






the roots of switchgrass late in the growing season. Begin-
ning in 2001, harvest treatments were applied to the sub-
subplots within switchgrass cultivar N-fertility subplots to
determine if harvest date might affect SOC. One harvest
treatment (H1) was a mid-August harvest and the other (H2)
was a harvest in October or November, following a killing
frost. Plots were harvested only once a year. A 4.6×0.9 m
(4.2 m2) area was harvested in each subplot with a flail-type
plot harvester in 1998 and the following April, all remaining
biomass from the previous year was removed with a field
harvester prior to spring green-up. In 1999 and thereafter,
switchgrass yield harvests were made with flail harvesters
and associated weighing equipment by harvesting a 0.9 to
1.8 m wide swath (varied with harvester used) the full 30 m
length of the plots. At time of harvest, subsamples were
collected from each sub-subplot, weighed for moisture con-
tent, dried at 50°C for 48 h, and reweighed to determine dry
matter content. Yields were adjusted to a dry weight basis.
The C concentration of the switchgrass samples was deter-
mined using near infrared spectrometer (NIRS) procedures
and calibrations [31]. A field flail harvester was used to
remove all remaining biomass from the plots immediately
following the yield harvests using the same harvest height of
10 cm.

Maize Management

Maize seed was planted directly into soybean stubble of the
previous year in 1999 with a no-till drill and the maize plots
of the previous year thereafter. The maize was grown in
0.76 m wide rows. The N rates that were used represent the
low-to-high rates for maize grown under rainfed conditions
in the region. Nitrogen fertilizer was applied using the same
equipment as for switchgrass plots. Glyphosate herbicide
was applied after the maize had emerged and was about
40 cm in height. No other management inputs were applied
until grain harvest. Aboveground samples (one row 4.4 m
long) were collected soon after physiological maturity in
each N rate subplot and later from each sub-subplot for total
biomass yields. Ears were removed and stalks were then cut
at ground level, chopped and weighed. A representative
subsample was collected, dried and weighed for gravimetric
moisture determination to calculate stover dry matter pro-
duction. Ears were dried and weighed, added to the calcu-
lated stover weight to obtain total biomass yields on a dry
weight basis. Maize grain yields were determined with a
plot combine equipped with a weighing unit, subsamples
were collected for moisture determination, and yields were
adjusted to oven dry weight basis. Because of the emerging
interest in using maize stover for biomass energy, in 2001
stover harvest treatments were applied to the sub-subplots.
The harvest treatments were no residue harvested (H1) and
approximately 50 % of the stover remaining after grain

harvest (H2). Stover was harvested from the H2 treatments
after grain harvest using the flail forage harvesters that were
used to harvest switchgrass plots. Harvested stover yields
were determined by harvesting the stover from two non-
border rows of each sub-subplot its entire 30 m length with
a plot-flail harvester. The remaining rows were harvested
with a field scale flail harvester set at the same 10 cm
height as the plot harvester. All stover weights were con-
verted to a dry-weight basis (50°C oven for 48 h). Maize
grain and stover samples were analyzed for total C by dry
combustion [32].

Soil Sampling and Analysis

Baseline soil samples were obtained in July 1998 and plots
were thereafter re-sampled at approximately 3-year intervals
in May 2001, April 2004, and in May 2007. The initial
sampling location was in the center of each subplot. Subse-
quent soil samples were offset a fixed distance from each
subplot or sub-subplot center to prevent re-sampling of a
previous sampling site from which soil had been removed.
Sample collection was done using the procedures described
by Follett et al. [33]. In brief, the plant material was re-
moved from the soil surface and then, using a flat-bladed
shovel, undercutting and removing the soil from the 0–5, 5–
10, and 10–30 cm depths. Samples were also collected from
the 30–60, 60–90, 90–120, and 120–150 cm depths at the
July 1998 and May 2007 sampling dates using a hydraulic
probe. Soil bulk densities were determined using the USDA-
NRCS National Soils Laboratory methods [34]. The stan-
dardized procedure (Soil Survey Laboratory method 3B1) to
measure bulk density requires collection of field occurring
fabric (clods), coating them with Saran F-310 in the field
(NRCS 2004; Soil Survey Laboratory method 3B), transport
to the laboratory, and desorption to 33 kPa (1/3 bar). After
reaching equilibrium, the clod is weighed in air to measure
mass and in water to measure its volume, and next dried at
110°C (230°F) with its mass and volume again determined.
A correction is made for mass and volume of rock fragments
and the plastic coating with the BD value reported for
<2 mm (0.079in) soil fabric.

