1992

G92-1124 Converting Center Pivot Sprinkler Packages: System Considerations

Joel E. Cahoon
University of Nebraska-Lincoln, joelc@montana.edu

Norman Klocke
University of Nebraska - Lincoln

William L. Kranz
University of Nebraska - Lincoln, wkranz1@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/extensionhist

Part of the Agriculture Commons, and the Curriculum and Instruction Commons

http://digitalcommons.unl.edu/extensionhist/1204

This Article is brought to you for free and open access by the Extension at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Historical Materials from University of Nebraska-Lincoln Extension by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Converting Center Pivot Sprinkler Packages: System Considerations

This NebGuide points out some of the system-oriented factors that should be considered when changing sprinkler packages on a center pivot irrigation system.

Joel Cahoon, Extension Water Management Engineer
Norman Klocke, Extension Water Resources Engineer
Bill Kranz, Extension Irrigation Specialist

- Effect of Pressure Reductions on System Components
- Changing Operating Pressure -- Internal Combustion Units
- Changing Operating Pressure -- Electrical Units
- Runoff Potential
- Cost Considerations
- Procedure Summary
- Example Calculations

Irrigators using existing center pivots may be interested in changing sprinkler packages for a number of reasons: to take advantage of new sprinkler technology, to overcome a poor design on the original package, to reduce energy requirements, or simply to replace worn sprinklers on an older machine.

Whatever the reason, there may be multiple benefits in changing a sprinkler package on an existing center pivot. Many systems will benefit significantly in decreased energy use as a result of changing from a high operating pressure to medium or low pressure. Other systems may realize an increase in application efficiency by changing to a sprinkler package that has lower evaporation losses. Systems with insufficient capacity may actually show crop yield increases as a result of this increased application efficiency.

In any case, there are considerations that should be investigated before converting to a new sprinkler package. The new sprinkler package should be appropriate for the soil and topographical characteristics of the site, information that is covered in detail in NebGuide G88-870, Selecting Sprinkler Packages for Center Pivots. The information presented here deals with the system oriented problems that may occur while changing a sprinkler package. The irrigation system includes the center pivot, the power unit and pump, and their components. These components must work together efficiently. Changing the operation of any component changes the way the other components operate.

Effect of Pressure Reductions on System Components

Reducing the operating pressure of a center pivot system may have many positive effects, but there are some
trade-offs. When the overall system pressure is reduced, problems may arise that can be corrected by changing some equipment. In some cases it may not be economical to make these changes.

One potential problem associated with reducing the system pressure involves operation of the end gun. Systems with existing end guns may not have adequate pressure to operate the end gun after the pressure reduction. End-gun booster pumps can be installed to allow continued use of the original end gun. Some systems could require the addition of a booster pump and a smaller end gun. Others may require that the end gun no longer be used. An end-gun booster may have additional power and maintenance requirements. Removing the end gun will decrease the irrigation acreage. These costs should be considered when changing the operating pressure of a center pivot.

When converting to a low-pressure system, irrigation acreage may be lost even if end guns are not used. The high pressure system may have additional throw from the outermost sprinkler in the range of 50 to 75 feet. Replacing this package with a low to medium pressure system with a wetted radius of 15 to 20 feet could result in a substantial loss of irrigation acreage. For example, if the wetted radius was reduced by 40 feet on a 1,320 foot center pivot, the irrigation acreage would be reduced by 7.5 acres.

Another consideration is the impact of reduced operating pressure on water application uniformity. Medium to low pressure sprinklers will be more sensitive to pressure variation due to field elevation changes than high pressure sprinklers. To overcome this sensitivity and insure that the uniformity of application is not sacrificed, many systems will require pressure regulators on each sprinkler. A detailed discussion of pressure regulators may be found in NebGuide G88-888, Flow Control Devices for Center Pivot Irrigation Systems.

Changing Operating Pressure -- Internal Combustion Units

![Figure 1. Pump curve showing the effect of decreasing the engine speed.](image)

An example of this is shown in the pump performance curve of Figure 1. The relationship between pressure developed by each stage and gallons per minute of output is shown by the solid lines. For each of the three pump speeds shown, the pump will operate somewhere along the solid lines as long as the speed does not change. When the speed changes, the pump operates on a new performance curve. The dotted lines, which are roughly perpendicular to the solid performance curve lines, indicate the pump efficiency at that point. Pumps can operate below and/or to the left of the performance curve if they are worn or out of adjustment. Keep in mind that the speed used on a pump curve (Figure 1) is pump speed, not engine speed. Pump and engine speed will be equal only if 1:1 gears are used in the gear head, or if the driver and driven pulleys in a belt drive system are of equal diameter. The operating pressure of the pump may be reduced by reducing the engine speed. Reducing the engine speed will reduce the operating pressure but hold the flow rate constant only if the center pivot has been altered to apply the same flow at the new lower pressure. If the engine speed is reduced with no alterations to the center pivot, both the pressure and the flow rate are reduced.

