2-27-2014

A New Species of *Xylotrechus* (Coleoptera: Cerambycidae: Clytini) from Utah

Ronald L. Alten
Alta Loma, California, salteni@charter.net

Follow this and additional works at: http://digitalcommons.unl.edu/insectamundi

Part of the [Biodiversity Commons](http://digitalcommons.unl.edu/insectamundi), and the [Entomology Commons](http://digitalcommons.unl.edu/insectamundi)

http://digitalcommons.unl.edu/insectamundi/859

This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
A New Species of *Xylotrechus*
(Coleoptera: Cerambycidae: Clytini) from Utah

Ronald L. Alten
6025 Sunstone Avenue
Alta Loma, California, USA

Date of Issue: February 28, 2014
Ronald L. Alten
A New Species of Xylotrechus (Coleoptera: Cerambycidae: Clytini) from Utah
Insecta Mundi 0355: 1–6

ZooBank Registered: urn:lsid:zoobank.org:pub:A9DE4C94-4F96-46C9-83F6-3EB9DB6E9D75

Published in 2014 by
Center for Systematic Entomology, Inc.
P. O. Box 141874
Gainesville, FL 32614-1874 USA
http://centerforsystematicentomology.org/

Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non-marine arthropod. Topics considered for publication include systematics, taxonomy, nomenclature, checklists, faunal works, and natural history. Insecta Mundi will not consider works in the applied sciences (i.e. medical entomology, pest control research, etc.), and no longer publishes book reviews or editorials. Insecta Mundi publishes original research or discoveries in an inexpensive and timely manner, distributing them free via open access on the internet on the date of publication.

Insecta Mundi is referenced or abstracted by several sources including the Zoological Record, CAB Abstracts, etc. Insecta Mundi is published irregularly throughout the year, with completed manuscripts assigned an individual number. Manuscripts must be peer reviewed prior to submission, after which they are reviewed by the editorial board to ensure quality. One author of each submitted manuscript must be a current member of the Center for Systematic Entomology. Manuscript preparation guidelines are available at the CSE website.

Managing editor: Eugenio H. Nearns, e-mail: gino@nearns.com
Production editors: Michael C. Thomas, Paul E. Skelley, Brian Armitage, Ian Stocks, Eugenio H. Nearns
Editorial board: J. H. Frank, M. J. Paulsen
Subject editors: G. B. Edwards, Joe Eger, A. Rasmussen, Gary Steck, Ian Stocks, A. Van Pelt, Jennifer M. Zaspel, Nathan P. Lord, Adam Brunke
Spanish editors: Julieta Brambila, Angélico Asenjo
Website coordinator: Eugenio H. Nearns

Printed copies (ISSN 0749-6737) annually deposited in libraries:
CSIRO, Canberra, ACT, Australia
Museu de Zoologia, São Paulo, Brazil
Agriculture and Agrifood Canada, Ottawa, ON, Canada
The Natural History Museum, London, Great Britain
Muzeum i Instytut Zoologii PAN, Warsaw, Poland
National Taiwan University, Taipei, Taiwan
California Academy of Sciences, San Francisco, CA, USA
Florida Department of Agriculture and Consumer Services, Gainesville, FL, USA
Field Museum of Natural History, Chicago, IL, USA
National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
Zoological Institute of Russian Academy of Sciences, Saint-Petersburg, Russia

Electronic copies (On-Line ISSN 1942-1354, CDROM ISSN 1942-1362) in PDF format:
Printed CD or DVD mailed to all members at end of year. Archived digitally by Portico.
Florida Virtual Campus: http://purl.fcla.edu/fcla/insectamundi
University of Nebraska-Lincoln, Digital Commons: http://digitalcommons.unl.edu/insectamundi/
Goethe-Universität, Frankfurt am Main: http://edocs.ub.uni-frankfurt.de/volltexte/2010/14363/

Author instructions available on the Insecta Mundi page at:
http://centerforsystematicentomology.org/insectamundi/

Copyright held by the author(s). This is an open access article distributed under the terms of the Creative Commons, Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. http://creativecommons.org/licenses/by-nc/3.0/
A New Species of Xylotrechus (Coleoptera: Cerambycidae: Clytini) from Utah

Ronald L. Alten
6025 Sunstone Avenue
Alta Loma, California, USA
salteni@charter.net

Abstract. Xylotrechus rameyi, new species, (Coleoptera: Cerambycidae) is described from southern Utah. Comments on its biology including habitat, host plants and larval history are provided along with photographs of the holotype, allotype, the related species X. insignis LeConte, and the larval galleries and pupal chamber.

Key Words. Coleoptera; Cerambycidae; Clytini; species biology; host plants; Utah.