Once samples were collected they were sieved through a
2 mm sieve and <2 mm plant material picked from the soil,
air dried (room temperature), subsampled, mechanically
ground to pass through a 0.2-mm sieve, and the subsamples
were stored in sealed glass containers with screw type lids.
All soils were checked for carbonates and in the very few
cases where carbonates existed they were removed prior to
analyses for organic C using accepted procedures [35,36].
All analyses were on an oven dry weight (55°C). The
methodology is such that both the isotopic C analyses and
the analyses for the total SOC are done at the same time for
the same sample.
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A subsample of soil from each layer was sieved (2 mm
sieve size) and picked free of remaining recognizable plant
and root fragments under ×20 magnification. Soil samples
were oven dried (55°C), finely ground, and then analyzed
for total SOC and 13C/12C isotope ratio. All samples were
analyzed for total SOC and 13C/12C isotope ratio using a
continuous-flow Europa Scientific 20–20 Stable Isotope
Analyzer (isotope ratio mass spectrometer) interfaced with
Europa Scientific ANCA-NT system (automated nitrogen
carbon analyzer) Solid/Liquid Preparation Module (Dumas
combustion sample preparation system) (Europa Scientific,
Crewe Cheshire, UK—Sercon Ltd.). Soil organic C was
calculated using the C concentration (%), soil bulk density
(g cm3), and thickness for each individual sampled soil layer
and then summed over layers. Soil organic C on an equiv-
alent masses basis (SOC-EMB) also was calculated using
the method of Ellert et al. [37]. The 120 cm soil depth data
were used to make direct comparisons between both calcu-
lation methods in Table 1 and Supplementary Figs. S1 and
S2. Procedures to calculate the C3 and C4 components of
the SOC using δ13C (‰) are described by Deines [38] and
Follett et al. [33,39]. For the purposes of this report, results
from the 0–5, 5–10, and 10–30 cm depths were combined.

δ13C Analysis

Switchgrass and maize are both C4 plants that utilize the
Hatch-Slack enzymatic pathway that is dominated by PEP-
carboxylase which produces a C isotope fractionation between
the CO2 in the air (currently about −8 mil (‰01/1,000 th)
[40], and about −6.5‰ from the pre-industrial period back
10,000 years [41] and the plant of about −4‰. The instru-
mental measurement of δ13C values are expressed relative to a
calcium carbonate standard known as PDB from the Creta-
ceous Pee Dee formation in South Carolina [42]. Sign of δ13C
indicates whether a sample has higher or lower 13C/12C
isotope ratio than PDB. This pathway fractionates the isotopic
composition of the plant so that a typical δ13C of C4 (warm
season) plants relative to PDB is about −11 to −13‰ [38,39].
In contrast, the dominant photosynthetic pathway of C3 (or
cool-season plants) is Calvin–Benson, whereby the enzyme

RuBP carboxylase produces a carbon isotope fractionation
between the air and the plant of about −18 ‰ so that the
δ13C of C3 plants relative to PDB is about −26 to −27 [36,38].
These differences make it feasible to determine the plant
source (C4 or C3) of SOC using mass-spectrometric analyses.

Equation 1 expresses 13C/12C ratio as δ13C, which has
“per mil” (‰) units. By convention, δ13C values are
expressed relative to the PDB calcium carbonate standard
[40]. The sign of δ13C indicates whether a sample has a
higher or lower 13C/12C isotope ratio than does PDB.