The application amount will remain the same with the lower pressure system if the flow rate and travel speed of the center pivot are not changed. The application rate (the rate at which water is added to any point on the soil surface) will probably increase, because the lower pressure system will have a smaller wetting pattern. If the wetting pattern is smaller and the pump flow rate is unchanged, the application rate will increase.
One potentially negative effect of changing the engine speed is that the pump efficiency may decrease. This could mean that a lower percent of the energy delivered to the pump shaft is effectively converted to water movement. If this change in efficiency is large, reductions in energy use associated with reducing the pressure may be offset by the increase in energy use associated with the decrease in pump efficiency. As a result there may be no overall savings in energy costs. In fact, the energy costs may increase. A possible solution to this problem is to replace or modify the pump bowls and/or impellers. The pump curve should always be evaluated prior to any change to ensure that the new settings are satisfactory.

When engine speed is changed, the engine performance curve (fuel use) must also be considered. Internal combustion engines are designed for maximum efficiency at a given speed. Deviation from that speed will decrease the engine efficiency, as shown in Figure 2. If the decrease in engine efficiency is significant, the gear ratio in the pump gear head (or pulley diameters if belt drives are used) could be changed, allowing the engine to operate at the original speed.

Changing Operating Pressure--Electrical Units

Many electrically powered pumps are driven by vertical hollow-shaft motors that are directly coupled to the pump lineshaft. There is no way to change the rotational speed of the pumps when using these motors.

Several options are available to reduce the operating pressure of center pivots that have electrically driven pumps, one of which is to continue to use the original pump and design the sprinkler package to deliver more gallons per minute at a lower pressure. Of course, the capacity of the well, peak application rates, and other factors will limit how far this option can be taken. Another option is to pull the pump and remove one or more stages from the bowl assembly. This is a viable option only if the pump design is well matched to the volume to be pumped through the new sprinkler package. If the impellers or wear ring area of the bowl are worn, this would be a good time to have the pump rebuilt, since the pump must be pulled anyway to remove stages.

Another alternative would be to pull the pump, disassemble one or more stages, and trim the impeller diameter. This has much the same effect on the head and capacity of the pump as operating the impeller at a lower rotational speed. Depending on the pump and operating conditions, this might be necessary, in conjunction with removing stages, to obtain the pressure desired. A final, and potentially expensive option, would be to replace the pump with a new one that is designed to operate with the new conditions.

Using the old, higher horsepower electric motor to drive the pump would not be an operational problem since electric motors only draw the current required by the load. A potential problem with over-sized electric motors is that many utility companies assess a demand charge based on the horsepower rating of the motor. An over-sized motor will therefore be assessed a high demand change unless the utility company uses a demand meter instead of the horsepower rating to assess demand charges.

An option with single phase motors is to change to one that operates at a lower speed. Again, the pump curve should be checked for potential pump efficiency problems associated with the new pump speed. This may be a more expensive option, but the lower operating speed may also extend the life of the pump. The demand
charge would not be a problem in this case, since the lower speed motor would have a lower horsepower rating, and thus a fair demand charge.

If a belt drive system is used, the pulley diameters could be changed. In this case, the pump curve should be checked for the new pump efficiency, and the demand charge problem may occur.

Runoff Potential

It cannot be over-stressed that many low to medium pressure systems may generate a runoff problem that could overshadow the positive effects of the sprinkler package conversion to reduced pressure. Runoff is influenced by application rate, which is influenced by wetted diameter. The wetted diameter of low to medium pressure systems is often considerably less than that of high pressure systems. Converting to lower pressures may in some cases generate unacceptable runoff amounts. For more information on runoff, its causes, and some potential solutions, see NebGuide *G91-1043, Water Runoff Control Practices for Sprinkler Irrigation Systems*.

Cost Considerations

There are many cost-related factors that must be considered when making a change in sprinkler packages. *Table I* summarizes the potential costs and benefits associated with the change. For any system, it should be determined that the benefits will outweigh the costs before the conversion is made.

Other economic factors to consider are related to the projected life of the system and its components. There is more incentive to change sprinkler packages if the currently used sprinklers should be replaced due to wear anyway. Also, any new sprinklers placed on an older center pivot may be salvaged and transferred to a new system if the center pivot itself is replaced.

Table I. Potential economic costs and benefits associated with changing sprinkler packages.

<table>
<thead>
<tr>
<th>Potential Costs</th>
<th>Potential Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment</td>
<td>Reduced Fuel Costs</td>
</tr>
<tr>
<td>• sprinklers</td>
<td>• pump operates at lower pressure</td>
</tr>
<tr>
<td>• pressure regulators</td>
<td>• more efficient system</td>
</tr>
<tr>
<td>• drop tubes</td>
<td>(less hours pumping)</td>
</tr>
<tr>
<td>• end-gun booster pump</td>
<td>• reduced demand charge</td>
</tr>
<tr>
<td>• adding extra sprinkler fittings</td>
<td></td>
</tr>
<tr>
<td>Acreage Reductions</td>
<td>Application Efficiency</td>
</tr>
<tr>
<td>• end gun inoperable</td>
<td>• higher if runoff is not a problem</td>
</tr>
<tr>
<td>• reduced wetted diameter of end sprinklers</td>
<td></td>
</tr>
<tr>
<td>Pump Alterations</td>
<td>Increased Yields</td>
</tr>
<tr>
<td>• bowls and impellers</td>
<td>• if pump capacity is too low</td>
</tr>
<tr>
<td>• gear head or pulleys</td>
<td></td>
</tr>
</tbody>
</table>

Procedure Summary
A general outline for the steps to take when deciding if a sprinkler change is warranted is given below.

