Rapid communication: Physical and linkage mapping of the porcine calcitonin (CALC) gene

J. E. Neil
Iowa State University

S. E. Zhang
Iowa State University

J. M. Helm
Iowa State University

Daniel C. Ciobanu
University of Nebraska-Lincoln, dciobanu2@unl.edu

M. F. Rothschild
Iowa State University

Follow this and additional works at: http://digitalcommons.unl.edu/animalscifacpub
Part of the Genetics and Genomics Commons, and the Meat Science Commons

Neil, J. E.; Zhang, S. E.; Helm, J. M.; Ciobanu, Daniel C.; and Rothschild, M. F., "Rapid communication: Physical and linkage mapping of the porcine calcitonin (CALC) gene" (2002). Faculty Papers and Publications in Animal Science. 938.
http://digitalcommons.unl.edu/animalscifacpub/938

This Article is brought to you for free and open access by the Animal Science Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Papers and Publications in Animal Science by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Rapid communication: Physical and linkage mapping of the porcine calcitonin (CALC) gene

J. E. Neil², S. E. Vleck², J. M. Helm, D. C. Ciobanu, and M. F. Rothschild³

Department of Animal Science, Iowa State University, Ames 50011

Genus and Species. Sus scrofa.
Locus. Porcine calcitonin (CALC) gene.

Source and Description of Primers. Primers, CCA1F and CCA1R, were designed from canine calcitonin sequence (GenBank Accession no. AJ271090) to amplify genomic porcine DNA. Using sequence obtained from the amplified PCR product, additional pig-specific primers (CIPBF, CIPBR, CIPCF, CIPCR) were designed.

Primer Sequences. CCA1F: 5′-CAC TTT GGA TTG GCC GCG C-3′; CCA1R: 5′-ACC AGG GCA GCC AGC AGG A-3′; CIPBF: 5′-AAC TTC CCA CTC TGC ACA CT-3′; CIPBR: 5′-AGA CCA AAC TTC AGC AGG AT-3′; CIPCF: 5′-TTC TCC TTC TCC TTC TGC TG-3′; CIPCR: 5′-GCA AAC CCA ATA CAG GCT CT-3′.

Method of Detection. A PCR was performed using the CCA1F and CCA1R primers in 10-µL reactions of the following: 1× PCR buffer, 1.5 mM MgCl₂, 200 µM of each dNTP, 2.5 pmol of each PCR primer, 0.35 units Taq DNA polymerase (Promega, Madison, WI), and 12.5 ng genomic DNA. Genomic DNA from four individuals for two swine breeds (Hampshire and Yorkshire) was used. The PCR was performed in a Robocycler (Stratagene, La Jolla, CA) under the following thermocycling conditions: initial denaturation at 94°C for 4 min, 40 cycles of 94°C for 45 s, 64°C for 1 min, 72°C for 2:10 min, and a final extension time of 12 min at 72°C. For each breed, the PCR products from the four individuals were pooled. These pools were then directly sequenced using dye terminators and an ABI 377 sequencer (Perkin-Elmer, Foster City, CA) at the Iowa State University DNA Sequencing and Synthesis Facility. The CCA1F and CCA1R primers produced a 1,600-bp fragment covering exons 1, 2, and 3. This fragment’s sequence was used to design the pig specific primers: CIPBF, CIPBR, CIPCF, and CIPCR. The CIPBF and CIPBR primers produced a 340-bp product used for physical mapping. The CIPCF and CIPCR primers produced a 220-bp fragment used for linkage mapping. All mapping was completed using AmpliTaq Gold polymerase (Applied Biosystems, Foster City, CA) and the following thermocycling conditions: initial denaturation at 94°C for 10 min, 36 cycles of 94°C for 45 s, 56°C for 45 s, 72°C for 45 s, and a final extension time of 5 min at 72°C. An intronic single nucleotide polymorphism (SNP) was found and subsequently confirmed using the HaeIII restriction enzyme, and this marker was used for linkage mapping. For the PCR-RFLP assays, 5 µL of PCR products were digested with 3 units HaeIII in 1× digestion buffer with 1× BSA added in a total volume of 10 µL. Following digestion for 4 h at 37°C, digested products were loaded onto a 4% NuSieve (BMA, Rockland, ME) agarose gel containing ethidium bromide, electrophoresed, and photographed.

