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a  b  s  t  r  a  c  t

Control  of  Johne’s  disease,  caused  by  Mycobacterium  avium  subsp.  paratuberculosis, has  been  difficult
because  of  a  lack of  an  effective  vaccine.  To  address  this  problem  we  used  targeted  gene  disruption  to
develop  candidate  mutants  with  impaired  capacity  to  survive  ex vivo and  in vivo  to  test  as  a  vaccine.
We  selected  relA  and  pknG,  genes  known  to  be important  virulence  factors  in  Mycobacterium  tuberculosis
and  Mycobacterium  bovis,  for initial  studies.  Deletion  mutants  were  made  in  a wild  type  Map  (K10)  and
its recombinant  strain  expressing  the  green  fluorescent  protein  (K10-GFP).  Comparison  of  survival  in
an ex  vivo  assay  revealed  deletion  of  either  gene  attenuated  survival  in monocyte-derived  macrophages
compared  to  survival  of  wild-type  K10.  In  contrast,  study  in  calves  revealed  survival  in  vivo  was  mainly
affected  by  deletion  of  relA. Bacteria  were  detected  in tissues  from  wild-type  and  the  pknG  mutant  infected
calves  by  bacterial  culture  and  PCR  at three  months  post  infection.  No  bacteria  were  detected  in  tissues
from  calves  infected  with  the  relA  mutant  (P  <  0.05).  Flow  cytometric  analysis  of the  immune  response
to  the  wild-type  K10-GFP  and the  mutant  strains  showed  deletion  of  either  gene  did  not  affect  their
capacity  to  elicit  a strong  proliferative  response  to soluble  antigen  extract  or  live  Map. Quantitative  RT-
PCR revealed  genes  encoding  IFN-�,  IL-17,  IL-22,  T-bet,  RORC,  and  granulysin  were  up-regulated  in  PBMC
stimulated  with  live  Map three  months  post  infection  compared  to the  response  of PBMC  pre-infection.  A
challenge  study  in  kid  goats  showed  deletion  of  pknG  did  not  interfere  with  establishment  of  an infection.
As  in  calves,  deletion  of  relA  attenuated  survival  in  vivo.  The  mutant  also  elicited  an  immune  response  that
limited  colonization  by  challenge  wild  type  Map.  The  findings  show  the  relA  mutant  is  a good  candidate
for  development  of a live  attenuated  vaccine  for Johne’s  disease.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Mycobacterium avium subsp. paratuberculosis (Map) is a
pathogen with a broad-host range (reviewed in [1]). Although it
can infect multiple species including humans [2,3], it is primarily
a disease problem in ruminants. It is the causative agent of Johne’s
disease (JD). The prevalence in U.S dairy herds is estimated to be
68% according to the most recent report from the National Animal
Health Monitoring System [4].  A growing concern, however, is that
Map  from dairy cattle may  also present a threat to individuals at
risk for developing Crohn’s disease (CD), a form of inflammatory
bowel disease [5].  Map  has been identified in tissues from children

∗ Corresponding author. Tel.: +1 509 335 6051; fax: +1 509 335 8328.
E-mail address: davisw@vetmed.wsu.edu (W.C. Davis).

[6,7] and adults with CD [8].  The higher frequency of detection of
Map [2,3] and the presence of Map antigen (Ag) specific T cells [9]
in ileal tissues from patients with CD supports the supposition that
Map may  be a contributing factor in CD pathogenesis. Additional
evidence supporting the supposition may  be the observation that
childhood intestinal tuberculosis, caused by Mycobacterium tuber-
culosis (Mtb), has been occasionally misdiagnosed as CD [10]. These
observations emphasize the importance of developing a strategy to
control Johne’s disease (JD) for the livestock industry and human
health.

JD has been difficult to control because of a limited understand-
ing of the mechanisms of pathogenesis and the lack of a vaccine
that prevents establishment of a persistent infection. When cat-
tle are exposed to Map, they initially develop an immune response
that controls but does not eliminate the pathogen. Efforts to over-
whelm the response by exposing young calves to single and serial

0264-410X/$ – see front matter ©  2011 Elsevier Ltd. All rights reserved.
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doses of up to 108 bacteria by the oral route or directly through an
indwelling cannula to accelerate disease progression have shown
the immune response is resilient and not readily suppressed
[11,12]. Similar results have been observed with calves inoculated
with up to 1012 bacteria and treated with dexamethasone [13]. An
immune response to Johnin purified protein derivative (jPPD) and
soluble antigens (SAg), dominated by CD4 memory T cells, become
consistently detectable two months post infection (PI). A less vig-
orous CD8 memory T cell response occurs during the same time
frame becoming more pronounced one year PI. Both NK and ��
T cells become activated but activation appears to be nonspecific
[12]. Over time, however, persistent infection triggers an event that
dysregulates protective immunity and allows disease to progress in
some animals, usually 2 or more years PI. This latent stage of infec-
tion is similar to latency in tuberculosis (TB). Studies conducted
thus far in TB and JD have not identified the triggering event. How-
ever, investigations in M.  tuberculosis (Mtb) indicate dysregulation
is associated with the capacity of pathogenic mycobacteria to estab-
lish a persistent infection in dendritic cells (DC) and macrophages
[14–16] and modulate secretion of IL-12 and IL-23, cytokines that
play a pivotal role in driving the differentiation of naïve CD4 and
CD8 T cell subsets with effector activity (Th1, Th2, Th17 and Th22
cells) or regulatory activity (regulatory T cells, Tr cells) [17–21].
Th17 and Th22 cells are the source of newly identified proinflam-
matory cytokines IL-17 and IL-22, granulysin (a mycobactericidal
peptide), and IFN-�, the cytokine that primes DC for initiation
of adaptive immunity [22–25].  Dysregulation of cytokine signal-
ing from infected cells could be the triggering event. Studies in
humans and mice suggest dysregulation of cytokine signaling leads
to induction of regulatory T (Tr) cells that modulate the response
to Mtb  and contribute to the activation of Mtb  in latently infected
subjects [26,27].  It is postulated that Tr play a similar role in mod-
ulating the immune response to Map  [28]. Regardless of where the
triggering event occurs it is clear that a vaccine must block the
capacity of Map  to establish an infection.