1. Determine appropriate sprinklers for soil and slopes.
2. Determine operating pressure and flow rate needed for the chosen sprinkler package.
3. Consider the appropriateness of the pump and power plant, and determine if system changes are necessary.
4. Determine costs associated with any required system changes and the new sprinkler package.
5. Determine savings associated with decreased projected energy use or increased crop yield.

Example Calculations

An irrigator wishes to install a low pressure sprinkler package on an older high pressure center pivot. In doing so, he will need to change the pressure at which the pump operates. He has an internal combustion engine with the engine performance curve shown in Figure 2. The gear head on the well has a 1:1 gear ratio, so the engine speed equals the pump speed. The engine drives a pump with the characteristics shown in the pump curve of Figure 1. Six stages are used, so all readings from the head per stage axis of Figure 1 are multiplied by 6. The initial (high pressure) settings are:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Rate</td>
<td>800 gpm</td>
</tr>
<tr>
<td>Pressure at Pivot Point</td>
<td>70 psi (161.7 ft of head)</td>
</tr>
<tr>
<td>Pumping Lift and Friction Loss</td>
<td>49.5 psi (114.3 ft of head)</td>
</tr>
<tr>
<td>Engine Speed</td>
<td>1760 RPM</td>
</tr>
</tbody>
</table>

The new sprinkler package requires 30 psi (69.3 ft of head) at the pivot point. First, the irrigator needs to know the new engine speed required to pump 800 gpm at the new pressure. The elevation and friction losses in the column are the same, so the total head would now be 114.3 ft plus 69.3 ft, or 183.6 ft. This is 30.6 ft of head per stage. Following the solid arrows on Figure 1 leads to a point that is approximately 1/3 of the distance from the 1,460 RPM curve to the 1,760 RPM curve, when measured perpendicularly. The new pump speed would then be approximately 1,460 plus 1/3 times the difference between 1,760 and 1,460, or 1,560 RPM.

Having both the old (dashed arrows) and new (solid arrows) points on the pump curve (Figure 1), the difference in fuel consumption resulting in the change may now be calculated. The pump efficiencies are estimated in Figure 1 based on position relative to the dotted lines.

The fuel consumption rate is read from Figure 2. The brake horsepower for either case is determined as:

\[
BHP = \frac{\text{total head (ft)} \times \text{gpm}}{3960 \times \text{pump efficiency (decimal)}}
\]

For the high pressure system, this is:

\[
\begin{align*}
\text{BHP} &= \frac{276 \times 800}{3960 \times 0.76} = 73.4 \text{ hp} \\
\end{align*}
\]

Fuel consumption for the high pressure system at 1,760 RPM is 0.398 lb/BHP/hr (dashed arrows, Figure 2). Thus the fuel consumption rate for the high pressure system was:

0.398 lb
For the low pressure system, the brake horsepower is:

\[\frac{183.6 \times 800}{3960 \times 0.74} = 50.1 \text{ hp} \]

Fuel consumption for the low pressure system at 1,560 RPM is 0.402 lb/BHP/hr (solid arrows, Figure 2). Thus the fuel consumption rate for the low pressure system will be:

\[\frac{0.402 \text{ lb}}{50.1 \text{ BHP}} = 0.08 \text{ lb/hr/BHP} \]

Thus the difference in fuel consumption due to the nozzle conversion will be (29.2 lb/hr - 20.1 lb/hr) or 9.1 lb/hr (about 1.3 gal/hr for diesel). This decrease in fuel consumption is the primary economic incentive for the conversion in this case, and must offset the cost of the conversion when spread over the life of the new sprinkler components. In this case both the pump and engine efficiency decreased. The combined decreases were not sufficient to overwhelm the reduction in fuel consumption associated with the lower horsepower requirements. In some cases the reduction in efficiencies will cause an actual increase in fuel consumption, and equipment should be altered accordingly.

In this same example, another option would be to reduce the existing pump bowl assembly from 6 to 4 stages. Then the pump and engine could be run at the original speed and efficiency while consuming less fuel. The costs in this case would be associated with pulling the pump and modifying the bowl assembly.

File G1124 under: IRRIGATION ENGINEERING
B-23, Irrigation Operations and Management
Issued December 1992; 7,000 printed.

Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture. Elbert C. Dickey, Director of Cooperative Extension, University of Nebraska, Institute of Agriculture and Natural Resources.

University of Nebraska Cooperative Extension educational programs abide with the non-discrimination policies of the University of Nebraska-Lincoln and the United States Department of Agriculture.