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Abstract Western corn rootworm (Diabrotica vir-

gifera virgifera; WCR) is a major coleopteran maize

pest in North America and the EU, and has traditionally

been managed through crop rotation and broad-spec-

trum soil insecticides. Genetically modified Bt-maize

offers an additional management tool for WCR and has

been valuable in reducing insecticide use and increas-

ing farm income. A concern is that the widespread,

repeated, and exclusive deployment of the same

Bt-maize transformation event will result in the rapid

evolution of resistance in WCR. This publication

explores the potential of WCR to evolve resistance to

plant-produced Bt-toxins from the first generation of

Diabrotica-active Bt-maize events (MON 863 and

MON 88017, DAS-59122-7 and MIR604), and

whether currently implemented risk management

strategies to delay and monitor resistance evolution

are appropriate. In twelve of the twelve artificial

selection experiments reported, resistant WCR popu-

lations were yielded rapidly. Field-selected resistance

of WCR to Cry3Bb1 is documented in some US maize

growing areas, where an increasing number of cases of

unexpected damage of WCR larvae to Bt-maize MON

88017 has been reported. Currently implemented

insect resistance management measures for Bt-crops

usually rely on the high dose/refuge (HDR) strategy.

Evidence (including laboratory, greenhouse and field

data) indicates that several conditions contributing to

the success of the HDR strategy may not be met for the

first generation of Bt-maize events and WCR: (1) the

Bt-toxins are expressed heterogeneously at a low-to-

moderate dose in roots; (2) resistance alleles may be

present at a higher frequency than initially assumed;

(3) WCR may mate in a non-random manner; (4)

resistance traits could have non-recessive inheritance;

and (5) fitness costs may not necessarily be associated

with resistance evolution. However, caution must be

exercised when extrapolating laboratory and green-

house results to field conditions. Model predictions

suggest that a 20 % refuge of non-Diabrotica-active

Bt-maize can delay resistance evolution in WCR under
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certain conditions. This publication concludes that

further research is needed to resolve the remaining

scientific uncertainty related to the appropriateness of

the HDR in delaying resistance evolution in WCR,

resistance monitoring is essential to detect early

warning signs indicating resistance evolution in the

field, and that integrated pest management reliant on

multiple tactics should be deployed to ensure effective

long-term corn rootworm management and sustainable

use of Bt-maize.

Keywords Bt-toxins � Compliance � Genetically

modified maize � Resistance evolution � Resistance

management � Resistance monitoring � Seed blends �
Western corn rootworm

Introduction

Western corn rootworm (Diabrotica virgifera virgif-

era; WCR; Fig. 1) (Coleoptera: Chrysomelidae) is a

major coleopteran maize pest and a serious threat to

agriculture in North America (Metcalf 1986; Dun et al.

2010; Tinsley et al. 2012) and the European Union

(EU) (FCEC 2009; Wesseler and Fall 2010). WCR

overwinters through eggs that are laid during mid-

summer till autumn, mainly in maize fields. Larvae

hatching in the following spring feed on fine maize

root hairs, where they typically burrow into root tips of

maize seedlings. As the larvae grow larger, they move,

feed and tunnel into younger nodes of adventitious

roots of the nodal root system (Meinke et al. 2009),

and negatively affect yield by decreasing nutrient and

water uptake and plant stability. Maize plants suffer-

ing from moderate to severe root pruning are suscep-

tible to lodging, which can result in additional yield

losses due to difficulties in harvesting lodged plants

(Levine and Oloumi-Sadeghi 1991). The bulk of plant

damage is caused by second and third instars, but

adults feeding on silk and grains can be damaging in

seed and sweet corn production (Tuska et al. 2002).

WCR has been introduced to the EU from North

America (Miller et al. 2005), where it is native and

widespread. It was first detected near Belgrade

(Serbia) in 1992, but has since spread across the

continent (Hummel 2003; Kiss et al. 2005a; Boriani

et al. 2006; Ciosi et al. 2008; Gray et al. 2009; Meinke

et al. 2009), resulting in well-established populations

in approximately 19 European countries (EC 2012;

http://extension.entm.purdue.edu/wcr/). It is expected

that this invasive pest species will expand further in

the EU (Hemerik et al. 2004; Moeser and Vidal 2005;

Ciosi et al. 2011; Aragón and Lobo 2012).

Pest management options for WCR are usually

directed towards larval feeding and consist of crop

rotation, the use of maize seed coated with systemic

insecticides and the application of soil insecticides

(applied at planting) (Levine and Oloumi-Sadeghi

1991; Széll et al. 2005; Boriani et al. 2006; Ma et al.