Killed vaccines have proven useful in limiting disease progres-
sion and more recently have shown potential as a therapeutic agent
[29,30]. However, they have not been effective in preventing infec-
tion [31]. Similar results have been obtained recently with subunit
vaccines, emphasizing the potential and limitation of such vac-
cines for controlling JD [32]. The inability of killed and subunit
vaccines to prevent establishment of infection leaves the potential
for infected animals to break with disease if protective immunity
wanes [31]. Further studies are clearly needed to determine if a
vaccine can be developed that elicits an immune response that
prevents establishment of a persistent infection. Because of the
issues with killed and peptide based vaccines interest has increased
in the potential of developing genetically attenuated mutants for
evaluation as vaccines for JD. This strategy has been successful
for other pathogens. Large libraries of mutants have been devel-
oped by transposon mutagenesis and are currently being screened
to identify candidates for evaluation [33–35]. The sequencing of
the Map  genome, however, has provided an opportunity to take a
more direct approach to developing mutants. To take advantage of
this approach, we adapted the method of targeted allelic exchange
mutagenesis for use with Map  [36]. Three orthologues of genes
associated with virulence or function in Mtb  and Mycobacterium
bovis (Mbv), relA and pknG [37,38], and lsr2 [39], were initially
selected and successfully disrupted in the study.

The general procedure currently in use to evaluate deletion
mutants of Map  for potential as a vaccine has been to initially screen
for attenuation in macrophages ex vivo on the premise that attenu-
ation would be an indicator of how a mutant would survive in vivo.
Based on the same premise, the mouse model has been selected for
further evaluation of vaccine potential. The goat model has been
selected for use in the final evaluation of candidate vaccines for

efficacy (reviewed in [40]). Since we  have been interested in deter-
mining the effect of mutation on the immune response to candidate
vaccines as well as attenuation, we have focused on using the nat-
ural hosts of Map in our studies. We  developed a flow cytometric
assay and the monoclonal antibody reagents needed to study the
immune response in cattle [11,12]. We  also developed a cannulated
ileum model to provide continuous access to the ileum and means
for studying the effect of vaccination on survival of challenge bac-
teria [11]. The objectives of the present study were to evaluate the
effect of deletion of two  of the candidate genes, relA and pknG, on
survival ex vivo in macrophages and in vivo in calves and goats and
also determine whether gene deletion affected the capacity of the
mutant to elicit an immune response. We  were especially inter-
ested in whether cells producing IL-17, IL-22, and granulysin were
involved in the response to the mutant and wild type Map.

2. Materials and methods

2.1. Preparation of bacteria

A clinical isolate of wild-type Map strain, K10Wt, and its
derivative expressing green fluorescence protein, K10Wt-GFP, were
generously provided by Raul Barletta, University of Nebraska, Lin-
coln, NE [41]. The deletion mutants of K10Wt (K10pknG and K10relA)
and K10Wt-GFP (K10pknG-GFP and K10relA-GFP) used in this study
were previously generated in our laboratory [36]. Each strain was
enriched from a single colony in Middlebrook 7H9 medium (Difco)
supplemented with 6.7% para-JEM GS (Trek Diagnostic Systems,
OH), 2 �g/ml of mycobactin J (Allied Monitor, MO), and 0.05%
Tween 80 (7H9 broth medium) [36]. When the broth culture
reached an OD600 of 0.6–0.8, master stocks were prepared in 1.5 ml
microcentrifuge screw-cap tubes, stored at −80 ◦ C, and used for
each infection as previously described [11]. The bacterial numbers
were estimated based on the OD600 values [36].

2.2. Calves

Fifteen newborn Holstein bull calves were obtained from the
Washington State University research dairy. The dairy is a closed
herd that is considered to be free of paratuberculosis. The dairy has
no history of paratuberculosis for over 30 years and performs peri-
odic whole-herd ELISA screening tests to verify disease free status
[11]. All calves were fed 4 L of maternally derived colostrum within
6 h of birth, and taken to a Biosafety Level 2 (BL-2) isolation unit
within the first 24 h of life. Calves were fed milk replacer, whey
pellets, calf starter grain, and free choice alfalfa hay. All protocols
and procedures were approved by the Washington State University
Institutional Animal Care and Use Committee.

2.3. Ileal cannulation and inoculation of calves

Calves were raised in isolation facilities for 8–9 wks until they
were weaned from milk replacer and deemed to be large enough for
surgery. Then animals were divided into three groups for different
Map strain infection: K10relA-GFP (n = 6), K10pknG-GFP (n = 6), and
K10Wt-GFP (n = 3). The surgical procedure and post surgical care
were performed as described by Allen et al. [11]. A calf in each
mutant group was  lost due to unexpected death.

Two weeks post surgery, the calves were inoculated with wild-
type or mutant strains of Map (109 CFU in 20 ml  of PBS) directly
into the ileum. This was  accomplished by inserting a French Foley
catheter into the cannula and inflating it to block flow of ingesta.
The catheter was  left in place for 1 hour to allow the inoculum to
remain in contact with ileal tissue. Each group of calves was housed
in a separate isolation building to prevent cross infection. Fecal
samples were collected at 1 wk before infection, and 24 h, 2, 6, and
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12 wks PI to screen for bacterial shedding. The feces were stored at
−20 ◦C until processed. All fecal samples collected before infection
were PCR negative. All infected animals were euthanized at three
months PI as described [11].

2.4. Blood processing and isolation of peripheral blood
mononuclear cells

Blood was collected from calves before inoculation, at 8 wks
PI, and at the time of necropsy (three months PI). Peripheral
blood mononuclear cells (PBMCs) were isolated as previously
described [11]. Isolated PBMCs were re-suspended in RPMI-1640
medium supplemented with 10 mM HEPES, 13% bovine calf serum
(BCS), 2-mercapto ethanol, 20 mM l-glutamine, and antibiotics
(100 units/ml of penicillin G and 100 �g/ml of streptomycin sul-
fate), and then used as described.

