that both species have the ability to
detect objects within their visual fields before they show any
behavioural alert response (e.g. increase in scanning rate) towards
the object. We suggest, therefore, that the lack of a light treatment
effect on the mourning dove alert response was partly due to the
size of the species’ detection window relative to our approach
distance (122 m) and partly due to the absence of cover in our
experimental design. These conditions were intended to enhance
alert behaviour in both species, but perception of risk is context
specific and can affect vigilance (Lima & Bednekoff 1999a). Whereas
brown-headed cowbirds used the entire enclosure to investigate
potential threats, mourning doves were essentially restricted to the
pavement. Therefore, a consistent alert response in the mourning
dove might not be discernible when the approach distance of the
vehicle is less than 1 km and experimental groups have no access to
cover.

Also, counter to our hypothesis concerning specific effects of
pulsating lighting on avoidance behaviour, our 2 Hz and 16 Hz
pulse treatments had no statistical effect on alert response. Instead,
brown-headed cowbird groups exposed to constant illumination
had a quicker alert response in relation to only 2 Hz pulsed-light
groups. However, we found an interaction effect between ambient
light and light treatment, such that under constant illumination,
alert response was observed sooner into an approach as ambient
light increased (e.g. sunny conditions). In contrast, the interaction
of ambient light and the 2 Hz treatment, although marginally
nonsignificant, indicated a pattern such that brown-headed
cowbirds became alert sooner when ambient light decreased (e.g.
cloudy conditions). These interaction effects might have different
nonmutually exclusive explanations.

The perceived brightness or intensity of a light source to a bird is
a function not solely of species-specific photoreception in the eye
and associated neural processes, but also the environmental
conditions (e.g. humidity, dust, etc.) affecting light transmission
and refraction (Endler 1990). For example, environmental condi-
tions that increase ambient light intensity can result in increased
species-specific critical fusion frequencies (Powell 1967; Powell &
Smith 1968; Emmerton 1983; Jarvis et al. 2003). Also, spectral
composition of the stimulus, which is important in avian mate
choice (Bennett & Cuthill 1994; Bennett et al. 1994; Endler & Théry
1996), is probably important in threat detection as well. Here, the
relative contrast (Ghim & Hodos 2006) of an approaching threat

(e.g. a vehicle, tower, or turbine blade) to background conditions
will vary with the ambient light spectrum and angle of incidence
(see Endler 1993). Furthermore, as noted above, critical fusion
frequency is contrast dependent (Powell & Smith 1968). Species
also might not be able to physiologically compensate for extremes
in ambient light conditions: in house finches, Carpodacus mex-
icanus, increased illumination of foraging patches could interfere
with visual perception, decrease scan bout duration and increase
latency in predator detection (Fernández-Juricic & Tran 2007; Fer-
nández-Juricic et al. 2008).

We suggest, therefore, that our constant illumination treatment
presented brown-headed cowbird groups with a consistent visual
cue (i.e. a contrast) against increasing glare and incident radiation
from the vehicle and surroundings as ambient light intensity
increased, thus enhancing detection. Similarly, the 2 Hz treatment
might have been more effective as a visual cue to vehicle approach
under relatively low-intensity light conditions and, probably, had
less interference from glare. In the 16 Hz treatment, the relative
contrast of vehicle and light treatment to background conditions
was probably negligible.

Importantly, our findings have theoretical and applied impli-
cations. First, many theoretical models in behavioural ecology
assume that predators are detected as soon as they break cover (e.g.
Fernández-Juricic et al. 2004b). However, we found that an
approaching object may be detected at different distances
depending upon the visual constraints of a species. Relaxing the
fixed-predator detection assumption in theoretical models could
have interesting implications for the development of antipredator
strategies. Second, the quantification of species visual system and
behavioural response to object approach (static or moving) can
enhance investigations of factors affecting information flow
between individuals within groups (e.g. orientation, density,
spacing, structure; Lima & Bednekoff 1999b; Fernández-Juricic et al.
2004b; Ballerini et al. 2008). For example, certain intentional
movements are thought to contribute to social cohesion within
a group in response to an approaching threat (Davis 1975; Lima
1995); individual spacing, cover characteristics and visual config-
uration of the species are each important to understanding the
behaviours used to convey threat information between detectors
and nondetectors. Similarly, these same factors can figure promi-
nently in how external individuals respond to groups (e.g. the
distance at which seabirds recruit to foraging flocks; Haney et al.
1992) or how individuals respond to conspecifics (e.g. recognition
of transient or permanent markings in pelagic fishes; Nakamura
1968). Furthermore, between-species comparisons of response to
predation risk might yield more complete information when visual
configuration is considered in combination with social and vigi-
lance behaviours and morphology (see Van Der Veen & Lindström
2000). Third, our study provides a basic understanding of the
factors that can be used to manipulate the behaviour of these
species to reduce human–wildlife interactions, an important

Table 2
Ambient light and lamp intensity (mmol/s/m2) measurements (�SE) obtained during experiments in Erie County, Ohio, U.S.A., during 12 June–26 September 2006

Experimental phase and light metric Lighting treatment

16 Hz 2 Hz Constant illumination No lamp

Brown-headed cowbird
Ambient intensity 1625.5 (333.9) 1570.4 (606.4) 1659.6 (414.9) 1471.8 (471.2)
Lamp intensity 481.3 (133.3) 504.5 (141.0) 1466.8 (378.9) ˙

Mourning dove
Ambient intensity 1278.3 (644.9) 1305.9 (538.5) 1187.7 (674.5) 1327.9 (555.9)
Lamp intensity 602.6 (171.2) 619.6 (184.1) 1465.0 (466.9) ˙

The lamp, a 13 V Philips Sealed Beam 4049 Automotive Lamp (Philips Lighting Company, Somerset, NJ, U.S.A.), was wired to a pulse-control device, a Pulselite� (Precise Flight,
Inc., Bend, OR, U.S.A.). Leads from the Pulselite were connected to battery of a 2002 Ford Ranger pickup truck. A Li-Cor LI-250 Light Meter and LI-190SA Quantum Sensor were
used to obtain intensity readings.
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component of the application of animal behaviour to conservation
biology (Sutherland 1998; Angeloni et al. 2008).

Lighting treatments, particularly, hold promise as means of
developing methods to directly or indirectly manipulate the
behaviour of birds and, eventually, reduce bird–structure collision
mortality in urban and suburban landscapes (see Van Tets et al.
1969; Larkin et al. 1975; Wiltschko et al. 1993; Blackwell et al.
2002; Blackwell & Bernhardt 2004). Our results suggest that
vehicle-mounted lighting can influence avian alert behaviour
depending (among other factors) upon the sensory system of the
target species and ambient light conditions. We suggest that
future experiments quantify species-specific response to a greater
range of pulse rates of light under preselected ambient light
conditions, taking into account measures of chromatic contrast
and brightness.
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