Another possible source of archeological maize found in Chaco Canyon, NM: The Tohatchi Flats area, NM, USA

Deanna Grimstead
The Ohio State University, grimstead.1@osu.edu

Sharon M. Buck
The Ohio State University

Bradley J. Vierra
Statistical Research Inc., Albuquerque, NM

Larry V. Benson
University of Colorado at Boulder, great.basin666@gmail.com

Follow this and additional works at: http://digitalcommons.unl.edu/usgsstaffpub

Part of the [Archaeological Anthropology Commons](http://digitalcommons.unl.edu/usgsstaffpub), and the [Paleobiology Commons](http://digitalcommons.unl.edu/usgsstaffpub)

This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Another possible source of archeological maize found in Chaco Canyon, NM: The Tohatchi Flats area, NM, USA

Deanna N. Grimstead a,⁎, Sharon M. Buck a, Bradley J. Vierra b, Larry V. Benson c

a Department of Anthropology, The Ohio State University, 4034 Smith Laboratory, 174 West 18th Avenue, Columbus, OH 43210-1106, USA
b Material Studies Program, Statistical Research Inc., 4425 Juan Tabo Blvd. NE, Suite 112, Albuquerque, NM 87111, USA
c Adjunct Curator of Anthropology, University of Colorado, Natural History Museum, 602 Pine St., Boulder, CO 80302, USA

A R T I C L E I N F O

Article history:
Received 12 April 2015
Received in revised form 1 June 2015
Accepted 2 June 2015
Available online xxxx

Keywords:
Strontium isotopes
Maize sourcing
New Mexico
Chuska Valley
Chuska Slope
Chaco Canyon

A B S T R A C T

Understanding the linkage and relationship between Chaco Canyon and its residents to surrounding communities has been a primary research question for several decades. This research has focused on identifying the Chacoan road systems, similar architectural designs, and the sourcing of economic and non-economic goods to outlier communities of origin. Extensive fieldwork has been completed to identify potential source regions of Chacoan corn cobs, but the San Juan Basin and surrounding regions are vast and many potential agricultural features remain uninvestigated. One such region is the Tohatchi Flats, located near modern day Gallup, New Mexico. This paper uses 87Sr/86Sr ratios from synthetic soil waters, rabbit brush, and modern maize to investigate if this region is consistent with ratios obtained from archeological cobs from Chacoan great houses. Data results demonstrate that Tohatchi cobs 87Sr/86Sr ratios are consistent with ratios from Pueblo Bonito cobs prior to AD 1130 but not after. Additionally, this study demonstrates that rabbit brush can serve as a modern proxy for maize, despite a small 87Sr/86Sr ratio offset, which this study concludes requires additional biogeochemical modeling and investigation to understand.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

During the 11th and 12th centuries, Chaco Canyon lay at the center of a vast regional socio-political system, geographically centered in the immense San Juan Basin (Fig. 1). The Chacoan social network linked Puebloan communities living throughout this broad region. The importance of Chaco Canyon is indicated by the existence of 13 great houses, large multistory masonry structures that, for the most part, line the northern side of the Canyon. Pueblo Bonito, the most notable of these structures, may have reached the northern side of the Canyon. Pueblo Bonito, the most notable of these large multistory masonry structures that, for the most part, line the northern side of Chaco Canyon is indicated by the existence of 13 great houses, and other communities to Chaco, scholars have attempted to unravel the trade and exchange relationships of certain materials between both entities. A key component of understanding the nature of the relationship Chaco had with the surrounding communities necessitates that we understand what material goods were coming into the Canyon, from what locations, and how these source regions varied throughout the course of Chaco's history. For example, the sources of ceramics (Toll et al., 1980; Toll and McKenna, 1997), minerals and ornaments (Mathien, 1997), lithics (Cameron, 1997, 2001), turquoise (Hull et al., 2014), timbers (Betancourt et al., 1986; Durand and Shelley, 1999;
English et al., 2001; Reynolds et al., 2005), animals (Grimstead et al., 2014, in press), and maize (Cordell et al., 2008; Benson, 2010, 2012; Benson et al., 2003, 2006, 2008, 2009) have all been investigated. Maize has figured prominently in provenancing research, owing to its known ritual and dietary significance among past and present Southwestern cultures. This paper adds to the ever expanding geochemical regional data set used to understand possible source regions for Chacoan maize cobs (hereafter referred to as cobs). Unlike Benson et al. (2006, 2008), whom used a synthetic soil water method for assessing the $^{87}\text{Sr}/^{86}\text{Sr}$ ratio (a ratio of strontium-87 to strontium-86 isotopes) regional variability, this paper favors the approach of growing Hopi Blue Corn (Zea mays L.) and collecting native plants with similar rooting depths to corn, such as rabbit brush ($\text{Ericameria nauseosa}$), within hypothesized source regions likely having a cultural connection to Chaco. By utilizing this methodology the $^{87}\text{Sr}/^{86}\text{Sr}$ ratio variability documented in agricultural plot samples will reflect the biopurification process conducted by plants as they metabolize bioavailable strontium from soil waters. The current study does not present baseline trace element paired ratio data for the modern materials, owing to the problems associated with using these ratios as a sourcing method on contaminated archaeological cobs (see Benson, 2012).