2.5. Preparation and infection of bovine macrophages with Map

Bovine monocyte-derived macrophages (M�)  were prepared
in 24 well tissue culture plates as previously described [42]. The
differentiated M� (approximately 105 cells/well) were infected
with each Map  strain at a multiplicity of infection of 10 for 3 h.
Extracellular bacteria were removed by washing three times with
warm RPMI-1640. Infected macrophages were lysed immediately
(defined as day 0) or cultured in RPMI-1640 medium without
antibiotics for 6 days (defined as day 6). Macrophages were lysed
with 0.1% saponin in PBS, and the lysates were plated in10-fold
dilutions on 7H9 agar plates to determine the number of bacteria.
The experiments were performed in triplicate and repeated two
times.

To compare transcription of cytokines in infected cells, addi-
tional bovine M� were prepared in 60 mm-diameter tissue culture
plates (Becton Dickinson), and infected as described above. At 6 h
and 24 h PI, the culture medium was removed and M�  were lysed
in 1 ml  of Trizol (Invitrogen). Total RNA was extracted from cells
according to the manufacturer’s instructions.

2.6. Map  culture and tissue sample processing

Nine different tissue sites of the intestine and lymph nodes were
obtained at the time of necropsy. The method for culturing Map
from tissues was slightly modified from a previous method [43].
In brief, 1.5 g of tissue were homogenized in a 15 ml  Closed Tis-
sue Grinder System (Fisher Scientific) in 15 ml  of distilled water.
The homogenates were allowed to stand for 30 min. Supernatant
(7 ml)  was transferred into a new 15 ml  tube. Two  microliters of
the supernatant was taken and distributed into two  2 ml  screw-cap
tubes (1 ml  for each). The tubes were centrifuged at 15,000 × g for
15 min. The pellets were stored at −20 ◦C for identification of Map
DNA by real-time PCR (RT-PCR). The remaining 5 ml  of supernatant
was decontaminated by mixing with the same volume of 1.5% hex-
adecyl pyridinium chloride and incubated overnight. The tube was
centrifuged at 3800 × g for 30 min  with no brake. The pellet was
resuspended in 1 ml  of 7H9 broth medium supplemented with 1.9%
para-JEM AS (antibiotic solution containing vancomycin, ampho-
tericin B, nalidixic acid) (Trek Diagnostic Systems, OH). Three 7H9
agar plates containing 1.9% para-JEM AS were inoculated with
0.2 ml  of the re-suspended pellet. The cultures were incubated at
37 ◦C for 14–16 wks.

2.7. Extraction and RT-PCR identification of Map  DNA from tissue
and fecal samples

The frozen tissue pellets were pre-treated in 360 �l of tis-
sue lysis buffer (ATL buffer, Qiagen) and 40 �l of protein kinase

(>600 mAU/ml, Qiagen) at 56 ◦C for 1 h. Tubes were then cen-
trifuged at 15,000 × g for 15 min, and the supernatant carefully
removed using a 1 ml  pipette tip. The remaining steps for DNA
extraction were performed with the DNeasy Blood and Tissue kit
(Qiagen) following a protocol for Gram-positive bacteria. During
the lysis steps in the protocol, the bacteria were mechanically dis-
rupted with 0.1-mm zirconia-silica beads (BioSpec Products Inc.,
OK) in FastPrep-24 instrument (MP  Biochemicals, CA) to facilitate
DNA release. DNA was  eluted in 200 �l of AE buffer.

Fecal DNA was  extracted, in duplicate, using a method described
by Schonenbrucher et al. [44]. The lysing matrix D tube used in the
original study was replaced with a 2 ml  screw-cap tube containing
200 �l of 0.1-mm zirconia-silica beads.

RT-PCR detection of the IS900 sequence was  performed using a
StepOnePlus Real-Time PCR System machine (Applied Biosystems,
CA). Five microliters of eluted DNA sample was used in final 25 �l of
reaction mixture. The RT-PCR conditions and sequences for primer
and probe were the same as previously described [45]. Each sample
was run in duplicate.

2.8. PBMC stimulation with live Map and Map  antigens

PBMCs (107) were distributed into 6-well culture plates. Each
well was  prepared to contain 5 × 106 CFU of live Map  K10, 20 �g of
Map SAg, or none (“nil” treatment) in 5 ml  of RPMI-1640 medium as
previously described [11]. Identical plates were prepared for each
of the experimental procedures. PBMCs stimulated with live Map,
Map SAg, or medium alone were collected from three identical wells
on day 6, and used for flow cytometric analysis (FC).

To compare the level of cytokine transcriptions between PBMCs
isolated from calves before and after infection, three identical plates
for live Map stimulation or un-stimulated (control) were set up in
24-well plates. After 3 days incubation, total RNA was extracted
from the pooled PBMCs in triplicate.

2.9. Flow cytometric analysis of stimulated PBMCs

FC analysis was conducted as previously described [11]. The
strategy used for FC analysis is shown in Fig. 1. PBMCs cultured
for 6 days with/without Ag stimulation were labeled with a three
color combination of monoclonal antibodies: CD4 (ILA11A, IgG2a),
CD45R0 (ILA116A, IgG3), and CD25 (CACT116A, IgG1), or CD8
(7C2B, IgG2a), CD45R0, and CD25. The percent activated CD4 or CD8
memory T cells in total CD4 or CD8 T-cell pool was determined by
using electronic gates to isolate CD4 and CD8 populations for anal-
ysis. Electronic gates, placed on small un-activated (resting) and
large activated (proliferating) cells based on side-scatter (SSC) vs.
forward-scatter (FSC), were used to track the proportion of acti-
vated cells in the culture as previously described [11]. Data were
collected with Cell Quest software (Becton Dickinson Immunocy-
tometry Systems, San Jose, CA) from a FACSort flow cytometer, and
analyzed with FCS Express software (De Novo software, Thornton,
Ontario, Canada).