2009; van Rozen and Ester 2010; Meissle et al.

2011b). Crop rotation is highly effective in controlling

WCR, as females lay their eggs mainly in maize fields

and the larvae hatching in the following year do not

survive well on other crop roots (Levine and Oloumi-

Sadeghi 1991; Kiss et al. 2005b, Boriani et al. 2006;

Meissle et al. 2011b). Foliar broad-spectrum insecti-

cides are sometimes applied to suppress adult popu-

lations, especially in continuous maize, in order to

decrease egg-laying by adult females and hence the

number of overwintering eggs and hatching larvae in

the following year (Levine and Oloumi-Sadeghi 1991;

Boriani et al. 2006). Foliar insecticides can also be

applied to prevent silk clipping by adults in seed and

sweet corn production, where high grain quality is

essential for marketing (Levine and Oloumi-Sadeghi

1991; Tuska et al. 2002; Boriani et al. 2006; van Rozen

and Ester 2010; Meissle et al. 2011b). However, the

behavioural and genetic plasticity of WCR has made

the long-term viability of many of these pest manage-

ment options uncertain (Levine and Oloumi-Sadeghi

1991; Onstad 2008; Miller et al. 2009), especially in

the USA. In a growing portion of maize growing areas

of the USA, a crop rotation-resistant WCR variant

evolved where females have adapted their egg-laying

behaviour to lay eggs in crops other than maize,

leading to damage in first-year maize in spite of crop

rotation (Levine and Oloumi-Sadeghi 1996; Levine

et al. 2002; Gray et al. 2009). Such a crop rotation-

resistant WCR variant has not evolved in the EU yet.

Further, WCR has evolved resistance to broadcast

cyclodiene insecticides used for larval control in the

1950s and early 1960s (Ball and Weekman 1962) and

broadcast insecticides used for beetle management in

the USA (Meinke et al. 1998; Wright et al. 2000;

Siegfried et al. 2004). In contrast, resistance has not

evolved to granular soil insecticides applied in a

narrow band over the row, despite more than 50 years

of usage of the same insecticidal mode of action.
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In EU regions where WCR populations have been

detected (EC 2012), but are not yet established,

mandatory eradication programs require the applica-

tion of insecticides and planting restrictions of maize

in buffer zones surrounding new introduction points

(Carrasco et al. 2009; FCEC 2009).

Genetically modified (GM) maize transformation

events expressing insecticidal Bacillus thuringiensis

Fig. 1 (a) Female western corn rootworm (WCR), (b) male WCR, (c) third instar larva of WCR, (d) WCR larva feeding on maize

roots, (e–f) adult WCR feeding on a maize leaf. Photos by Anthony Zukoff and reprinted with permission
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(Bt) toxins (such as three domain-like Cry3, binary- or

hybrid-like toxins; see Crickmore et al. 2012 for the

Bt-toxin nomenclature) against corn rootworms offer

an additional means of control against WCR. The

mode of action of Bt-toxins is to bind selectively to

specific receptors on the epithelial surface of the

midgut of larvae of susceptible insect species, leading

to death of larvae through pore formation, cell burst

and subsequently septicemia (reviewed by OECD

2007; Sanahuja et al. 2011; Bravo et al. 2012; Vachon

et al. 2012). Several Diabrotica-active Bt-maize

events are currently grown commercially in Argen-

tina, Brazil, Canada and the USA (Table 1). Depend-

ing on the region, Diabrotica-active Bt-maize is used

to control chrysomelid beetles such as the western

(D. v. virgifera), northern (Diabrotica barberi) and

mexican corn rootworm (D. v. zea), and Diabrotica

speciosa. At present, WCR is the only species from the

corn rootworm complex present in the EU. The

European authority responsible for providing advice

on the safety of GM plants at EU level (European Food

Safety Authority, EFSA) recently issued its first

scientific opinion on the cultivation of a Diabrotica-

active Bt-maize (EFSA 2011c). This scientific opinion

has been passed to the European Commission and EU

Member States, and it now lies within the decision-

making process to decide whether this Bt-maize can be

authorised for cultivation in the EU (Raybould and

Poppy 2012).