13C ( ) =    (13C/12C) sample  (13C/12C) reference  * 1000  

13C( /12C) reference

ð1Þ
Besides measurements of total C and δ13C, fraction and

weight of C originating from C3 plants and C4 plants were
calculated based upon the mass of SOC and measured δ13C
values (Eq. 1) of soil samples collected at the first and last
soil sample collections, using Eqs. 2 and 3, and the δ13C of
C3 and C4 plant material [39].

 C3 plant C ( ) = ( 13C sample - 13C of C4 crop) * 100 

( 13C of C3 crop - 13C of C4 crop)

ð2Þ

 C4 plant C ( ) = ( 13C of C3 crop - 13C sample) * 100 

  ( 13C of C3 crop - 13C of C4 crop)

ð3Þ

Statistical Analyses

The data were analyzed using Mixed Model analysis proce-
dures of SAS [43] to determine the effects of N and harvest
(H) treatments on the grain and biomass yields and on
changes in soil C. By using the Mixed Model analyses, it

Table 1 Mean, standard devia-
tion, and range values for soil car-
bon (SOC) and soil organic carbon
on an equivalent mass basis (SOC
EMB) for switchgrass and maize
plots at the initiation of the carbon
sequestration study in 1998

The 0–120 cm depths can be
used to make comparison be-
tween methods

SOC by depth in 1998 SOC EMB in 1998

0–30 cm 0–120 cm 0–150 cm 0–60 cm 0–90 cm 0–120 cm
Mg Cha−1 Mg Cha−1

Mean 49.4 120.8 133.0 80.9 103.7 116.6

Standard deviation 11.8 63.2 72.5 32.7 49.3 59.4

Range minimum 30.2 57.8 60.1 40.2 51.2 56.4

Range maximum 72.9 250.0 287.4 152.4 214.5 242.8
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was possible to use a t test to test if the change in soil C was
significant for each N×H treatment for both switchgrass and
maize.

Results

Biomass, Grain, and C Yields

We used different fertility levels and harvest treatments to
create different management regimes and associated produc-
tivity levels so that their effects on SOC sequestration could be
determined. As expected, switchgrass biomass yields in-
creased with increasing N rates (Fig. 1). Switchgrass biomass
yields were greater for harvests made after a killing frost than
for harvests made at flowering in August. The 60 kg ha−1 N
rate on the maize plots had significantly lower total biomass,
grain, stover, and grain C yields than the other two higher N
levels which did not differ (Fig. 2). Harvesting and removing
50 % of the maize stover resulted in small but significantly
lower total biomass and grain yields (Fig. 2) which was
expected based on an earlier report [44]. Harvested C yields
(yield×C %) were proportionally similar to biomass and grain
yields because of limited variation in C concentration of the
biomass and grain. These results show that management prac-
tices resulted in differences in harvested yields and C.We used
two different upland switchgrass cultivars in the study to
determine if there was a cultivar effect but cultivars did not
differ in biomass yields over years (Supplementary Table 1) so
results were summarized over cultivars. During the study

period, annual precipitation was variable but often was below
normal (Fig. 3).

Changes in Soil C

Two main methods are used for reporting soil organic car-
bon. The most widely used method, which will be referred
to as SOC, is based upon soil organic C concentration (%),
soil bulk density (g cm3), and thickness for each individual
sampled soil layer and was the primary method used in this
study. The other method is soil organic carbon expressed on
an equivalent mass basis (SOC-EMB) [34]. The SOC and
SOC-EMB results were very similar between depth incre-
ments and equivalent masses (approximated for the 0–30,
0–120, and 0–150 cm depth increments) because there were
not large differences in bulk densities at any depth so the
SOC-EMB results are reported only in the Supplementary
Information (SI). Our results are reported as changes (ΔC)
in SOC during the 9-year period. At the start of the study in
1998, SOC in the 0–30 cm sampling depth varied by
40 Mg ha−1 among the plots in the field while in the 0–
150 cm sampling depth, SOC varied by almost 200 Mg ha−1

(Table 1). Soils in different areas of the field also varied
widely for soil bulk density and other soil properties as is the
situation in many marginally productive cropland fields.