2.10. Relative quantification of cytokine transcription

Quantitative reverse-transcription RT-PCR (qRT-PCR) was per-
formed using extracted RNA (see above). The extracted RNA
was treated with Turbo DNA-free kit (Applied Biosystems, TX)
to remove genomic DNA contamination. RNA was reverse tran-
scribed to cDNA using High-Capacity cDNA Reverse Transcription
Kit (Applied Biosystems, CA) according to the manufacturer’s
instructions. The reaction mixture was prepared in a total of
20 �l containing 1× Power SYBR Green PCR Master Mix  (Applied
Biosystems, CA), 200 nM of each primer, and cDNA. The qRT-PCR
was performed in a StepOnePlus Real-Time PCR System machine
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Table 1
Primers used for qRT-PCR quantification for cytokine transcription.

Gene Forward primer Reverse primer Sourcea

�-Actin GGAATCCTGCGGCATTCAC GGATGTCGACGTCACACTTCA NM173979
GAPDH GCATCGTGGAGGGACTTATGA GGGCCATCCACAGTCTTCTG [59]
IL-10 GAGCAAGGCGGTGGAGAAGG GATGAAGATGTCAAACTCACTCATGG NM174088
IL-12p35 CAGCAAGCCCAGGAAGGA TGACAGCCCTCAGCAGGTTT NM174355
IL-17 GGACTCTCCACCGCAATGAG TGGCCTCCCAGATCACAGA NM001008412
IL-22 GAGGTGCTGTTCCCCCAAT GAAGGGCACCACCTTTTCC NM001098379
IL-23p19 CACAAGGACTCAGGGACAACAG AAAAACCAGGCCTCGATGAA XM588269
Granb GACCTGCTGCTCCAAGGAGAA CCAACTTGTCCATCAGATGTTGTATT NM001075143
Foxp3 CCGGCATGCCTAGGAAAGA ACGCCATTTGCTAGCAGTGAGT DQ322170
IFN-�  CTTGAATGGCAGCTCTGAGAAA TGCAGATCATCCACCGGAAT [60]
T-bet GAGGCGGCCTGCAACAC CGGCGATGAACTGGGTTT XM583748
TGF-�  CATCTGGAGCCTGGATACACAGT GAAGCGCCCGGGTTGT [60]
TNF-�  TCTACCAGGGAGGAGTCTTCCA GTCCGGCAGGTTGATCTCA [61]
RORC GAGTGCCTTGCGCTTTTCA GATGAGGACGAGGGCTGTG DQ667051

a Gene Accession No. is given for the primers developed in this study.
b Granulysin.

(Applied Biosystems, CA) under the following conditions: 95 ◦C for
10 min, 40 cycles of 95 ◦C for 15 s and 60 ◦C for 1 min, followed
by a dissociation analysis. The relative quantification (RQ) of gene
transcription was analyzed using Step One software v2.1 program
(Applied Biosystems, CA) by the 2−(��Ct) method [46]. Briefly, �Ct
of each gene was calculated based on the mean Ct value of the
two housekeeping genes (�-actin and GAPDH). Then, ��Ct was
calculated using appropriate control groups as the calibrators (un-
stimulated M�,  un-stimulated PBMCs, or Map-stimulated PBMCs
before infection). The results were expressed as relative quan-
tification of transcription compared to those of control groups.
The primer sequences used in this study are listed in Table 1.
The primers developed in this study were designed using Primer
Express 3.0 (Applied Biosystems, CA).

Fig. 1. Gating strategy used to determine the frequency of activated CD4 memory T
cells. Electronic gates 1 and 2 were placed on small unactivated and large activated
cells (SSC vs. FSC) and color coded to identify T cells proliferating in response to
antigen stimulation (A). An additional electronic gate was  used to isolate CD4 T cells
to determine the frequency of CD45R0/CD25+ CD4 memory T cells proliferating in
response to antigen stimulation (B). (C) Shows the frequency of activated CD4 mem-
ory  T cells (FSC vs. CD45R0). (D) Shows that resting and activated CD4 memory T
cells express CD25. A combination of electronic gates placed on small unactivated or
activated CD4 T cells, (E) and (F), respectively, were used to show that only unacti-
vated and activated memory T cells express CD25. No naïve CD4 cells express CD25
(lower left quadrant in E). All activated memory CD4 T cells express CD25 (F). This
observation has allowed us to use FSC vs. CD45R0 to determine the frequency of
activated CD4 memory T cells (C). The same gating strategy was used to determine
the  frequency of activated memory CD8 cells.

2.11. Goat challenge study

Thirteen newborn goats were obtained from the goat herd main-
tained by the USDA-ARS unit at Washington State University. It has
been maintained as a closed herd for 30 years. No animals have been
diagnosed with JD during this time. All of the goats were maintained
in a barn with concrete floor pens. All protocols and procedures
were approved by the Washington State University Institutional
Animal Care and Use Committee.

One goat (Y23) was euthanized, and tissue samples were col-
lected. Fecal samples from all animals before inoculation were also
collected. All tissue and fecal samples collected before inoculation
were Map culture negative. The remaining goats (∼8 months of
age when used) were divided into four groups of 3 for the study
and moved to separate BL-2 holding facilities for the duration of
the studies. One group each was orally inoculated per os with 109

K10pknG, K10relA, or K10Wt. One group was not inoculated until
the time of challenge. After 2 months, all groups were challenged
with 109 K10Wt by oral route. All of the goats were euthanized
and necropsied at 2 months post challenge. Tissues were collected
and processed for bacterial culture as described above. Each 0.2 ml
of the final re-suspension was inoculated on 7H9 agar plate with
or without hygromycin (75 �g/ml), in duplicate, to distinguish the
CFU originated from mutant or wild-type strains.

2.12. Statistical analysis

All statistical analyses were performed using MedCalc statisti-
cal software ver.  11. 2. 1 (Belgium). For comparison of intracellular
survival of Map strains, the CFU data on day 6 were normalized
by transforming to the percent survival, based on the CFU present
at day 0. The results of survival rate of mutants and the rela-
tive quantification of gene transcription were analyzed using the
Kruskal–Wallis test or one-way ANOVA. The numbers of Map  cul-
ture positive animals between groups were compared by Fisher’s
exact test. In all tests, a P value of less than 0.05 was  considered
significant.