Introduction

In 2005 several adult Clytini (Coleoptera: Cerambycidae) were collected in southern Utah by Tim Ramey. They were found in their larval galleries in Gambel’s oak (Quercus gambelii Nutt.). These specimens were compared to known species and determined to be an undescribed species of the genus Xylotrechus Chevrolat. Subsequently, the author traveled to southern Utah in July, 2008 to look for additional specimens. While examining a distressed stand of box elder (Acer negundo L.) along the east fork of the Virgin River in Kane County, he found they contained numerous Cerambycidae larvae. Several pieces of the infested box elder (12 to 18 inches in diameter) were collected from the trees and placed in confinement chambers to rear the larva through to adults. Between the end of March and mid-June, 2009, 117 adults of the new Xylotrechus emerged, not only confirming the new species existence in that area but also another host.

Materials and Methods

Specimens studied are deposited in the following collections:

JCPC – Jim Cope, San Jose, CA, USA (41)
RAPC – Ron Alten, Alta Loma, CA, USA (117 reared out) plus 16 collected
TRPC – Tim Ramey, Fountain Valley, CA, USA (3)
USNM – National Museum of Natural History, Smithsonian Institution, Washington, DC, USA (2)

Specimen images taken at the Smithsonian Institution using a Zeiss AxioCam HRc camera attached to a Zeiss Discovery.V20 stereomicroscope with Sycope motorized zoom and focus control and a PlanApo S 0.63X objective (all equipment and software: Frankfurt, Germany). Image adjustments and plates were prepared using Adobe Photoshop CS6.

Xylotrechus rameyi Alten, new species
(Figures 1–4)

Description. Male (Fig. 1, 3): Robust, cylindrical; integument dark reddish-brown to black; vestiture coarse, appressed, forming pattern of yellow and black integument. Length: 10.5–14.0 mm. Head: With frontal carina broad, flattened, more or less V-shaped with margins irregularly defined above; lower face and genae thinly to densely clothed with yellow pubescence; vertex closely, coarsely punctured and rugulose except for well-defined, margined, obvoid, opaque, minutely rugulose impressions on each side of the median line, separated by about the width of the second antennomere. Area between anten-
Type Material. Male holotype, female allotype (USNM): UTAH, Kane Co., Mount Carmel Junction, 1.5 miles south of junction state highways 9 and 89A, Elevation, 5,200’ (East fork of the Virgin River); G.P.S. North 37.20°; West 112.69°. July 31, 2008. R.L. Alten collector, Larvae collected and reared from the apex. Base and enclosing scutellum; a somewhat oblique transverse band at apical third, and transverse band pubescent pattern in an oblique, wedge-shaped form; a median fascia curving forward along suture to acute; covered with short, dense mostly appressed pubescence; sub-basal spot pale yellow or cream times longer than greatest width at humeri; apices obliquely sub-truncate with outer angle minutely present throughout or absent anteriorly.

Elytra: Sub-parallel sided; length approximately 2.25 times longer than greatest width at humeri; apices obliquely sub-truncate with outer angle minutely acute; covered with short, dense mostly appressed pubescence; sub-basal spot pale yellow or cream pubescent pattern in an oblique, wedge-shaped form; a median fascia curving forward along suture to base and enclosing scutellum; a somewhat oblique transverse band at apical third, and transverse band at the apex. Legs: Moderately elongated; femora moderately clavate; rufo-testaceous to fusco-rufous; posterior leg with 1st tarsomere at least twice as long as 2nd and 3rd combined. Abdomen: Sternites finely, shallowly, closely punctate; margined with yellow appressed and sub-erect pubescence; decreasing in length from 1st through 5th; fifth sternite with apex shallowly emarginated.

Female (Fig. 2, 4): As in the male except form is somewhat larger on average; vertex of head with a narrow, elevated median line and without obovoid depressions; pronotum less angular, and lacking delimited margins at lateral limits of disc; lateral areas of pronotum below disc textured as disc; elytral fasciae bright yellow as on pronotum; median elytral fascia more expanded along base toward humeri and often weakly connected to sub-basal spot by a few yellow hairs; 5th abdominal sternite longer than 4th and narrowly rounded or sometimes minutely, narrowly emarginated at apex. Length: 11–17 mm.

Type Material. Male holotype, female allotype (USNM): UTAH, Kane Co., Mount Carmel Junction, 1.5 miles south of junction state highways 9 and 89A, Elevation, 5,200’ (East fork of the Virgin River); G.P.S. North 37.20°; West 112.69°. July 31, 2008. R.L. Alten collector, Larvae collected and reared from Box Elder, Acer negundo. R.L. Alten, Collector.

Biology. Larval development occurs within the transitional area between living and dead wood. Field observations indicate that infestations can occur in box elder (Acer negundo, Fig. 9–11) and Gambel’s oak trees (Quercus gambelii, Fig. 12–14). Box elder infestations can be light to severe, so that in some trees, the wood is riddled with hundreds of active galleries, containing a high population density of larvae. This situation has only been observed to occur in box elder trunks, with mature tree trunks on...
average 12 to 20 inches, and up to 40 inches in diameter, providing a resource sufficient to support large population densities. Because the average Gambel’s oak trunk diameter is only 4 to 6 inches, infestations are comparatively light and scattered within the tree. This explains why the population densities found in oak are relatively low compared to those occurring in box elder. In both host species, the beetles respond in the same manner requiring the same microhabitat for oviposition and larval development.