In the switchgrass plots, there were significant, positive
increases in SOC (ΔC) during the period 1998–2007 for all
soil depths and N rate x harvest treatment combinations
except for ΔC in the 0 N rate treatment plots for the 0–
30 cm sampling depth where the changes were positive but
not significant (Fig. 4). The ΔC values were statistically
different from zero except for the 0 N rate for the 30 cm
depth and increased across the depth ranges (0–30, 0–120,
and 0–150 cm). The magnitude and statistical significance
level of the ΔC changes varied with N rate and harvest
management regimes. Harvest treatment effects onΔC were
not significantly different averaged over N rates. Increases
in SOC for the 0 N rate were less than for the fertilized
treatments (Fig. 4). Cultivar effects were not significant for
SOC ΔC (Supplementary Table 2). Importantly, Fig. 4
shows that significant amounts of C were sequestered in
the soil profile from 0 to 150 cm with over 50 % of the total
soil C sequestered deeper than 30 cm in the soil profile in
switchgrass plots being managed for biomass production.
The large standard errors for ΔC are reflective of the initial
soil variability in the field and likely will be found both
within and among biomass production fields.

In the maize plots, SOC (ΔC) increased for all soil depths
and N rate by harvest treatment combinations (Fig. 5) and
were significantly different from zero (P levels ranged from
0.1 to 0.01) except for 120 kg N ha−1 rate for the 120 cm
sampling depth. Again, the magnitude and statistical signif-
icance level of the ΔC changes varied with N rate and

Fig. 1 Switchgrass mean annual biomass and C yields for years 1998
to 2007 in eastern Nebraska averaged over years and two upland
cultivars. Treatments included three nitrogen fertilization rates and
two harvest treatments. Harvest 1 was in August at anthesis. Harvest
2 was after a killing frost. There were no significant differences
between cultivars. Harvest and fertilizer treatment effects were highly
significant (P≤0.01). Standard errors of means are shown as bars
above the columns
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harvest management regimes. Standard errors of the treat-
ment means also were large because of the initial soil
variability in the field. There were significant harvest treat-
ment effects onΔC for the 0–30 cm sampling depth. Differ-
ences in ΔC due to N fertility rates were not statistically
significant across harvest treatments. These results show
that significant increases in soil C occur in the soil profile
from 0 to 150 cm in no-till maize in the western Corn Belt

region with both 0 and 50 % stover harvest and show that
over 50 % of the total SOC is being sequestered deeper than
30 cm in the soil profile. A simple correlation analyses was
conducted on the relationship between maize biomass yield,

Fig. 2 Maize total biomass, grain, stover, harvested stover, residual
stover, grain C, and harvested stover C mean yields for years 1999–
2007 in eastern Nebraska in a non-irrigated, no-tillage production
study. Harvested and residual stover yields and C yields are for years
2000–2007. Treatments included three N rates and two different stover
harvest treatments (H10none; H2050 % removal after grain harvest).
Standard errors of means are shown as bars above the columns.

Harvest treatment effects were significant for total biomass (P≤0.08),
grain yield (P≤0.05), and residual stover (P≤0.01). The 60 kg ha−1 N
rate treatment differed significantly for all measured variables except
for harvested stover and harvested C (P≤0.05), from those of the 120
or 180 kg ha−1 treatments which did not differ from each other. There
were no significant N rate×harvest treatment interactions

Fig. 3 Palmer Drought Severity Index (PDSI) for east central NE for
the period 1997 to 2007. Negative PDSI values indicate degree of
drought severity. The arrows indicate the four times that soil samples
were taken in this study. Deep soil samples were taken only in 1998
and 2007. A period of moist weather during 1997 and 1998 preceded
the drought periods that occurred during much of this study (http://
www7.ncdc.noaa.gov/CDO/CDODivisionalSelect.jsp#, verified April,
3, 2012)