Compared with pest management currently prac-

ticed against WCR in conventional maize cropping

systems, cultivation of Diabrotica-active Bt-maize

can reduce the use of insecticides that are more

harmful to the environment, given that less or no

treatments with soil or foliar broad-spectrum insecti-

cides may be needed (Porter et al. 2012). However,

there is a concern that the widespread, repeated, and

exclusive use of Bt-maize expressing the same

Bt-toxin by individual farmers as the sole pest

management option against WCR will create signif-

icant selection pressure and increase the risk of WCR

evolving resistance (Siegfried et al. 1998). Resistance

is practically defined in this publication as significant

crop damage (product failure) caused primarily by a

heritable reduction in susceptibility of the target insect

pest population to the Bt-toxin after exposure to the

toxin (see Head and Greenplate 2012). Susceptibility

of target insect pests to plant-produced Bt-toxins is

viewed in some jurisdictions as a common good that

should be preserved (Glaser and Matten 2003; Bourg-

uet et al. 2005; Gassmann and Hutchison 2012) due to

the benefits of Bt-crops (e.g., Qaim 2009; Carpenter

2010; Hutchison et al. 2010; Areal et al. 2012; Lu et al.

2012; Wan et al. 2012) and the broader use of

sprayable Bt-formulations. Resistance evolution in

target insect pests is not considered a direct environ-

mental harm, but the consequences of the establish-

ment of resistant populations may lead to altered pest

management practices. Depending upon the level of

resistance, resistant populations would reduce the

efficacy of Bt-maize to control the insect pests it

targets. Therefore, farmers may have to revert back to

the currently used pest management tools that have a

higher environmental impact, and to displace biocon-

trol programs at a larger scale, or have to alter their

cultivation/farming system (i.e., rotate maize with

other crops), which may decrease farm income

(Andow 2008).

This publication reviews current data in terms of

laboratory-, greenhouse- and field-selected resistance

in WCR to plant-produced Bt-toxins from Bt-maize

events targeting this pest. More specifically, we

explore: (1) whether resistance to Bt-toxins in WCR

has been observed under artificial and field conditions;

(2) whether insect resistance management (IRM)

measures currently implemented for Bt-crops will

adequately and efficiently delay resistance evolution

in WCR; and (3) what monitoring strategies can be

followed to detect early warning signs indicating

resistance evolution in the field after Bt-crops have

been placed on the market. Even though several

stacked Diabrotica-active Bt-maize events—a stack

combines non-related traits such as herbicide toler-

ance and insect resistance against other target insect

pests—are cultivated in Argentina, Canada and the

USA and are in the approval pipeline in the EU

(Table 1), we focus here on the first generation of

Diabrotica-active Bt-maize events, covering: the

Cry3Bb1-expressing Bt-maize events MON 863 and

MON 88017; the Cry34Ab1/Cry35Ab1-expressing

Bt-maize event DAS-59122-7; and the mCry3A-

expressing Bt-maize event MIR604 (referred to here-

after as Bt-maize MON 863 and MON 88017, DAS-

59122-7 and MIR604, respectively).

272 Transgenic Res (2013) 22:269–299
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Resistance evolution of WCR to Diabrotica-active

Bt-maize

Laboratory- and greenhouse-selected resistance

In artificial laboratory and greenhouse selection

experiments, the evolution of resistance to Cry3Bb1,

Cry34Ab1/Cry35Ab1 and mCry3A against WCR has

been demonstrated for Bt-maize MON 863 and MON

88017, DAS-59122-7 and MIR604.

Meihls et al. (2008) exposed WCR colonies to Bt-

maize MON 863 in the greenhouse under different

selection regimes. After three and six generations of

selection, the colony that was continuously exposed to

Bt-maize (larvae were reared on Bt-maize throughout

the entire larval development period) was resistant;

larval survival on Bt-maize was equivalent to survival

on the near-isogenic line. After three generations of

selection, the LC50 (toxin concentration causing 50 %

mortality) of the continuously exposed colony was

approximately 22-fold greater than that of the unex-

posed control colony reared on the near-isogenic line.

After six generations of selection, percent survival

on Bt-maize relative to its near-isogenic line was

twelvefold greater in the field for the continuously

exposed colony than for the control colony. In their

laboratory selection experiments with WCR colonies

reared on Bt-maize MON 863, Oswald et al. (2011)

reported that survivorship to adult stage (emergence)

on Bt-maize MON 863 was approximately four times

greater for both the moderate (exposed over eleven

generations) and intense selected lines (exposed over

seven generations) than for controls. Average rates of

emergence increased sixfold over the final six gener-

ations in the moderate selected colony and approxi-

mately threefold over the final four generations in the

intense selected colony. The realised heritability

[h2 = the ratio of the response to selection (R) to the

selection differential (S)] of resistance for the moder-

ate and intense selected colonies was estimated to be

0.16 and 0.15, respectively, indicating that genetic

variation accounted for only a small proportion of the

resistance compared with environmental variation

(Oswald et al. 2011). Meihls (2010) made similar

observations for Bt-maize MON 88017, and reported

that larval survival was equivalent on Bt-maize and the

near-isogenic line for three selected colonies follow-

ing three generations of selection on Bt-maize in the

greenhouse, but not for the control colonies.T
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Resistance evolution in two WCR colonies reared

on Bt-maize DAS-59122-7 seedlings was observed

over eleven generations of selection (Lefko et al.