3. Results

3.1. Survival of Map mutants in bovine M�

The number of wild-type and mutant Map  in M� was deter-
mined on days 0 and 6, and the survival rate of each strain on day
6 was  calculated using the CFUs obtained on days 0 and 6. The sur-
vival rate of all Map strains decreased on day 6 compared to those at
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Table  2
Map culture results from 9 tissue sites from calves at necropsy.

Strain Animal JP JM JD IP IM ID ICV ML  ICL

K10Wt-GFP 136 −a − − − 5b 285 46 3 35
139 − − 11 − 125 3 − − 9
151 −  − − − 2 − 5 2 7

K10relA-GFP 134 − − − − − − − − −
135 −  − − − − − − − −
137  − − − − − − − − −
138  − − − − − − − − −
140  − − − − − − − − −

K10pkng-GFP 145 − − − − − − − − −
146  − 1 − 690 410 13 18 − 1
147 −  − − 1 5 − − − −
148  − − − − 119 1 11 − −
149  − − − − − − − − −

JP, JM, JD: jejunum proximal, middle, distal; IP, IM,  ID: ileum proximal, middle, distal; ICV: ileocecal valve; ML,  ICL: mesenteric and ileocecal lymph nodes.
a Negative.
b Values are expressed as the total CFU obtained from each tissue.

day 0, but the survival rates of K10pkng (5.1 ± 1.0%; SD) and K10relA
(12.5 ± 6.3%) mutants on day 6 were significantly lower than that
of the parental strain (29.4 ± 3.6%) (P < 0.05). In addition, there was
a statistically significant difference between K10pkng and K10relA
(P < 0.05) (Fig. 2). These data suggest that the pknG mutant is more
attenuated in bovine macrophages than relA in comparison to the
wild-type strain.

3.2. Comparison of cytokine gene transcription in M� infected
with wild-type and mutant strains of Map

The transcription levels of IL-10, TNF-�, IL-12p35, and IL-23p19
in bovine macrophages were measured by qRT-PCR at 6 and 24 h PI
to determine the effect of infection on cytokine expression (Fig. 3).
The expression of all 4 cytokines increased to some degree follow-
ing infection, but significant differences were only observed for
TNF-� and IL23 in all infected M� groups compared to those of
uninfected MФ at 24 h PI. While IL-23 transcription was  strongly
elevated in response to all the Map  strains, the transcription of
IL12p35 was only slightly changed. There were, however, no signif-
icant differences found between M� infected with wild-type and
mutant strains for the cytokines measured in this study.

Fig. 2. Survival of wild-type and mutant strains of Map in macrophages. Bovine
macrophages were infected with wild-type or mutant Map strains. The bacterial
numbers were counted on days 0 and 6. The percent survival of each strain on day
6  was calculated based on the CFU taken at day 0. The results are represented as
the  mean percent survival of each strain with error bar (SD) from two  independent
experiments (each in triplicate). * and �, significant decrease compared to K10Wt

and K10relA , respectively (P < 0.05).

3.3. Map culture and RT-PCR identification in animal tissues and
fecal samples

All three K10Wt-GFP infected calves were bacterial culture pos-
itive at necropsy, but only three of five K10pkng-GFP infected calves
were positive at necropsy. All five K10relA-GFP infected calves
were culture negative (Table 2), which was statistically signifi-
cant (P < 0.05). The mean percentages of Map  culture positive tissue
were 48.1% (28.7–68.1, 95% CI) for K10Wt-GFP, 24.4% (12.9–39.6)
for K10pkng-GFP, and 0% (0–7.87) for K10relA-GFP infected groups,
respectively (Table 2). Screening for the presence of Map  DNA
by RT-PCR yielded results consistent with the culture results
(kappa = 0.74). Seven tissues, defined as positive by Map  culture,
were negative by RT-PCR, but two negative tissues defined by Map
culture were positive by RT-PCR. Six of the seven false negative
tissues with RT-PCR had low colony counts (the sum of the CFUs
from the triplicate plates was 5 or fewer). Importantly, none of the
tissues from K10relA-GFP infected group were positive by RT-PCR.

Fecal Map-PCR results revealed that all infected animals had pas-
sive bacterial shedding at 24 h PI. One or more animals in each group
was fecal Map-PCR positive at 2 wks PI. After 2 wks, only one of the
K10pknG-GFP group and one of the K10Wt-GFP group were positive
by fecal Map-PCR at 6 and 12 wks  PI, respectively (Table 3).

3.4. Flow cytometric analysis of PBMC from calves stimulated
with live Map or Map SAg

The FC results with PBMC stimulated with live Map  or Map  SAg
showed specific memory response against live Map  and Map  SAg
after inoculation. The percentage of activated CD4 and CD8 memory
T cells increased in response to stimulation with live Map  and Map
SAg until necropsy in the wild-type Map infected group (Fig. 4A).
Remarkably, live Map elicited a more vigorous CD4 and CD8  T-cell
proliferative response than Map  SAg. In addition, the CD8 T-cell
response was  much higher for live Map than the CD4 T-cell response
at 12 wks  PI.

Overall, the memory T-cell response to the relA mutant infected
group was similar to that of the wild-type Map  infected group,

Table 3
Real-time PCR detection of IS900 in calve fecal samples.

Group 24 h 2 wks 6 wks  12 wks

K10Wt-GFP 3/3a 1/3 0/3 1/3
K10relA-GFP 5/5 2/5 0/5 0/5
K10pknG-GFP 5/5 2/5 1/5 0/5

a Values are expressed as the number of positive calves/the number of tested
calves.
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Fig. 3. Transcription of cytokines in bovine macrophages infected with wild or mutant Map strains. Total RNA was extracted from macrophages after 6 and 24 h infection, and
the  relative quantification of cytokine transcription was measured by qRT-PCR. The relative quantification of gene transcription was calculated using uninfected macrophages
(nil  control) as calibrator by 2−(��Ct) method. Two housekeeping genes (�-actin and GAPDH) were used as controls. Data are shown as the mean of two independent duplicated
assays. Error bar indicates standard error. *, significant difference compared to the cytokine transcription in nil control (P < 0.05).