Fig. 4 Change in soil organic C (ΔC) from 1998 to 2007 at three soil
depths in plots in eastern Nebraska in which two upland switchgrass
cultivars were grown as biomass energy crop with three N fertilization
rates and two harvest treatments as described in Fig. 1. Means were
averaged over cultivars because cultivar effects were not significant for
ΔC. The symbols, asterisk and double asterisks, above the standard error
bars indicate if the change in soil C for each specific treatment and soil
depth was significant at the 0.05 and 0.01 levels of probability, respec-
tively. For ΔC, differences among harvest treatment effects were not
statistically different significant but differences among N treatment
effects were significant for the 0 vs 60 kg N ha−1 comparison (P00.10
and 0.06 for the 30 and 150 cm sampling depths, respectively). The single
harvests each year were made at either anthesis in August (Harvest 1) or
after a killing frost (Harvest 2) in late October or early November

Bioenerg. Res.

http://www7.ncdc.noaa.gov/CDO/CDODivisionalSelect.jsp
http://www7.ncdc.noaa.gov/CDO/CDODivisionalSelect.jsp


grain yield, and residual stover versusΔC orΔC-EMB. The
only significant correlation was between residual stover and
ΔC (r00.39, P00.10).

Sources of ΔC

The δ13C isotope analyses of SOC showed essentially no
change in the mass of C3 derived SOC from 1998 to 2007
(Figs. 6 and 7). The δ13C analyses of the SOC at each sampled
depth increment in 1998 and 2007 showed that the major
changes in SOC that occurred in these plots was in the C4
fraction which had to be derived from the switchgrass and
maize that were grown continuously in the plots during that
period (Figs. 6 and 7). The 2007–1998 differences in SOC
were consistent for the switchgrass and maize plots and oc-
curred throughout the soil profile from 0 to 150 cm in the
plots. In the 1998 to 2007 period, the C4 SOC increased
throughout the soil profile to depths of 150 cm for no-till
maize and switchgrass.

Discussion

Our results clearly show that significant amounts of C were
sequestered deep in the soil profile by switchgrass grown
and managed as a biomass energy crop and maize grown
continuously in a no-tillage production system under an

array of N fertility and harvest treatments for a 9-year
period. For almost all other C sequestration reports used in
bioenergy models, studies designed for other purposes were
adapted to obtain soil C sequestration estimates, initial soil
samples were not available, and control samples were from
adjacent fields or non-treatment areas. Our results are sup-
ported by similar results reported by Liebig et al. [28] for
four switchgrass fields managed with uniform N rates and
harvest treatments for 5 years in the USAwestern Corn Belt.
They are supported by the recent work of Varvel and Wil-
helm [29] for maize in which significant increases in soil C
occurred in soil layers up to 150 cm in depth in maize no-till
plots as compared to tilled plots. The soil C that is seques-
tered deeper than 30 cm is expected to be more stable over
time since it is below the tillage zone. Even in the top 30 cm
of soil, sequestered C may be stable for extended periods in
no-till production systems as reported previously by Follett
et al. [33].

Fig. 5 Change in soil organic C (ΔC) from 1998 to 2007 at three soil
depths in plots in eastern Nebraska in which maize was grown without
tillage with three N fertilization rates and two stover harvest treatments
(0 % and 50 % removal). The symbols, dagger, asterisk, and double
asterisks, above the standard error bars indicate if the change in soil C
(ΔC) for each specific treatments and soil depth was significant at the
0.1, 0.05, and 0.01 level of probability, respectively. Differences
among harvest treatment effects for ΔC were significant for the 0 to
30 cm soil (P≤0.03) but not for the other sampling depths. Differences
among N rate treatment effects were not significant for ΔC averaged
over harvests