2008). An increased WCR survivorship from the first

generation to the ninth generation of 15- and 59-fold

was found for the two WCR colonies that were

selected to survive on Bt-maize DAS-59122-7. While

resistance levels increased over the generations of

selection, they fluctuated considerably for the initial

four to six generations, but resistance remained stable

after five to seven generations with a survival that was

at least ten times greater than that observed during the

first generation of selection. After one and six

generations of selection, the mean population fitness

(number of adults divided by number of hatched eggs)

was approximately 0.03 and 1.00, respectively. After

ten and eleven generations of selection on Bt-maize

DAS-59122-7 with no random mating, the estimated

h2 values declined from 0.29 to 0.11, suggesting that

Lefko et al. (2008) failed to fix resistance in the two

WCR colonies under realistic exposure.

For Bt-maize MIR604 significant increases in

mCry3A resistance ratios, which are calculated as

the LC50 value of the selected colony divided by the

LC50 value of the susceptible colony, with both

colonies tested under the same conditions, were seen

after seven and ten generations of selection (fourfold

and 15-fold, respectively) in toxicity bioassays. When

the selected and control colonies were evaluated in the

field, control colony larvae caused significantly more

damage to the near-isogenic line than Bt-maize

MIR604, but damage to Bt-maize MIR604 and the

near-isogenic line was not significantly different for

the selected WCR colony. After four and seven

generations of selection, survival of the selected

colony was similar on Bt-maize mCry3A and the

near-isogenic line in the greenhouse and field, respec-

tively (Meihls et al. 2011).

In all cases described above, resistance to Cry3Bb1,

Cry34Ab1/Cry35Ab1 and mCry3A evolved in a

relatively short time (in as few as three generations

with no random mating), and resistance was found to

remain at a similar level after six generations of

selection. The expression of Bt-toxins in Bt-maize

MON 863 and MON 88017, DAS-59122-7 and

MIR604 is low-to-moderate and some susceptible

WCR individuals survive on Bt-maize (see ‘‘Bt-toxin

is expressed at appropriate levels in relevant plant

parts’’). Therefore, resistance ratios could not be high

(e.g., 5–22) (Meihls et al. 2008, 2011). These values

are overall at least an order of magnitude lower than

those found for some Cry resistant Lepidoptera

(Tabashnik et al. 2009; Siegfried and Hellmich

2012), but can substantially enhance survival on

Bt-maize (Gassmann et al. 2012). Laboratory- or

greenhouse-selected WCR colonies with Cry3Bb1 and

mCry3A resistance have been shown to have increased

resistance under field conditions (Meihls et al. 2008,

2011; Meihls 2010), indicating that larval survival on

Bt-maize plants in the greenhouse translated to larval

survival on Bt-maize in the field. Survival on trans-

genic plants remained high, despite the fact that the

resistance ratio in diet bioassays declined to less than

fivefold by the sixth generation (compared with

22-fold by the third generation) (Meihls et al. 2008).

Lefko et al. (2008) did not evaluate their selected

populations in the field, but assessed damage to

Bt-maize DAS-59122-7 from two selected WCR

populations under greenhouse conditions. Damage

caused by WCR was shown to increase gradually with

repeated generations of selection on Bt-maize relative

to that caused by WCR from the first generation of

selection, but overall damage remained low. The

similar estimated h2 values for WCR resistance to

Cry3Bb1 and Cry34Ab1/Cry35Ab1 suggest that the

risk of resistance evolution is similar for both toxins

(Tabashnik and Gould 2012).

Field-selected resistance

Field-selected resistance of WCR to Cry3Bb1 is

documented in some US maize growing areas (Gass-

mann et al. 2011, 2012), and an increasing number of

cases of unexpected WCR damage to Cry3Bb1-

expressing Bt-maize has been reported since 2009

(reviewed in US EPA 2011a). These control failure

reports are indicative of an increased Cry3Bb1 toler-

ance in WCR. Gassmann et al. (2011) demonstrated

that fields identified by farmers as having severe WCR

feeding damage to Cry3Bb1-expressing Bt-maize

(problem fields) in Iowa in 2009 contained WCR

populations that displayed three times greater survival

on Bt-maize MON 88017 seedlings in laboratory

bioassays than did WCR from fields where such

damage was not reported (control fields): mean

survival on Bt-maize of larvae from problem and

control fields was 52 and 17 %, respectively. In

contrast, larval survival on non-Bt-maize was similar
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for both problem and control fields (Gassmann et al.