Fig. 4. Comparison of memory T cell response in PBMCs isolated before and after infection by flow cytometric analysis. The data are presented as the mean percent (with SE)
of  activated CD4 or CD8 memory T cells in response to Map antigen stimulation or nil treatment at different time points. Pre, pre-infection; Nil, nil-stimulation; SAg, soluble
anigen  stimulation; Map, live Map stimulation; *, significant difference compared to the value of nil control (P < 0.05).
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Fig. 5. Relative transcription of cytokines in PBMCs in response to live Map stimulation measured by qRT-PCR. PBMCs isolated at pre-infection and necropsy were simulated
with  live Map  for 3 days. The relative transcription was calculated using the value at pre-infection as the calibrator with two housekeeping genes (�-actin and GAPDH). Data
are  presented as the mean value of each group with error bar (SD). RQ, relative quantification; *, significant difference compared to the value at pre-infection (P < 0.05).

although the peak was reached at 8 wks PI, and persisted until
necropsy. Significant differences compared to un-stimulated PBMC
were observed only when stimulated with live Map (both 8 and
12 wks PI). The CD8 T-cell response against live Map stimulation
was also more vigorous than the CD4 T-cell response (Fig. 4B). The
pattern of memory T-cell response of the pknG mutant infected
group was similar to that of the relA mutant infected group. How-
ever, as noted in a previous study, there was a high response to live
Map and Map  SAg at pre-infection (Fig. 4C) [11].

3.5. Cytokine transcription in PBMCs stimulated with live Map

Relative changes of cytokine transcription in PBMCs stimu-
lated for three days with live Map  were compared between two
time points (pre-infection vs. necropsy) by qRT-PCR. The K10pknG
infected group was excluded from this analysis due to the unex-
pected high responsiveness to Map  SAg at pre-infection. The data
have been grouped to compare the cytokine profiles considered to
define Th1, Th17, and regulatory T cells (Treg).

The general profiles of transcriptional change of cytokine
expression between pre-infection and three months PI were similar
in the K10Wt and K10relA groups. The transcription of IFN-�, an indi-
cator of a Th1 response, was  elevated significantly in both K10Wt
and K10relA infected groups (mean fold changes: 896 and 106,
respectively). The transcription factor, T-bet, was also increased
(Fig. 5A). Cytokines secreted by Th17 cells, IL-17 and IL-22, were
also up-regulated in both infected groups at three months PI. While
the transcriptional changes of the two cytokines were significant
in the K10relA infected group (P < 0.05), they were not significant
in the K10Wt infected group. A transcription factor for Th17 cells,
RORC, was  simultaneously up-regulated in both groups (Fig. 5B).
Regulatory cytokines secreted by Treg, IL-10 and TGF-�, and a
transcription factor, Foxp3, were not changed or were slightly
decreased in the level of transcription at three months PI compared
to those at pre-infection (no significant changes in both experimen-
tal groups, P > 0.05) (Fig. 5C).

Stimulation with live Map induced expression of granulysin
mRNA in PBMCs from calves before infection (mean, 4.4- to 6.6-
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Fig. 6. Relative transcription of granulysin mRNA. PBMCs isolated at pre-infection
and necropsy were cultured with live Map  or medium alone (nil treatment) for
3  days. The level of mRNA transcription was  measured by qRT-PCR. The relative
quantification of mRNA transcription was  calculated using a calibrator (nil-treated
PBMCs at pre-infection) and 2 housekeeping genes (�-actin and GAPDH). Data are
shown as the mean fold changes with error bars (SD). RQ, relative quantification;
Pre, pre-infection; Nec, necropsy; Nil, nil-stimulation; Map, live Map stimulation.

fold change). Nevertheless, larger differences in expression of
granulysin mRNA were observed when compared to the same
treated PBMCs from naïve (before infection) and infected calves
(at necropsy). Un-stimulated PBMCs isolated at necropsy produced
significantly higher amounts of granulysin mRNA compared to
expression in PBMCs isolated before infection (P < 0.05 for both
infected groups). The increased level was higher in the K10Wt
infected group (mean, 186.2-fold change) than in K10relA mutant
infected group (mean, 18.2-fold change). This increase in tran-
scription of granulysin mRNA in PBMCs from infected calves was
further increased when stimulated with live Map. The mean fold
change (Map  stimulation compared to un-stimulation) in PBMCs
from infected calves was 3.7-fold for the wild-type infected group
(not significant, P > 0.05) and 15.5-fold for the mutant infected
group (significant, P < 0.05), respectively (Fig. 6).

3.6. Effect of exposure to K10pknG and K10relA mutants on survival
of K10Wt in goats

The findings with calves suggested one of the mutants might
be a candidate for further evaluation as a vaccine. To pursue this
possibility, a pilot study was conducted with a smaller ruminant
animal, goats, to determine if the immune response elicited by
either mutant blocks or diminishes the capacity of K10Wt to estab-
lish an infection. As shown in Table 4, the goats exposed two times
with K10Wt at two month interval had more culture positive tissues
and higher bacterial numbers than those observed from animals
only exposed once at the time of challenge. Interestingly, inoc-
ulation with the K10pknG mutant before challenge resulted in an
increase in the number of culture positive tissues and bacterial
burden in comparison with tissues from goats exposed once or
twice to K10Wt. The frequency of colonies growing in the presence
and absence of hygromycin indicate most of the colonies obtained
from doubly infected goats were K10pknG mutants. This finding dif-
fers from results obtained in calves that were only exposed to the
K10pknG mutant. In contrast, no K10relA mutants were cultured from
any of the tissues from goats inoculated with the K10relA mutant and
challenged with K10Wt. In addition, inoculation with K10relA atten-
uated colonization with K10Wt. K10Wt were only cultured from a
single tissue from each goat pre-exposed to K10relA (Table 4).