Fig. 6 Soil organic carbon (SOC) and soil carbon originating from
plants with the C3 (C3-C) and C4 (C4-C) photosynthesis systems in
the 0–150 cm soil profile of plots in which Cave-in-Rock switchgrass
was grown as a bioenergy crop in eastern Nebraska. Soil samples were
collected at the increments indicated at the beginning of the study in
1998 and in 2007. Depth increment values are averaged over N and
harvest treatments. Paired t tests were used to test for the significance
of differences between the 1998 and 2007 soil samples. Results were
similar for the cultivar Trailblazer
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The switchgrass management practice with the greatest
average biomass yields during the 1998 to 2007 period was
the 120 kg ha−1 N rate with harvest after a killing frost. The
mean annual harvested biomass C yields for this treatment
was 5.1 Mg ha−1 year−1 (11.4 Mg ha−1 year−1 of total bio-
mass). The average annual increase in SOC from 0 to 150 cm
for this treatment was 2 Mg ha−1 year−1 (7.3 Mg CO2

ha−1 year−1) which was equivalent to 40 % of the harvested
C. At the same fertilizer rate, maize grain yields were the
greatest unless stover was removed. At the 120 kg ha−1 N
fertility rate with no stover harvest, the annual increase in soil
C was 2.6 Mg ha−1 year−1 (9.5 Mg CO2ha

−1 year−1) which
was equivalent to the harvested grain C yield. At the
1 2 0 kg h a − 1 N r a t e , s t o v e r h a r v e s t y i e l d e d
1.3 Mg ha−1 year−1 of harvested C and resulted in a reduced,
but not statistically different soil C sequestration rate as com-
pared to the no stover harvest treatment. The difference in the
switchgrass and maize annual C sequestration rate is probably
due to switchgrass being a perennial with long root life

whereas with maize, all roots die annually and likely also
have different root biomasses and rhizdeposition. The low
but positive correlation between residual stover and ΔC sup-
port the previous work by Wilhelm et al. [21] who proposed
that a critical sustainability factor in maize removal was the
amount of crop residue left on the field.

Average annual C sequestration rates that occurred in both
the switchgrass and maize plots under best management prac-
tices greatly exceed the soil C credits that have been used in
LCAmodeling studies to date for maize and switchgrass grown
for bioenergy [7,9–12]. To illustrate the extent of the differ-
ences, we will use three of the most highly cited papers as
examples. Hill et al. [11] assumed an average annual soil carbon
sequestration rate for perennial grasses such as switchgrass of
0.566 Mg ha−1 year−1 and zero C sequestration for maize.
Searchinger et al. [12] used a C sequestration rate of
1 Mg ha−1 year−1 of CO2 (0.273 Mg ha−1 year−1 C) for
perennial grasses and again zero C sequestration for maize.
Fargione et al. [9] also assumed zero C sequestration for maize
and for perennial grasses used an unreported average of previ-
ously published values which were from 30 to 40 cm sampling
depths. In some modeling studies, it is assumed that the rate of
C sequestration with perennial grasses will decrease over time
and that SOC sequestration will eventually cease in 30 to
50 years but data to support these assumptions is lacking for
highly productive, managed grasslands and no-till maize. The
time period over which the C sequestration rates obtained in this
study with switchgrass and no-till can be sustained is unknown.

Our results indicate that the previous LCA of maize and
switchgrass grown for bioenergy likely underestimated their
net benefits because of the soil C sequestration data that
were used in their analyses. For future LCA analyses of
bioenergy crops, soil carbon sequestration data will need to
be based on deep soil samples. For maize, perennial grasses,
and other crops grown for bioenergy there will be regional
differences in soils, environmental conditions, and best
management practices all of which will likely produce re-
gional differences in soil C sequestration or loss. Our results
suggest that the use of uniform C sequestration rates across
agro-ecoregions for LCA is a questionable practice. Also,
the accrual rate over time in different production systems
will need to be determined. We recognize that there is a
large void in the information base on the net effects of
agricultural and bioenergy production systems on changes
in soil organic carbon below the tillage layer that needs to be
addressed. The large standard errors obtained in this study
for the effect of management practices on changes in SOC
will likely exist within and across production regions. LCA
includes multiple factors in addition to SOC and these
factors also have associated standard errors. It seems obvi-
ous that in the future, LCA’s should have standard errors
associated with their outputs to reflect the variation that can
occur in the variables on which they are based.