While there is no consensus of the nature of neither the economic nor the socio-political system linking Chaco Canyon to its outlier communities, a number of sourceable materials found in Chaco Canyon appear to be derived from the Chuska Mountain region that lies ~100 km west of the Canyon. These materials include: Narbona chert (Cameron, 1997), timbers used in the construction of Canyon great houses (English et al., 2001; Reynolds et al., 2005), large quantities of pottery (Cameron, 2001; Toll, 1991) and animals (Grimstead et al., in press). This study proposes that the southern Chuska Valley (Tohatchi Flats)
was one potential source region for archeological cobs found in Chaco Canyon.

1.1. Tohatchi Flats

The southern Chuska Valley is situated along the Southwestern periphery of the Chuska Mountains. Although the area is commonly referred to as a valley, the topography of the region is actually characterized by a slope that descends from the mountains towards the nearby basin. When referring to this region we will use slope and valley interchangeably. Most of the valley is situated along the eastern slope of the Chuska Mountains, within their rain shadow; however, this is not true for the southern Chuska Valley, where the contour of the foothills shifts west, exposing the southern flanks of the mountains in the area of present day Tohatchi. Red Willow and Figueredo Washes flow down from these uplands, eventually emptying into the basin (Fig. 1). These settings have been the focus of human activity for many millennia. Indeed, Basketmaker II and III Period settlements, Chaco great houses and post-Chaco villages all were built along both of these washes.

Great house construction outside of Chaco Canyon began to increase by ca. AD 1000 and peaked by ca. AD 1130 (Kantner and Kintigh, 2006:182–183). It is during this time period that three Chaco great houses were built in the Tohatchi Flats area: Figueredo, Red Willow, and Deer Springs (Fig. 1). The Figueredo and Deer Springs great houses were situated within existing communities indicating that the local inhabitants, rather than outsiders from Chaco Canyon or elsewhere, may have constructed them. By contrast, the Red Willow great house was located between the Mesa de los Rayos great kiva and the Tohatchi Flats settlements suggesting a different relationship with Chaco Canyon. The linking of the Los Rayos great kiva and the Red Willow great house by a road segment seems to indicate both a symbolic and functional connection between the two communities and with Chaco Canyon (e.g. Gilpin, 2003; Gilpin et al., 1996; Kearns, 2000; Van Dyke, 2008:193–194; Vierra and Graves, 2014).

2. Materials and methods

2.1. Field methods

The growing location for the maize plot was selected based on an agricultural sustainability study conducted in the area (Homburg et al., 2014). Seeds were obtained from Native Seed Search, Tucson, AZ. One seed was planted approximately 30 cm from adjacent seeds at an approximate depth of 10 cm. A fence protected the plants from animals (Fig. 2). Initially it was hoped meteoric precipitation would provide all necessary water for the plants, but water had to be supplemented by local well water due to a drought. The depth of the well is unknown, but most in the region tend to be between 100 and 300 ft. deep. The well water was sampled once at the end of the study period (Sample 123603, Table 1). Ted Etsitty tended the field during the growing season (May to August) and estimated well water contributed 90% of the total water to the maize. Rabbit brush stalks were collected within an approximate 100 m radius of the corn plot and were not supplemented with well water. Soil samples were taken from the corn plot at depths of 15, 45 and 75 cm, sample numbers 123600, 123601 and 123602, respectively.