4. Discussion

The present study was  designed to determine the effect of gene
disruption on (1) ex vivo and in vivo survival of Map  and (2) the
capacity of mutants to elicit an immune response as determined by
flow cytometry and gene expression profiles. The results revealed
that deletion of relA, but not pknG, altered the capacity of the
mutants to establish an infection without altering its capacity to
elicit an immune response. In addition, gene expression profiles
of T-cell secreting cytokines and granulysin demonstrated similar
profiles regardless of infection with relA or wild-type Map. To our
knowledge, this is the first demonstration of a mutation in Map  that
affects in vivo survival while retaining the capacity to elicit a strong
response to challenge exposure to wild type Map.

Improvement in the use of targeted gene disruption in Map  has
allowed us to take a more direct approach to developing a vaccine
that elicits an immune response while blocking the capacity of the
pathogen to evade immune elimination and establish a persistent
infection. The improvement has permitted us to select genes for
disruption that might alter intracellular survival without affect-
ing immunogenicity [36]. Orthologues of two  virulence genes in
Mtb and Mbv  were selected for initial evaluation. The relA gene
is a global regulator of the stringent response in many bacteria,
including pathogenic mycobacteria. Deletion of relA in Mtb  was
shown to decrease the capacity of the mutant to survive in vivo
in a mouse model [37]. Protein kinase G (encoded by pknG) is
secreted by Mtb and BCG-Mbv within the phagosome. pknG inhibits
phagosome–lysosome fusion. Deletion of the gene in BCG-Mbv  was
shown to significantly decrease survival in M� suggesting deletion
would also impair survival in vivo [38]. However, examination of
survival in calves and goats, as noted in the present study, showed
survival in macrophages didn’t predict survival in vivo.

Initial screening of the mutants in an ex vivo MФ assay revealed
deletion of either gene reduced the capacity of Map  to survive
in comparison to wild-type Map at 6 days PI. Between the two
mutants, the decrease in survival rate of K10pknG was more signif-
icant than that of K10relA (Fig. 2). Although the results from the
pknG deletion mutant were expected [38], the results obtained
with the relA mutant differed from a previous study of the Mtb
relA mutant [47]. In the Mtb study, no difference was observed
in growth rate between the relA mutant and wild-type Mtb  in a
human M� cell line. The authors suggested that it is because the
primary carbon source for intracellular growth of Mtb  depends on
lipid catabolism. Recent studies provide a possible explanation for
our finding whereby mycobacteria may  encounter an inorganic
phosphate limited condition in M�,  which could induce a strin-
gent response [48–50].  In addition, the decrease in survival in MФ
has also been observed with relA deletion in other intracellular
pathogens [51]. In contrast to the ex vivo studies, the in vivo exper-
iments revealed deletion of relA had a greater effect than deletion
of pknG. All tissues from the K10relA infected calves were nega-
tive as assessed by culture and RT-PCR (Table 2) whereas some
tissues from the K10pknG infected group were still positive at three
months PI in some animals. Based on the ex vivo findings in M� with
BCG-Mbv [38] and Map (in this study) this finding was unexpected.
Nevertheless, the lower frequency of tissue positive sites in K10pknG
infected group compared with the K10Wt infected group indicates
deletion may  have had some effect. This difference between the ex
vivo and in vivo results emphasizes the importance of an in vivo
assay to identify mutants for further analysis.

Further analysis showed the deletion of either gene did not alter
the capacity of mutant to induce effector memory T-cell responses.
The FC results revealed that a strong proliferative T-cell response
is elicited against live Map and Map SAg following infection with
wild-type and mutant strains of Map. As noted in previous studies,
the CD8 T-cell proliferative response was less vigorous than the CD4
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Table  4
Map culture results from 9 tissue sites in challenged goats.

Pre-exposure Challenge Goat JP JM JD IP IM ID ICV ML ICL

K10pknG K10Wt 19 −a 2/1b 0/1 C/Cc 157/151 TN/TNd 192/168 4/3 47/32
21 26/22 − − 2/1 6/1 64/68 122/123 1/1 18/25
33 0/1  1/0 1/0 2/2 58/49 TN/TN 194/173 1/3 40/28

K10relA K10Wt 26 − − − − − 10/0 − − −
27 −  − − − − 8/0 − − −
30  − − − − − − 2/0 − −

K10Wt K10Wt 22 − − − − 20/0 1/0 1/0 − 30/0
25  − − − − 15/0 22/0 − 3/0 61/0
20 − − − − − 8/0 9/0 5/0 110/0

NPe K10Wt 16 − − − 6/0 − 12/0 − − 3/0
24 −  − − − − − 5/0 − 2/0
31  − − − − 7/0 1/0 2/0 1/0 −

JP, JM, JD: jejunum proximal, middle, distal; IP, IM,  ID: ileum proximal, middle, distal; ICV: ileocecal valve; ML,  ICL: mesenteric and ileocecal lymph nodes.
a Negative.
b Values are expressed as the total CFU obtained from normal 7H9 agar plates/the total CFU from 7H9 agar plates containing hygromycin.
c Contamination happened during incubation.
d Too numerous to count.
e No pre-exposure.

T-cell response to Map  SAg and jPPD during the first 3 months PI
[11,12].  This was clearly evident with PBMCs from animals infected
with wild-type and the relA mutant. An additional observation
obtained from this study was the difference in response to live Map.
In contrast to the CD8 T-cell response to Map  SAg, the CD8 T-cell
response to live Map  was  much more vigorous and accounted for a
higher proportion of proliferating cells in the cultures (Fig. 4). The
finding indicates that only examining the proliferative response
to Map  antigens (such as jPPD and SAg) does not fully reflect the
immune status of memory CD4 and CD8 T cells and their potential
effector activity against Map.