Dispersal of Xylotrechus rameyi is typical for a species of this genus, with adults usually emerging between May and July. The species may be capable of completing its life cycle in one year, although the life cycle can vary between one to several years before emergence occurs, depending upon annual environmental factors of overall ambient temperature and moisture.

Field observations of X. rameyi indicate that the earliest adult emergence appears to occur on the south-western face of the tree trunks (Acer negundo, Fig. 9–11) caused by the general overall warming effect of solar exposure that produces conditions for accelerated development.

Gravid females appear to be attracted to the cured host wood adjacent to living tissue that is in a distressed condition. In the author’s opinion, based upon a number of field observations, the female is attracted to distressed trees by olfaction, probably being attracted to the collective odor being released from both dead and living wood. Therefore, it is the condition of the trees, rather than the tree species itself that is the predominant factor in determining the stimulus for oviposition and where on the host.
Jim Cope (pers. comm.) observed a female ascending a box elder tree trunk, ovipositing eggs singularly as she moved upward. Larvae have been collected along the entire length of the tree trunk within this type of microhabitat.

The diapaused adult waits within the pupation cell for warm humid conditions to occur, stimulating emergence. Cold and adverse environmental conditions along with latitude and relatively high elevation often can delay emergence and dispersal well into late spring to mid-summer or even later. During wet and cool years, adult emergence is delayed considerably and during some years completely, as was observed in 2011, when diapaused adults were removed from pupal chambers in *Quercus gambelii* (Fig. 12–14) the first week in August. During dry years, the reverse can occur, in that emergence can occur earlier, driven by the lack of moisture and higher diurnal ambient temperatures from clear warm days.

Modification of Linsley’s (1964) key to *Xylotrechus* species to include couplets for *X. rameyi*

Both sexes of *Xylotrechus rameyi* will key to *X. insignis* (female) in Linsley’s 1964 key to *Xylotrechus* (pages 104–107) and appear most closely related to it. The following modifications to Linsley’s key will separate *Xylotrechus rameyi* from *X. insignis* and both sexes of *X. obliteratus* LeConte (1873).

13(12) Pronotum distinctly margined at base and apex with a band of yellow pubescence.14
– Pronotum not margined at base and apex with a band of yellow pubescence.................................15

14(13) Elytra with postmedian pubescent band evenly arcuate to suture, all markings bold, bright yellow..26
– Elytra with postmedian pubescent band anteriorly angulate before suture, direct back towards suture, markings narrow, pale yellow. Length 15 mm. Colorado ..X. obliteratus LeConte (female)

15(13) Elytra with white pubescent bands made indistinct by a suffusion of white pubescence over entire surface, band present at median basal margin and along apices. Length 15–16 mm. Colorado ...X. obliteratus LeConte (male)
– Elytra with yellow pubescent bands contrasting brightly with black integument, bands not present at basal or apical margins. Length, 16mm. Oregon ...X. nunnemacheri Van Dyke (female)
Figures 12–14. Gambel’s oak (Quercus gambelii) containing X. rameyi.
Elytra with premedian pubescent band not thickened along transverse angle, and not reaching scutellum along suture (Fig. 6,8). Humeri devoid of pubescent pattern. Length 14–20 mm. Oregon to northern Baja California. ... X. insignis LeConte (female)

Elytra with premedian pubescent band thickened on transverse angle, narrowing along suture and reaching scutellum, expanded along elytral base to humeral margins, with oblique spots distinctly to feebly connected. Males 11–14 mm, bands whitish-yellow to cream color (Fig 1,3); Females 11–17mm, bands yellow color (Fig. 2,4). Southern Utah and northern Arizona.

.. X. rameyi, n. sp.

While both sexes of X. rameyi superficially resemble the female of X. insignis, the two species differ in the following characters, compare Figures 1–8.

1. The integument of both sexes of Xylotrechus rameyi appears to be identical.
2. The pubescence of X. rameyi is less than X. insignis on the mesosternum.
3. Dorsally, both sexes of X. rameyi have the pubescent basal band covering the entire elytral humeri including the scutellum and the oblique post basal band.
4. In X. insignis females, the post basal band stands out distinctly and is separated by the black elytral integument.
5. The yellow premedian pubescent band is transverse from the left and right margins, as it connects to the suture and covers the scutellum.
6. The yellow pubescence of X. rameyi in both the pronotum and elytra appear to have a long furry appearance, while in X. insignis the yellow pubescence appears bold and painted.

Acknowledgments

Special thanks to Tim Ramey for sharing his discovery with me and whom along with Jim Cope, provided much of the field observation information. I would also like to thank Jim DesLauriers, Claremont, CA and Jim Saulnier, Indio, CA for their critical review of the manuscript. Both provided helpful suggestions and edits, which greatly improved the final product. Special appreciation to Steve Lingafelter, USNM, Washington, DC for photographing and preparing the illustrations and to Jim Wappes, San Antonio, TX who assisted in reviewing and formatting the manuscript.

Literature Cited

Received February 10, 2014; Accepted February 18, 2014.