2.2. Strontium isotope methods

$^{87}\text{Sr}/^{86}\text{Sr}$ ratios were obtained from water, soils, cobs, and rabbit brush stalk samples. 30 mL of the water sample was evaporated in a Teflon beaker then digested with equal parts of 47%–51% trace metal grade hydrofluoric, 9 M twice distilled nitric, and 6 M twice distilled hydrochloric acid (bomb digestion). Synthetic soil waters were produced following the methodology of Benson et al. (2009). One gram of soil was homogenized with an agate mortar and pestle, and then placed in a 50 mL centrifuge tube with approximately 50 mL of twice distilled glacial 1 M acetic acid. The sample was constantly agitated for a period of 24 h. Once the period of agitation was complete the samples were

![Fig. 2. A picture of the maize agricultural field used in this study.](image-url)
In this study we analyzed 87Sr/86Sr ratios of plant, soil, and water time- and rock-type dependent. That is, rocks of various ages have 87Sr/86Sr ratios that reflect the initial ratio of 87Sr/86Sr ratio at the time of mineral formation. Airborne dust does not contribute to the local measured soil ratios, which can contribute significant quantities of non-local strontium, particularly in arid regions (Graustein and Armstrong, 1983; Naiman and Quade, 2000; Reynolds et al., 2012). Strontium (Sr) is a stable alkaline earth metal that is incorporated into plants as they metabolize soluble bioavailable Sr from the groundwater in which they live (Burd, 1919; Eckert and Blincoe, 1970; Hart et al., 1932; Hurst and Davis, 1981; Sillen and Kavanagh, 1982). The ratios in vegetation reflect geographical variations in the 87Sr/86Sr of soil, dust, and water, because plants metabolize local bedrock and dust derived strontium from the soil and groundwater in which they live (Capo et al., 1998). It needs to be emphasized that plants do not directly metabolize Sr from soils, rather they metabolize bioavailable Sr from waters that have dissolved weakly bonded Sr from soils. Because there is no biological fractionation of the 87Sr/86Sr ratios, plants chemically reflect the 87Sr/86Sr ratio of soil waters.

4. Results

Modern corn 87Sr/86Sr plant values ranged between 0.70956 and 0.70928 (mean = 0.70942, standard deviation (SD) ± 0.00007), rabbit brush ranges from 0.70953 to 0.70907 (mean = 0.7092, SD = 0.0002), soil leachate values are 0.709396 (15 cm depth), 0.709429 (45 cm depth) and 0.709429 (75 cm depth), and the irrigation water is 0.708515 (Table 1). On average corn is shifted towards more radiogenic values when compared to rabbit brush (Table 1, Fig. 3). Wilcoxon/Kruskal–Wallis Tests of ranked sums: (SD of ranked sums) = 91, Z-score (Z) = −2.896, p = 0.0038). The soil leachates are all the same value when two standard errors (SE) are considered. The larger SD of rabbit brush compared to maize is to be expected, as maize was sampled from a small garden plot (Fig. 2), while rabbit brush was sampled randomly from within 100 m of the maize garden plots. These results are consistent with previous modern samples from the Chuska slope (Benson et al., 2009).

As recognized by Benson (2012) increases in the number of potential agricultural plots sampled results in a greater number of source locations that are consistent with 87Sr/86Sr ratios of archeological cobs. Eight of the archeological cobs originally analyzed by Benson et al. (2009) are consistent with 87Sr/86Sr ratios from the Tohatchi Flats in addition to the potential source regions originally identified by Benson.
Cliff Dwelling also overlap with 87Sr/86Sr ranges from Tohatchi. The re-
1130 cob. The three post-AD 1130 cobs from Chetro Ketl and Gallo
Tohatchi; four of which are pre-AD 1130 cobs and the other a post-AD
1300 cobs.