Sequencing and Polymorphisms. Sequence analysis confirmed the identity of the porcine CALC by comparison to human and canine calcitonin. Exons 1 and 2 within the 1,600-bp fragment amplified using primer set CCA1F and CCA1R showed an 85% sequence homology to the human CALC mRNA sequence (GenBank Accession no. XM_006209). Comparison of the 220-bp fragment amplified using primer set CIPCF and CIPCR and DNA from five commercial swine lines revealed one intronic SNP. A single G to C base pair substitution at position 98 from primer CIPCF resulted in the formation of a HaeIII restriction enzyme site. A HaeIII PCR-RFLP test was designed using this restriction enzyme site and the CIPCF and CIPCR primers. Resulting allelic fragment sizes were 220 bp (allele 1) and 98 bp and 122 bp (allele 2) (Figure 1).

Inheritance Pattern. In the five PiGMaP families (Archibald et al., 1995) the HaeIII PCR-RFLP segregated in accordance with autosomal Mendelian inheritance.

Allele Frequencies. In 35 unrelated animals the intronic SNP was found to be informative in only two breeds, Yorkshire and Berkshire. Allele frequencies were 0.37 and 0.15 for allele 1 in Yorkshire and Berkshire pigs, respectively. Among the remaining 24 Duroc, Hampshire, and Landrace animals all were monomorphic for allele 2.

Chromosomal Location. Using the INRA pig/rodent somatic cell hybrid panel (Yerle et al., 1996) and the

1We thank Yuandan Zhang, Kwan Suk Kim, and Laura Grapes for technical support, Alan Archibald for the use of the PiGMaP DNA and the ResPig database, and Martine Yerle for use of the INRA SCHP. Support was provided by PIC International Group and the Iowa Agric. and Home Econ. Exp. Stn., Ames, paper no. J-19511, project no. 3148. This research was performed on the Iowa State Univ. Campus as part of a research internship sponsored by the Program for Women in Science and Engineering and the Dept. of Anim. Sci. during Summer 2001.
2Contributed equally to this project.
3Correspondence: 2255 Kildee Hall (E-mail: mrothsc@iastate.edu).

Received August 24, 2001.
Accepted January 24, 2002.

©2002 American Society of Animal Science. All rights reserved.
1kb 1 2 3

Figure 1. HaeIII PCR-RFLP genotypes of the CALC gene are illustrated. Lane 1 contains uncut PCR product, 11 genotype, following the HaeIII digestion. Lanes 2 and 3 indicate the 22 and 12 genotypes, respectively. The fragment sizes of alleles are listed.

340-bp PCR fragment, CALC was physically mapped to SSC2 p14–17 with a probability of 0.79. Linkage mapping was performed using the CRIMAP (Green et al., 1990) analysis and the genotypes for the PiGMaP families. Using two-point linkage analysis, seven markers were found to be significantly linked to CALC. These markers were (LOD score and recombination frequencies in parenthesis): SW240 (4.24, 0.23), CAST (4.40, 0.22), S0226 (3.78, 0.21), FSHB (8.31, 0.09), SW776 (10.14, 0.09), SW395 (7.86, 0.07), and S0091 (10.79, 0.04). Using CRIMAP, a multipoint map of SSC2 including CALC was constructed and the following gene order was found (with distance in Kosambi centimorgans): SW240-0.0-FSHB-19.3-CALC-9.9-S0091-3-SW395-0.9-SW776-0.0-S0226-15.6-CAST-0.0. These results confirm the position obtained from physical mapping.

Comments. Calcitonin is a multifaceted gene that produces three separate peptides within the human body. These peptides, calcitonin mRNA, alpha-calcitonin gene-related peptide, and beta-calcitonin gene-related peptide, are expressed throughout the body, especially in thyroid and neural tissues. Calcitonin has been identified as an agent in the treatment of diseases such as Paget’s disease, osteoporosis, and inhibition of pain perception (MacIntyre, 1992).

Literature Cited


Green, P., K. Falls, and S. Crooks. 1990. Documentation for CRIMAP, version 2.4. Washington Univ. School of Medicine, St. Louis, MO.


Key Words: Calcitonin, Calcium, Gene Mapping, Pigs