2011). Further, the observed response has been shown

to have a heritable component. Subsequent field

experiments in two of the 2009 problem fields found

no difference in survival of WCR between Cry3Bb1-

expressing maize and non-Bt-maize, and higher root

damage to Bt-maize MON 88017 than any other

treatment tested, except maize that had no protection

against larval WCR (Gassmann 2012). In a follow-up

study, Gassmann et al. (2012) revealed that WCR

populations sampled from problem fields in 2010 had

a survival and development on Bt-maize MON 88017

seedlings that was eleven times higher and signifi-

cantly faster than that of control populations, respec-

tively. Multiple and increased performance failures of

Bt-maize MON 88017 were also reported during the

2011 maize growing season in Illinois, Minnesota,

Nebraska and South Dakota (Gray 2011a, b, c; US

EPA 2011a; Porter et al. 2012).

Gassmann et al. (2011, 2012) found a significant

positive correlation between the number of years that

Bt-maize MON 88017 had been grown in a field and

the survival of WCR populations on Bt-maize MON

88017 seedlings in laboratory bioassays. In 2009,

corrected survival of WCR ranged between 17 and

21 % for populations from control fields (no history of

Bt-maize MON 88017 cultivation), and between 32

and 62 % for populations from problem fields where

Bt-maize MON 88017 had been grown for at least

three consecutive years (Gassmann et al. 2011),

corresponding to at least three generations of selection

(Meihls et al. 2008; Gray et al. 2009). The problem

fields in Illinois during the 2011 maize growing season

were also planted to Bt-maize MON 88017 for

many successive years without crop rotation (Gray

2011a, b).

Given that resistance has evolved in nine of the nine

artificial laboratory and greenhouse selection experi-

ments conducted with Cry3Bb1-expressing Bt-maize

within just a few generations (Meihls et al. 2008,

Meihls 2010, Oswald et al. 2011), it is not surprising

resistance evolved under field conditions after three to

seven generations of selection (Gassmann et al. 2011,

2012). Cry3Bb1-expressing Bt-maize was first to

market and has been the dominant Diabrotica-active

Bt-maize event, with the area planted in the USA

increasing from 0.2 million ha in 2003 to 12.8 million

ha in 2009 (Monsanto 2009). The first approval for

commercial cultivation for Bt-maize DAS-59122-7

and MIR604 in the USA was in 2005 and 2006,

respectively, resulting in a lower market share com-

pared with Cry3Bb1-expressing Bt-maize. Since resis-

tance to Cry34Ab1/Cry35Ab1 (Lefko et al. 2008) and

mCry3A (Meihls et al. 2011) also evolved relatively

quickly under laboratory and/or greenhouse settings,

field-selected resistance to Bt-maize DAS-59122-7

and MIR604 is possible too and therefore vigilance

should be exercised. Tabashnik and Gould (2012)

attributed the lack of reported field-selected resistance

to Cry34Ab1/Cry35Ab1 and mCry3A so far to the

lower exposure of WCR populations to these toxins,

rather than an inherently lower risk of evolving

resistance compared with Cry3Bb1. Based on the

available data, it can be concluded that WCR has the

ability to evolve resistance to Cry3Bb1, Cry34Ab1/

Cry35Ab1 and mCry3A relatively rapidly, especially

if the same Bt-maize is used continuously for three to

five growing seasons, and the WCR infestation levels

are high. It is therefore advisable that farmers who

grow Bt-maize MON 88017, DAS-59122-7 or

MIR604 put appropriate risk mitigation measures in

place to delay resistance evolution.

Resistance management

High dose/refuge strategy

As part of the GMO approval process, applicants (also

named registrants) submitting an application for

cultivation of Bt-crops proactively provide an IRM

plan. IRM plans are designed to minimise the selection

pressure associated with Bt-crops, in order to prevent

or at least delay resistance evolution in the target

insect pests and to extend the durability of Bt-crops

(Bates et al. 2005; Alcalde et al. 2007; Andow 2008;

MacIntosh 2010; Head and Greenplate 2012). As

currently implemented for several Bt-crops in several

countries, IRM plans usually rely on the HDR strategy

(Gould 1998; Glaser and Matten 2003; MacIntosh

2010). The HDR strategy proscribes planting Bt-crops

that produce a very high concentration of the Bt-toxin

(25 times the amount needed to kill [ 99 % of

susceptible individuals [LC99]), so that nearly all

target insect pests that are heterozygous for resistance

do not survive on it. In addition, a nearby structured

refuge of the non-Bt-crop is required where the

target insect pest does not encounter the Bt-toxin

276 Transgenic Res (2013) 22:269–299

123



(Alstad and Andow 1995; Gould 1998; Ives and

Andow 2002). Note that non-Bt-crops or refuges are

intended to mean areas with the crop that does not

express Bt-toxins which are active against the target

insect pest. Under these conditions, most of the rare

resistant individuals surviving on the Bt-crop will

mate with abundant susceptible individuals emerging

from nearby refuges to produce heterozygous off-

spring that are phenotypically susceptible. If inheri-

tance of resistance is recessive, then the hybrid

progeny from such matings will die on the Bt-crop.

