


Figure 7. Bacteria responsible for tetracycline resistance genes in 16 metagenomes. Percent of tetracycline resistance genes within each
metagenome that are assigned to the listed taxa. For example, 70% of all tetracycline resistance genes in the kimchi metagenome were assigned to
Bacilli. Tetracycline genes associated with Bacteroidetes are fairly common in food animal and human associated metagenomes, but were not found
in any of the marine or environmental metagenomes examined in this study. A similar pattern was seen for tetracycline resistance genes associated
with Epsilonproteobacteria, though the overall percent of tetracycline resistance genes associated with this group was much lower. Color formatting
indicates low and high values. All true zero values are in green. Values between 0 and 0.5 are listed as 0, but are formatted in yellow. Red indicates the
highest value within the chart.
doi:10.1371/journal.pone.0048325.g007
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Figure 8. Bacteria responsible for vancomycin resistance genes in 16 metagenomes. Percent of vancomycin resistance genes within each
metagenome that are assigned to the listed taxa. For example, 73% of the vancomycin resistance genes in kimchi were attributed to Bacilli. As
expected, the vancomycin resistance genes are carried predominantly by members of the phylum Firmicutes. Color formatting indicates low and high
values. All true zero values are in green. Values between 0 and 0.5 are listed as 0, but are formatted in yellow. Red indicates the highest value within
the cart.
doi:10.1371/journal.pone.0048325.g008
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carriage of the vancomycin resistance genes in the animal

agriculture and soy phyllosphere metagenomes.

Application of Antibiotic Resistance Information to Food
Safety

As with all gene-based surveys, the data indicate only the

presence or absence of the target gene, but provide no information

on whether the gene came from a living or dead bacterium, or if

the gene is expressed in any particular habitat. The concept of

HGT, where living bacteria can pick up genes released by dead

bacteria, is a key element in the model describing how antibiotic

resistance genes from animals can cause clinical health problems

for humans. Knowing which bacteria are likely carrying specific

antibiotic resistance genes raises the question of whether some

bacteria are more relevant than others in the discussion of

antibiotic resistance in food animals. For example, it has long been

known that the major source of bacterial contamination on beef

during processing comes from the animal hide, not the feces [26],

and more recently this trend has been confirmed for pathogens

such as Shiga-toxigenic Escherichia coli [27]. Results from the

current study show that fluoroquinolone resistance in cattle feces is

carried by both Bacteroidetes and Clostridia. Since Bacteroidetes

are Gram-negative obligate anaerobes that don’t survive well

outside of the animal gut and Clostridia are spore formers that can

survive harsh environmental conditions found in the feedlot and

on the hide, do the fluoroquinolone resistance genes in Clostridia

have greater potential for transmission of antibiotic resistance to

microorganisms important to humans? Across the 16 metagen-

omes for which taxonomic information was analyzed, the Bacter-

oidetes are associated with 24% of all fluoroquinolone resistance

genes, compared to 15% associated with Clostridia. Another

example, looking at beta-lactamase genes, is that while the Alpha-

and Gamma-proteobacteria are most frequently associated with

beta-lactamase resistance genes across metagenomes, in cattle feces,

it is the Actinobacteria and Bacteroidetes bacteria that are most

commonly linked with these genes – again raising the question of

whether some bacteria are more relevant than others when

considering the impacts of veterinary antibiotic use on human

health. An additional factor which must be considered is the rate at

which specific antibiotic resistance genes are transferred in feces and

the environment, and the rate at which the modifications needed for

expression of the transferred genes occurs. In order for the new host

bacteria to become resistant the new host must have or acquire the

genetic machinery needed to express the gene. Are some groups of

bacteria more likely to acquire or contribute antibiotic resistance

genes via HGT, and is the rate of HGT influenced by bacterial

taxonomy and specific habitats? How do HGT rates as measured in

the laboratory compare to actual rates in pre-harvest feedlot, food

processing and storage, and environmental conditions? Since the

taxonomic distribution of bacteria is different in each step of the

farm-to-fork continuum [28] the dynamics of HGT may vary in

each of these habitats. Knowing which bacteria are likely carrying

specific antibiotic resistance genes affords a starting point for

laboratory and field based experiments exploring HGT in food

production settings.

Our results support those of Wright et al. [29] describing a

global pool of antibiotic resistance genes. Studies showing that

antibiotic resistance is ancient [30], when combined with work

showing that antibiotic resistance genes can be found in a variety

of human-impacted and pristine habitats ([29,31], this study)

reveal that the presence of antibiotic resistant genes is a normal

and natural phenomenon. This means that, when looking at the

impacts of veterinary use of antibiotics on human health, baseline

studies and control samples are needed to determine natural

background levels of antibiotic resistant bacteria and/or antibiotic

resistance genes for comparison. By figuring out how antibiotic

resistant bacteria and antibiotic resistance genes in agriculturally-

impacted and non-agriculturally impacted environments compare,

we can target control measures where they make the most sense.

Conclusions
Antibiotic resistance genes are common in both agricultural and

non-agricultural habitats, although differences exist in the diversity

and taxonomic distribution of the bacteria associated with these

genes in agricultural and non-agricultural metagenomes. Since

antibiotic resistance genes are a natural part of both human-

impacted and pristine habitats, presence of these resistance genes

in any specific habitat therefore is not sufficient to indicate or

determine impact of anthropogenic antibiotic use.
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