The proliferative response of PBMC from calves inoculated with
the pknG mutant is more difficult to interpret. The response was
already elevated in most of the calves at the initiation of the study.
The explanation for the elevated response is not clear. The WSU
dairy has not had any cases of JD during the past 30 years and we
have used the dairy as a source of our calves for JD research for 10
years. We  have considered two possibilities that might account for
the increase in activity. In spite of efforts to minimize opportunity
for exposure, it is possible that this group of calves was  exposed
to environmental mycobacteria. Another possibility, however, is
that activated NK cells could have increased the proliferative activ-
ity. We  have noted in some of our studies that the proliferative
activity of CD4 and CD8 T cells is increased in cultures containing
activated NK cells ([12] and unpublished observations). We  did note
that NK cells were activated and proliferating in cultures obtained
from this group of animals. Although elevated, the proliferative
response noted with the K10pknG treated group was consistent with
the response obtained with K10Wt and K10relA treated groups. The
findings point to the need to assess the activation status of all sub-
sets when conducting studies in cattle.

Analysis of the cytokine profile in infected MФ also revealed that
deletion of either gene did not alter the capacity of the mutants to
stimulate increased expression of genes encoding cytokines that
drive differentiation of naïve T cells to effector T cells that differ-
entially express IFN-�, IL-17, or IL-22 [18,19]. Of interest, infection
with K10Wt Map  or the mutants increased expression of IL-23 in
macrophages, the cytokine associated with driving differentiation
of Th17 cells [20,52], but not IL-12, the cytokine associated with
driving differentiation of Th1 cells. This observation is consistent
with the finding in MФ stimulated with Mtb  Ags [53].

Comparison of the cytokine profiles obtained from PBMCs from
K10Wt and K10relA treated groups cultured with live Map revealed
disruption of relA did not alter the capacity of the mutant to elicit
a response comparable to the response elicited by K10Wt. Expres-
sion of IFN-�, IL-17, and IL-22 and their transcription factors were

elevated while the expression of IL-10, Foxp3, and TGF-� were
decreased. This difference in expression is consistent with the pres-
ence of effector T cells with immunoprotective activity. The finding
that IFN-�, IL-17, and IL-22 are all elevated indicates the proliferat-
ing population was  comprised of two  or more subsets expressing
the respective cytokine genes. No information has been obtained
thus far that demonstrate how many subsets exist in ruminants
that express one or more of the cytokines as noted in other species
[18,19]. Further studies are needed to determine how many of these
new CD4 and CD8 T-cell subsets exist in cattle and the relative con-
tribution of subsets to the transcription profiles observed in this
study. The findings show the response to Map  is more complex
and that understanding the immune response to Map  will require
development of additional reagents to identify and characterize the
function of T-cell subsets.

Although granulysin is under intensive investigation as a
mycobactericidal peptide that may  play a role in control of tuber-
culosis, it has not been examined for a potential role in control
of JD. Both innate and adaptive immune cells have been shown
to secrete the peptide [22,54–57].  In addition to its broad cyto-
toxic activity towards bacteria and some types of cancer cells it
is a chemotactic attractant that promotes recruitment and activa-
tion of DC and potentiation of antigen-specific immune responses.
Granulysin gene expression was  highly up regulated in live Map
treated cultures of PBMC from animals infected with wild-type
and the relA mutant. A similar result has been reported from BCG-
Mbv vaccinated animals. Due to the increased level of granulysin
gene transcription after vaccination, the authors suggested granu-
lyisn could be a biomarker for the presence of protective immunity
against Mbv  [58]. Similarly, the findings obtained here suggest gran-
ulysin could play an important role in host defense against Map.

Attenuation of survival in macrophage ex vivo has been used
as a criterion for selection of mutants for further testing in vivo.
Although the mouse is not the natural host of Map it has been con-
sidered the animal model of choice for further selection of mutants
for evaluation in goats or cattle. However, a recent report compar-
ing attenuation in the different models has raised a question as to
whether this is the best approach for identifying candidates for test-
ing in vivo [33]. The findings indicate survival in macrophages and
the mouse model may  not predict survival of mutants in the natural
host or their capacity to elicit a protective immune response. Their
conclusion is that even though screening in macrophage cultures ex
vivo and mice in vivo appears to be an economical approach to nar-
rowing down the strains to be tested for attenuation, the potential
of strains as vaccine candidates can only be assessed in ruminants,
the natural hosts of Map. We  have taken this possibility into con-
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sideration in our efforts to develop a live attenuated vaccine. The
challenge trial with goats was a follow-up pilot study to determine
if further studies with either mutant were warranted for evaluation
as a candidate vaccine in ruminants such as cattle. We  were par-
ticularly interested in determining whether the pattern of in vivo
survival of the mutants would be similar in another species and
also whether the immune response elicited by the mutants would
have any effect on establishment of an infection with K10Wt, In con-
trast to the calf-infection study, the pknG mutant was detected in
more tissue sites with higher concentration of bacteria in the tis-
sues than detected in tissues from goats inoculated once or twice
with K10Wt, Outgrowth of bacteria was comparable in the presence
and absence of hygromycin indicating the majority of the bacteria
were from the hygromycin marked mutant, K10pknG. This was  an
unexpected result based on the previous results in the current study
and others [38]. In contrast, the relA mutant was not able to estab-
lish an infection but was able to elicit an immune response that
attenuated the capacity of K10Wt, to establish an infection. A few
K10Wt, were cultured from a single tissue from each animal inoc-
ulated with the relA mutant followed by challenge with wild-type
Map. The significance of this finding is that it shows the relA mutant
elicits an immune response that differs from the response elicited
by the pknG mutant and K10Wt. To our knowledge this is the first
report showing such a difference. Further studies are needed to elu-
cidate the basis for the difference in the immune response to the
relA mutant and wild-type Map.

In conclusion, the strategies used to identify and evaluate Map
mutants for potential use as a vaccine have yielded a mutant that
meets the criteria for further testing. Disruption of relA attenuated
survival ex vivo in macrophages without altering its capacity to acti-
vate cytokine genes comparable to wild-type Map. Disruption also
attenuated survival in vivo in cattle as well as goats. The findings
suggest deletion of relA blocked the capacity of Map to establish
a persistent infection in DC and macrophages, the cells used by
Map  to establish persistent infection and dysregulate protective
immunity.
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