Success of the HDR strategy is aided if the

following conditions are met: (1) the Bt-toxin is

expressed at appropriate levels in relevant plant parts;

(2) initial resistance alleles are rare in the target insect

pest population, so that nearly all resistance alleles

will be in heterozygote individuals that cannot survive

on the Bt-crop; (3) random mating occurs between

resistant insects emerging in Bt-crops and susceptible

insects preserved on refuges at sufficient levels; (4)

resistance alleles are partially or fully recessive; and

(5) fitness costs are associated with the resistance.

Whether these conditions of the HDR strategy are met

for WCR and Bt-maize MON 863 and MON 88017,

DAS-59122-7 and MIR604 is considered below.

Bt-toxin is expressed at appropriate levels in relevant

plant parts

The predicted duration of susceptibility of target insect

pests to the Bt-toxin is dependent upon many factors

(e.g., Tyutyunov et al. 2008), including its dose in the

Bt-crop (Onstad et al. 2001a). It is generally assumed

that the Bt-toxin concentration in relevant plant parts

must be sufficiently high to kill a high proportion of

heterozygous resistant genotypes, so that any resis-

tance allele in the target insect pest population remains

functionally recessive (Gould 1998; Andow 2008).

Instances of field-selected resistance reported so far

(reviewed by Tabashnik et al. 2009; Huang et al. 2011)

support model predictions that target insect pests are at

greater risk of evolving resistance if managed by

Bt-crops that are not high dose (Tabashnik et al. 2004).

The average reduction in WCR emergence from

Bt-maize MON 863 reported by Clark et al. (2012)

relative to that from the near-isogenic line was

98.49 %, when averaged across all the environments

tested. In data provided to US Environmental Protec-

tion Agency (US EPA), the applicant reported WCR

mortality due to Bt-maize MON 88017 of 97.5 % (US

EPA 2010a). In the case of Bt-maize MON 863,

Meihls et al. (2008) yielded a mortality estimate of

96.21 %. Siegfried et al. (2005) and others (Nowatzki

et al. 2006; Meissle et al. 2011a) characterised WCR

as not extremely sensitive to Cry3Bb1.

The average reduction in adult WCR emergence on

Bt-maize DAS-59122-7 across three environments

was 96.48 % (Storer et al. 2006; see also Hibbard et al.

2010a). Storer et al. (2006) stated relative mortality

rates in field studies comparing Bt-maize DAS-59122-

7 plots to non-Bt-maize plots averaged 99.62 % after

adjusting for density-dependent mortality. With

mechanically infested plots at the infestation levels

used, the Storer et al. (2006) raw field data probably

should not have been adjusted for density-dependent

mortality (Hibbard et al. 2010a). Unadjusted mortality

from Storer et al. (2006) averaged 96.48 %. Data

submitted to US EPA showed 5.8 % survival on

Bt-maize DAS-59122-7 relative to non-Bt-maize,

yielding an unadjusted mortality estimate of 94.2 %

(US EPA 2010b). Binning et al. (2010) showed low

susceptibility of neonate WCR to Bt-maize DAS-

59122-7, as well as a rapid decline in susceptibility of

later instars; in their study, the mean survival of first,

second and third instars exposed to Bt-maize DAS-

59122-7 seedlings was 0.5, 26 and 65 %, respectively.

Lefko et al. (2008) reported that the F1 generation of

two WCR colonies reared on Bt-maize DAS-59122-7

in a laboratory experiment had mortality rates of 99.6

and 98.7 % (see also Nowatzki et al. 2008).

When averaged across the environments tested,

WCR mortality following exposure to Bt-maize

MIR604 under field conditions was 94.88 % (Hibbard

et al. 2010b) and 97.83 % (Hibbard et al. 2011). US

EPA (2007) reported on data provided by the appli-

cant, and indicated that mortality of WCR due to

Bt-maize MIR604 ranged between 89.9 % under

artificial WCR infestation and 92.2 % under natural

WCR infestation (US EPA 2007).