Fig. 7 Soil organic carbon (SOC) and soil carbon originating from
plants with the C3 (C3-C) and C4 (C4-C) photosynthesis systems in
the 0–150 cm soil profile of plots in which no-till maize was grown in
eastern Nebraska. Soil samples were collected at the increments indi-
cated at the beginning of the study in 1998 and in 2007. Depth
increment values are averaged over N and harvest treatments. Paired
t tests were used to test for the significance of differences between the
1998 and 2007 soil samples
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Supplementary material 

 
 

 

 
 

Figure S1. Mean changes in soil organic C on an equivalent mass basis (ΔC-EMB) during the 

period 1998 to 2007 at three soil depths in plots in eastern Nebraska in which two upland 

switchgrass cultivars were grown as biomass energy crop with three N fertilization rates and two 

harvest treatments as described in Figure 1. Means were averaged over cultivars. The symbols, 

asterisk and double asterisks, above the standard error bars indicate that the change in soil C for 

the specific treatment and soil depth was significant at the 0.05 and 0.01 levels of probability, 

respectively. For ΔC-EMB, differences among harvest treatment effects were not significant and 

specific N treatment effects differed at low probability levels (P < 0.20) (TIFF 206 kb) 

 

  



 
 

Figure S2. Mean changes in soil organic C on an equivalent mass basis (ΔC-EMB) during the 

period 1998 to 2007 at three soil depths in plots in eastern Nebraska in which maize was grown 

without tillage with three N fertilization rates and two stover harvest treatments (0 % and 50 % 

removal). The symbols, dagger, asterisk, and double asterisks, above the error bars indicate that 

the change in soil C (EMB) for the specific treatments and soil depth was significant at the 0.1, 

0.05, and 0.01 level of probability, respectively. Overall differences for ΔC-EMB for harvest and 

N rate treatment effects per se were not significant for the soil depths tested (TIFF 214 kb) 

 

  



 
 

Figure S3. Soil organic carbon (SOC) and soil carbon originating from plants with the C3 (C3-

C) and C4 (C4-C) photosynthesis systems in the 0–150 cm soil profile of plots in which 

Trailblazer switchgrass was grown as bioenergy crop in eastern Nebraska. Soil samples were 

collected at the increments indicated at the beginning of the study in 1998 and in 2007. Depth 

increment values are averaged over N and harvest treatments. Paired t tests were used to test for 

the significance of differences between the 1998 and 2007 soil samples (TIFF 1334 kb) 

 



Table S1. Switchgrass mean biomass yields and analysis of variance results for the period 1998–

2007. Treatments are cultivars, Trailblazer (TB) and Cave-in-Rock (CIR), N fertilization rate, 

and harvest date (H1—August harvest at anthesis; H2—harvest after a killing frost). Analyses of 

variance results are from the Mixed Model analyses over years using plot means. 

 
                       Biomass yield                           Harvested C  

N rate  
kg ha-1 

        Harvest 1        Harvest 2  N rate 
mean 

       Harvest 1         Harvest 2 N rate 
mean 

                                   Cultivar                                   Cultivar  

 TB CIR TB CIR  TB CIR TB CIR  

 Mg ha-1 Mg ha-1 Mg ha-1 Mg ha-1 Mg ha-1 Mg ha-1 Mg ha-1 Mg ha-1 Mg ha-1 Mg ha-1 

 0 2.88 3.36 4.30 3.13 3.42 1.25 1.46 1.87 1.35 1.48 

 60      7.07 7.07 9.95 8.27 8.08 3.11 3.12 4.40 3.65 3.57 

120      8.94 9.25 11.71 11.20 10.28 3.96 4.07 5.21 4.97 4.56 

SE      0.58 0.58 0.58 0.58 0.44 0.25 0.25 0.25 0.25 0.19 

                   