Table 2
Non-diagenetically altered Chaco Canyon corn cob 87Sr/86Sr values; adapted from Benson (2009).

<table>
<thead>
<tr>
<th>Site no.</th>
<th>Provenance</th>
<th>Era</th>
<th>87Sr/86Sr</th>
<th>2 SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>H10648</td>
<td>Pueblo Bonito, room 170</td>
<td>Pre-AD 1130</td>
<td>0.709892</td>
<td>0.000016</td>
</tr>
<tr>
<td>H242/244A*</td>
<td>Pueblo Bonito, room 3</td>
<td>Pre-AD 1130</td>
<td>0.709319</td>
<td>0.000016</td>
</tr>
<tr>
<td>H242/244B*</td>
<td>Pueblo Bonito, room 3</td>
<td>Pre-AD 1130</td>
<td>0.709475</td>
<td>0.000042</td>
</tr>
<tr>
<td>H254/258A*</td>
<td>Pueblo Bonito, room 3</td>
<td>Post-AD 1130</td>
<td>0.709394</td>
<td>0.000010</td>
</tr>
<tr>
<td>H254/258B*</td>
<td>Pueblo Bonito, room 3</td>
<td>Pre-AD 1130</td>
<td>0.709225</td>
<td>0.000018</td>
</tr>
<tr>
<td>H7673*</td>
<td>Pueblo Bonito, room 92</td>
<td>Pre-AD 1130</td>
<td>0.709328</td>
<td>0.000011</td>
</tr>
</tbody>
</table>

Other Chaco Canyon cobs

CHCU2685-2 | Cliff face | Post-AD 1300 | 0.710082 | 0.000015 |
CHCU2685-1* | Chetro Ketl, room 92 | Post-AD 1130 | 0.709523 | 0.000014 |
CHCU2685-2* | Chetro Ketl, room 92 | Post-AD 1130 | 0.709350 | 0.000009 |
CHCU43684-1 | Gallo Cliff Dwelling | Post-AD 1130 | 0.709638 | 0.000011 |
CHCU43684-3 | Gallo Cliff Dwelling | Post-AD 1130 | 0.709586 | 0.000015 |
CHCU43684-5 | Gallo Cliff Dwelling | Post-AD 1130 | 0.709412 | 0.000011 |
CHCU43684-8 | Gallo Cliff Dwelling | Post-AD 1130 | 0.709759 | 0.000011 |
CHCU43684-9 | Gallo Cliff Dwelling | Post-AD 1130 | 0.710010 | 0.000014 |
CHCU43684-10| Gallo Cliff Dwelling | Post-AD 1130 | 0.709961 | 0.000014 |
CHCU43684-15| Gallo Cliff Dwelling | Post-AD 1130 | 0.710143 | 0.000015 |
CHCU43684-16| Gallo Cliff Dwelling | Post-AD 1130 | 0.710094 | 0.000013 |
Site #1 Chaco E cob #2 | 29 SJ 176, LA 40176 | Post-AD 1300 | 0.709839 | 0.000019 |

| Bold and asterisk indicates signi
cance are cobs having 87Sr/86Sr values that overlap with Tohatchi.

(Table 2, Fig. 4), which included many of the side-valley tributary sys-
tems found between Chaco Canyon and the Chuska slope. Five of the
six cobs from Pueblo Bonito have 87Sr/86Sr values that overlap
with Tohatchi; four of which are pre-AD 1130 cobs and the other a post-AD
1130 cob. The three post-AD 1130 cobs from Chetro Ketl and Gallo
Cliff Dwelling also overlap with 87Sr/86Sr ranges from Tohatchi. The re-
main ing archeological cobs (One pre-AD 1130, eight post-AD 1130
and two post-AD 1300 cobs) have 87Sr/86Sr values that fall well outside
the range for Tohatchi, and we can say with a high degree of certainty
these cobs did not come from Tohatchi. Although the archeological sam-
ple sizes are small Tohatchi could have been a source region for
several of the pre- and post-1130 Chaco Canyon cobs, but not for the post-AD
1300 cobs.