In all studies reported above, the observed survival

was [ 100-fold higher than the US EPA standard of

0.01 % for a Bt-crop that is truly high dose (Tabashnik

and Gould 2012). These findings confirm that: (1)

Bt-maize MON 863 and MON 88017, DAS-59122-7

and MIR604 fail to meet the high dose condition; and

(2) that the expression of Bt-toxins in these events is to

be considered low-to-moderate. The ability of hetero-

zygous resistant WCR progeny, resulting from the
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mating between individuals emerging from the refuge

and Bt-maize fields, to survive on Bt-maize may

diminish the efficacy of the HDR strategy to delay

resistance evolution (Gassmann et al. 2011). Even

though Bt-maize MON 863 and MON 88017, DAS-

59122-7 and MIR604 do not express a concentration

of Bt-toxins that is truly high dose, root protection

from WCR larval damage due to Bt-maize is usually as

good as, or better than is possible with a soil-applied

insecticide. However, significant damage may still

occur at high WCR infestation levels (Gray et al.

2007), or if Bt-maize plants are exposed to resistant

WCR populations (Gassmann 2012).

As WCR is not extremely sensitive to Cry3Bb1,

Cry34Ab1/Cry35Ab1 and mCry3A proteins and older

instars are inherently less susceptible than neonates,

larvae can survive the exposure to Diabrotica-active

Bt-maize. It has been postulated that larvae surviving

on Bt-maize may also do so by grazing on the outside

of Bt-toxin-expressing roots, thereby minimising

exposure to Bt-toxins. Root growing points are more

metabolically active, and have a higher content in total

soluble Bt-toxins compared with older root tissue

(Lefko et al. 2008; Meissle et al. 2009). In the case of

Bt-maize MON 863, Clark et al. (2006) suggested that

larvae may be able to detect subtle differences in the

expression of the Cry3Bb1 protein in the root system

and change their feeding behaviour to find non-toxic

or less-toxic root parts, which would facilitate survival

to the next instar with relatively normal larval growth

(Hibbard et al. 2009). Data submitted to US EPA

showed that first and second instars begin feeding on

meristematic root tissue but terminated feeding on

Bt-maize MON 863, fed less frequently, did not

become established at feeding sites, and moved more

frequently than same-stage instars on the near-iso-

genic line. Larvae on the near-isogenic line fed into the

root interior (i.e., tunnelling) and continued feeding

resulted in larval movement into older and elongated

root tissues over time (US EPA 2010a). Hibbard et al.

(2005) also showed that both neonate and later instars

preferred near-isogenic roots to Bt-maize MON 863

roots when a choice was possible. These results

suggest that a repellent factor in roots or root exudates

may contribute to the overall efficacy of Bt-maize

MON 863 (Hibbard et al. 2005; Clark et al. 2006;

Murphy et al. 2010; US EPA 2010a). However, further

investigation is required to confirm this hypothesis,

and if so, to assess whether the larval feeding

behavioural observations made on Bt-maize MON

863 are relevant to other Diabrotica-active Bt-maize

events. In the study by Petzold-Maxwell et al. (2012b),

WCR larvae did not exhibit behaviour that leads to

reduced exposure to Cry3Bb1 when given Bt- and

non-Bt-maize roots. Further, larval behavioural anal-

yses with Bt-maize MIR604 revealed that the presence

of mCry3A in roots did not interfere with larval

responses to infochemicals eliciting the key host

location behaviours (attraction, feeding, and host

recognition) (El Khishen et al. 2009; Bernklau et al.

2010). The efficacy of Bt-maize MIR604 is therefore

attributed to antibiosis, rather than larval behavioural

factors (antixenosis also called non-preference). There

is also the possibility that Bt-maize MON 88017,

DAS-59122-7 and MIR604 may have a more even

distribution of Bt-toxins in their roots compared with

Bt-maize MON 863, resulting in more uniform

exposure of larvae to the Bt-toxin.

Initial resistance alleles are rare in the target insect

pest population

The resistance alleles must be sufficiently rare [the

frequency should be typically\0.001, which has been

taken as a default value when modelling the evolution

of resistance to Bt-toxins (Roush 1994)], so that nearly

all resistance alleles are in heterozygote genotypes that

are eliminated by the Bt-crop (Andow 2008). Studies,

in which the frequency of resistance alleles to

Bt-toxins in populations of WCR are directly esti-

mated, have not been published in the scientific

literature, most likely due to the polygenic nature of

the resistance (Lefko et al. 2008). In the case of Bt-

maize DAS-59122-7, evidence suggests complex

inheritance of resistance, due to the involvement of

one or more minor genes.

