Joint Angles for Feet and Leg Conformation Traits in Second Gestation Sows

Joseph D. Stock
Iowa State University

Julia A. Calderón Díaz
Iowa State University

Benny Mote
University of Nebraska-Lincoln, benny.mote@unl.edu

Kenneth J. Stalder
Iowa State University

Follow this and additional works at: http://digitalcommons.unl.edu/animalscifacpub
Part of the Genetics and Genomics Commons, and the Meat Science Commons

http://digitalcommons.unl.edu/animalscifacpub/892

This Article is brought to you for free and open access by the Animal Science Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Papers and Publications in Animal Science by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Joint Angles for Feet and Leg Conformation Traits in Second Gestation Sows

A.S. Leaflet R3119

Joseph D. Stock, Graduate assistant, Department of Animal Science, Iowa State University;
Julia A. Calderón Díaz, Postdoctoral Research Associate, Iowa State University;
Benny E. Mote, Molecular Geneticist, Fast Genetics;
Assistant Professor - Swine Extension Specialist, Department of Animal Science, University of Nebraska – Lincoln;
Kenneth J. Stalder, Professor, Department of Animal Science, Iowa State University

Summary and Implications
This study is a portion from the validation process of an objective methodology to measure feet and leg joint angles and to evaluate their relationship with sow longevity. Five feet and leg conformation traits (knee, hock, front and rear pasterns and rear stance) that have been described in the literature as being related with sow longevity were selected for this study. Profile and rear stance digital images were obtained from 277 sows during their 2nd gestation (26.7 ± 17.2 days of gestation; range 0 to 87 days). Sows were obtained from a single gilt population and were moved to three different farms (farm A = 82; farm B = 98 and farm C = 97 sows) at the time of selection. Joint angles for the knee, front and rear pastern, hock, and rear stance were measured using the angle feature in image analysis software ImageJ (ImageJ, National Institute of Health, Bethesda, MD). Data were analyzed using mixed model equation methods in SAS PROC MIXED (SAS Inst. Inc., Cary, NC). The effect of farm, side where images were taken (left or right) and gestation age (included as a continuous covariate) were evaluated. Animal was used as a random effect.

Results and Discussion
Table 1 shows the LSMeans (±SE) by farm, side and regression coefficient for gestation age for all joints measured. Significant differences (P < 0.05) between farms were observed in the knee, front and rear pasterns and the rear stance measurement with the largest difference observed in the rear pastern followed by the rear stance (4.4 degrees and 6 degrees, respectively) between farm C and farm A (4.4 degrees); followed by the rear stance (6 degrees) between farm C and B compared with farm A. Asymmetry was detected in the knee, and front and hock joint angles changed as gestation progressed. Results suggest that environmental factors are related with variation in joint angles. However, as the differences in joint angles are relatively small, they may not be biologically relevant.

Introduction
Several individual conformation traits, such as pasterns, knees and hock position, are associated with sow longevity and survivability in sows. In a previous study, joint angles for feet and leg conformation traits were measured in multiparous sows using digital imaging technology. Results indicated that objective feet and leg conformation trait measurements could be successfully implemented as alternatives to subjective methods for selection of replacement gilts as it is repeatable and provides an accurate representation of the joint. Using this method to measure environmental and gestation age differences could provide more understanding into the conformational changes as the replacement female grows and undergoes major life changes. Understanding feet and leg conformation trait changes will help further the validation process and provide a better understanding for a range of the joints that contribute to increased longevity. The objectives of this study were to investigate joint angle symmetry and possible joint angles changes as gestation progresses and between farms in sows that originated from a single location during their second gestation.

Materials and Methods
Profile and rear stance digital images were obtained from 277 sows during their 2nd gestation (26.7 ± 17.2 days of gestation; range 0 to 87 days). Sows were obtained from a single gilt population and were moved to three different farms (farm A = 82; farm B = 98 and farm C = 97 sows) at the time of selection. Joint angles for the knee, front and rear pastern, hock, and rear stance were measured using the angle feature in image analysis software ImageJ (ImageJ, National Institute of Health, Bethesda, MD). Data were analyzed using mixed model equation methods in SAS PROC MIXED (SAS Inst. Inc., Cary, NC). The effect of farm, side where images were taken (left or right) and gestation age (included as a continuous covariate) were evaluated. Animal was used as a random effect.
Table 1. Differences in feet and leg conformation trait joint angles (LSMeans ± SE) from 277 sows during their 2nd gestation1 housed in three different farms

<table>
<thead>
<tr>
<th>Variable</th>
<th>Knee</th>
<th>Front Pastern</th>
<th>Rear Pastern</th>
<th>Hock</th>
<th>Rear Stance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farm2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>159.0a,b</td>
<td>0.3</td>
<td>55.6a</td>
<td>0.6</td>
<td>51.4a</td>
</tr>
<tr>
<td>B</td>
<td>158.5a</td>
<td>0.3</td>
<td>58.2b</td>
<td>0.6</td>
<td>54.5b</td>
</tr>
<tr>
<td>C</td>
<td>159.5b</td>
<td>0.3</td>
<td>57.5b</td>
<td>0.6</td>
<td>55.8b</td>
</tr>
<tr>
<td>Side</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>159.4a</td>
<td>0.2</td>
<td>57.9a</td>
<td>0.4</td>
<td>54.5a</td>
</tr>
<tr>
<td>R</td>
<td>158.6b</td>
<td>0.2</td>
<td>56.3b</td>
<td>0.4</td>
<td>53.3b</td>
</tr>
<tr>
<td>Gestation Age4</td>
<td>-0.02 ± 0.01*</td>
<td>0.04 ± 0.02*</td>
<td>0.02 ± 0.02</td>
<td>0.05 ± 0.02*</td>
<td>-0.01 ± 0.02</td>
</tr>
</tbody>
</table>

1Average gestation age 26.7 ± 17.2 days; range 0 to 87 days

2Sows were obtained from a single gilt population and were moved to three different farms (farm A = 82 sows; farm B = 98 sows and farm C = 97 sows) at the time of selection.

3Not included in the model; $P > 0.05$

4Results for continuous covariates are presented as the regression coefficient ± SE

a,bWithin columns, significant differences between predictor variables; $P < 0.05$

*$P < 0.05$