5. Discussion

5.1. Maize and rabbit brush offset

Maize's mean 87Sr/86Sr value is more radiogenic than rabbit
brush, and the irrigation water is less than the mean for maize, suggest-
ning that if the irrigation water contributed to the maize values, then it
acted to shift the values more closely in line with the rabbit brush but
probably not substantially. Soil leachate values overlap with both
maize and rabbit brush minimum and maximum values, but they over-
lap very neatly with the corn values. It is unclear from the current data
why we see such offsets between the maize and rabbit brush ratios, but
four possible processes may be at work. Rabbit brush may have been ex-
posed to soils with lower Sr isotope ratios than the maize. The soils were
collected from within the maize plot and not the surrounding area
where most of the rabbit brush was collected (100 m radius, See
Section 2.1). Thus the soil samples may not be capturing the entire
87Sr/86Sr variability represented within the rabbit brush sampling
area. It is possible that the different rooting depths or bunch depth
maize versus rabbit brush is responsible for the observed shift. That is,
different depths, as evidenced by the complete digestion soils sampled
from varying depths (see 2.1), have different bioavailable Sr mixtures
resulting in a statistically different mean value for the two plants. It is
suggestive that the 15 cm soil sample (Sample no. 123600) has the
most radiogenic ratio and corn has approximately 75% of its root ball
within 25 cm of the land surface. Further research into how rooting
and bunch depths affect observed 87Sr/86Sr ratios in plants and soil pro-
files is forth coming by the
first and fourth author, but is beyond the
scope of this paper. It is also possible the mechanical movement of soil
tilling, planting, etc.) associated with maize farming combined with
varying 87Sr/86Sr ratios from different depths exposed fresh mineral
weathering surfaces in the soil matrix. This may serve to liberate more
radiogenic Sr similar to the complete soil digestion ratios. Finally, the
rabbit brush was not treated to remove any potential dust that had ac-
cumulated on the stalk. Research from near the study region has
shown strontium derived from dust to range between 0.7087 and
0.7096 (Reynolds et al., 2012). The cob would have been protected
from dust derived strontium thus explaining the offset. It also could
be that all four possibilities are contributing to the more radiogenic maize
values. As a discipline we need to extensively investigate this phenom-
emon, especially if we are to use proxies for maize. These observations

Fig. 4. Chaco Canyon cob 87Sr/86Sr ratios, from Benson (2009), plotted against the modern
cob and rabbit brush data from the Tohatchi site (this study). The black box encompasses
the minimum and maximum range of 87Sr/86Sr ratios documented in the modern cobs and
rabbit brush.
also explicitly calls for modern sampling to focus on the plant that is to be sourced (in this case maize) if we are to most accurately recreate prehistoric biogeochemical environments. This of course can be prohibitive be sourced (in this case maize) if we are to most accurately recreate prehistoric biogeochemical proxy for maize.

5.2. Chacoan corn sources: pre- and post-AD 1130

When combined with observations from Benson it appears that Chaco Canyon side valleys, side valleys of the Upper Rio Chaco, and the Chuska slope (including Tohatchi Flats) are potential candidates for maize fields prior to AD 1130. The entire side valley system of the Chaco Corridor and Slope could have been the source of Chaco’s maize prior to AD 1130, but with emphasis on areas outside Chaco Canyon itself as only Sr isotope soil water samples from one of Chaco Canyon’s side valleys (South Gap) overlapped with pre-AD 1130 archeological cob values from the Canyon. Only three of the post-AD 1130 cobs are consistent with values from Tohatchi, with the remainder having potential source regions within the Totah, Lobo Mesa, or a yet unsourced region. The post-AD 1300 Cliff Face cob does not overlap with any of the soils from this study or the Benson et al. (2009) source locations, but its radiogenic value is suggestive of a northern San Juan (up to 0.71399) origin given the high 87Sr/86Sr ratios associated with the San Juan and La Plata Mtns. and Northern San Juan Basin. An easterly or southerly origin for this cob cannot at present be ruled out due to the similarly radiogenic ratios associated with Cuba Mesa, Hosta Butte and the San Pedro Mtns. (Grimstead et al., in press).