Harvest mean 6.42  8.09 

 

 2.83  3.57  

   SE  0.31  0.31   0.13  0.13  

           

 Analysis of variance and means comparison summary  

 Cultivar difference,  NS   Cultivar difference,  NS   

 
N rate, P=0.001  

 
N rate, P=0.001  

 

 Cult. x N, NS   Cult. x N, NS   

 H1 vs H2, P=0.01   H1 vs H2, P=0.01   

 Cult. x H, P=0.014   Cult. x H, NS   

 N x H,  NS   N x H, NS   
 N1 vs N2,P=.001   N1 vs N2,P=.001   

 N1 vs N3,P=.001   N1 vs N3,P=.001   

 N2 vs N3,P=.01    N2 vs N3,P=.01    

           

 

 



1 

 

Table S2. Mean changes in soil organic C (ΔC) during the period 1998 to 2007 at three soil depths in plots in eastern Nebraska in 

which two switchgrass cultivars were grown as a biomass energy crop with three different N fertilization and two different harvest 

treatments: (H1—August harvest at anthesis; H2—harvest after a killing frost). Cultivars are Trailblazer (TB) and Cave-in-Rock 

(CIR). Statistical significance of ΔC for each specific cultivar × N rate × harvest treatments are indicated by superscripts. 

 
                                                                               Mean change is soil organic C (ΔC) by soil depth 

N  -------- Soil depth  0-30 cm -----------       -------------- Soil depth 0-120 cm ------------    ------------Soil depth 0-150 cm  ------------- 
rate      Harvest 1     Harvest 2 N rate    Harvest 1  Harvest 2 N rate     Harvest 1     Harvest 2 N rate 

 TB CIR TB CIR  mean TB CIR TB CIR  mean TB CIR TB CIR mean 

kg/ha    --------------- Mg/ha -------------------- ----------------------- Mg/ha ---------------------- --------------------- Mg/ha -------------------- 

0 0.77 4.17 5.80 1.20 2.98 10.73† 13.57* 11.90* 14.13* 12.58* 13.73† 12.97† 14.00† 15.43* 14.03* 

  60 5.27 8.90* 6.50 11.37** 8.01** 15.17* 25.67** 15.30* 19.23** 18.84** 19.43* 29.77** 18.8* 20.73** 22.18** 

120 4.23 6.33† 8.66 7.93* 6.79** 23.03** 16.10** 14.20* 16.53** 17.47** 23.6** 15.73* 14.9† 22.33** 19.14* 

SE 3.64 3.64 3.64 3.64 1.87 6.22 6.22 6.22 6.22 3.73 7.26 7.26 7.26 7.26 4.74 

                

Harvest 

mean 4.94**  6.91** 

  

17.38*  15.22* 

  

19.21*  17.7* 

 

SE  1.56  1.56   3.36  3.36   4.39  4.39  

                

                                    Analysis of variance and means comparison summary  

 Cultiver differences,  NS‡  Cultiver differences,  NS  Cultiver differences,  NS  

 N rate, P=0.2  N rate, NS  N rate, P=0.19,NS  
 Cult. x N, NS  Cult. x N, NS  Cult. x N, NS   
 H1 vs H2, NS  H1 vs H2, NS  H1 vs H2, NS   
 Cult. x H, NS  Cult. x H, NS  Cult. x H, NS   
 N x H, NS  N x H, NS  N x H, NS   
 N1 vs N2, P=0.09  N1 vs N2, P=0.13  N1 vs N2, P=0.08  
       

†, *, ** Indicates the change in soil organic C (ΔC) was significant at the 0.10, 0.05, and 0.01 levels of probability, respectively  for the period 1998-2007 for 

specific N rate x cultivar x harvest treatments.    
‡ NS = not statistically significant 