It is perhaps not surprising that when we see the expansion and intensification of great house construction outside of Chaco Canyon (ca. AD 1000 and peaked by ca. AD 1130) (Kantner and Kintigh, 2006:182–183), in the Tohatchi flats area this includes: Figueiredo, Red Willow, and Deer Springs (Fig. 1), most of the pre-AD 1130 cobs from Pueblo Bonito sourced to the Chacon side valleys, side valleys of the Upper Rio Chaco, and the Chuska slope, including Tohatchi Flats. By the abandonment of the Figueiredo great house and elsewhere during the early Pueblo III period (AD 1100s) the primary source of Chacoan cobs shifts towards Northerly regions. Some cobs may have still been coming from the western and southwestern source regions, but if the observed sample is reflective of the broader pattern, then only small quantities continued to come from this region. During this time Tohatchi Flat sites became small and integrative with possible ties to these great houses. Great house architecture appears to have been replaced by new communal architectural forms, including the compound and bi-wall structures, during the late Pueblo III period (ca. AD 1200s) (Dykeman, 2003; Gilpin et al., 1996; Stein and Fowler, 1996). The replacement of Chacoan style great houses with these new forms of architecture and types of sites must be related to the collapse of the Chaco Phenomenon in this region and the kinds of post-Chaco reorganization documented for the Pueblo III period in adjacent areas such as the Cibola region (e.g., Kintigh, 1994; Schachner, 2008). Ties to the northern part of the Chuska Valley and Chaco Canyon had weakened by Pueblo III times with the Tohatchi area becoming more isolated. The remaining settlements were mostly abandoned by circa AD 1300 (Heilen and Leckman, 2014). The re-analysis of Chacoan cob sources presented herein suggests a strong tie between Chaco Canyon and the western and southwestern regions of the San Juan Basin prior to AD 1130, with this relationship weakening and shifting towards a more Northerly connection post-AD 1130. The same geographical and temporal pattern is observed in architectural timbers (English et al., 2001; Reynolds et al., 2005), while animals (Grimstead et al., in press), ceramics (Toll and McKenna, 1997) and lithics (Cameron, 2001) also source to these regions.

6. Conclusion

Sourcing studies can provide a unique perspective on the social ties and networks that existed prehistorically, but to fully observe those connections extensive field sampling must occur in order to identify all the potential source regions. Perhaps the most useful application of isotopic sourcing studies is to exclude certain regions, rather than confirm a source region; especially considering as the number of geochemical sites investigated increases, so can the number of potential source regions for any given artifact. This phenomenon was demonstrated in the current study, as the geochemical investigations of prehistoric agricultural fields in the Tohatchi Flats region increased the number of potential source regions of cobs recovered from Chaco Canyon great houses by one. It should be emphasized, however, that this did not change the overall pattern of regional cob sources identified in previous studies. That is, pre-AD 1130 Chaco Canyon cobs were likely coming from the Chuska slope and nearby side valleys of the Upper Rio Chaco and South Gap in Chaco Canyon proper, while cobs postdating AD 1130 shifted towards more northerly origins.

Particularly in the regions to the south and east of Chaco, additional field investigations are required to identify potential source localities. Despite there being a systematic 87Sr/86Sr offset between the rabbit brush and maize analyzed in this study, the data demonstrated that rabbit brush can serve as a proxy for maize, in conjunction with synthetic soil waters. Analyzing synthetic soil waters and plant samples in tandem allows the researcher to ensure the system is following expected biogeochemical principles. For cob sourcing studies the growing of maize in a potential agricultural plot is preferred, as this is the only way to mimic the prehistoric environment as closely as possible, but when this methodology is not feasible then this alternative strategy will suffice. Additional investigations are required to completely understand the offset between maize and rabbit brush, which is likely due to vertical and horizontal soil variation and plant rooting depths.

Acknowledgments

This research was funded by the New Mexico Department of Transportation (NMDOT), project number G5B16. We would like to thank Blake Roxlau (NMDOT) for supporting the project and Ted Ettstatt for growing and tending to the corn. Work was conducted under a Navajo Nation Historic Preservation Department permit.

References