Data on the efficacy of Bt-maize MON 863 in

controlling WCR (Vaughn et al. 2005; Gray et al.

2007; Meihls et al. 2008; Hibbard et al. 2009) and

baseline susceptibility of WCR populations to

Cry3Bb1 (Siegfried et al. 2005; US EPA 2010a) have

been used to provide indirect indications on the initial

resistance allele frequency (US EPA 2010a; Onstad

and Meinke 2010). Because initial resistance moni-

toring data did not reveal any apparent increase in

susceptibility in WCR following several years of

extensive cultivation of Cry3Bb1-expressing maize in

the USA, it has been suggested that resistance allele
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frequencies to Cry3Bb1 may be \0.01 (but see US

EPA 2010a). Based on the outcomes of the artificial

selection experiments conducted by Lefko et al.

(2008) and Meihls et al. (2008), Onstad and Meinke

(2010) calculated that the initial resistance allele

frequency may be as high as 0.2 for Bt-maize MON

863, and ranges between 0.05 and 0.1 for Bt-maize

DAS-59122-7. High values for this parameter were

required to match the rapid increase in fitness observed

during artificial selection experiments. So far, no data

on the initial resistance allele frequency have been

published in the scientific literature for Bt-maize

MIR604. These results suggest that initial resistance

alleles may be present at a higher frequency under field

conditions than initially assumed, yet further research

is required to corroborate this hypothesis.

Random mating occurs between resistant insects

emerging in Bt-crops and susceptible insects

preserved on refuges at sufficient levels

For the refuge to be effective its placement, config-

uration and size should ensure that resistant and

susceptible insects mate more or less randomly, and

that susceptible insects outnumber resistant ones. How

much mixing and mating will occur between individ-

uals emerging from the refuge and Bt-maize fields is

determined by the scale of adult movement. Even

though adult WCR can move substantial distances

(Coats et al. 1986; Toepfer et al. 2006; Carrasco et al.

2009) and perform sustained flights longer than

30 min (Coats et al. 1986; Naranjo 1990), most

movements are quite local, and limited to short-ranged

movements within fields or between adjacent fields,

especially prior to mating (Naranjo 1990, 1991, 1994;

Storer 2003; Meinke et al. 2009; Szalai et al. 2011).

The range of adult movement measured in maize fields

was shown to be \30 m per day (Coats et al. 1987;

Nowatzki et al. 2003; Spencer et al. 2003, 2005), with

an average dispersal rate of approximately 15 m per

day (Spencer et al. 2009). A microsatellite marker

analysis among WCR populations (ten populations;

595 individuals sampled) across nine USA states

(from western Kansas and Texas to New York and

Delaware) found that all populations exhibited high

levels of genetic diversity, exhibited little genetic

differentiation as a whole across the geographic range

sampled suggesting that movement is substantial, and

that adults from adjacent locations exchanged genes

more frequently than those from more distant loca-

tions (Kim and Sappington 2005). The tendency for

short-distance dispersal may delay resistance evolu-

tion at a landscape level (Caprio and Tabashnik 1992),

but it may contribute to the persistence and intensi-

fication of resistance in localised areas (Gassmann

et al. 2011).

The pre-mating movement of WCR females is

generally more limited than that of males, which can

be extensive when responding to reproductive females

(Meinke et al. 2009). Females are unlikely to disperse

before mating, meaning that males are the primary

dispersers before mating (Spencer et al. 2003; Mar-

quardt and Krupke 2009). Mating typically occurs

within 24–48 h of female adult emergence within the

maize fields they emerged from or nearby. Males

normally emerge before females and are capable of

mating multiple times (on average two times during

their lifespan), though they are less likely to mate as

they age, whereas females generally mate only once

(Kang and Krupke 2009a).

A concern is the non-synchronous emergence of

WCR from refuge and Bt-maize fields, as this could

result in non-random (assortative) mating and con-

tribute to resistance. Based on a series of laboratory

experiments, Kang and Krupke (2009a) argued that

the realised mating activity between susceptible males

from refuges and potentially resistant females on

Diabrotica-active Bt-maize may be low, because the

mating ability of males declines rapidly and adults in

Bt-maize may emerge later than those in the refuge.

Murphy et al. (2010) reported an up to two weeks

delay in initial emergence of WCR from Bt-maize

MON 863, compared to the near-isogenic line. In their

field study, Clark et al. (2012) observed a delay in time

of 18 days to 50 % emergence from Bt-maize MON

863. The delays in 50 % WCR emergence from

Bt-maize DAS-59122-7 and MIR604 were shorter,

averaging seven days for Bt-maize DAS-59122-7

(Storer et al. 2006) and 4.1–6.5 days for Bt-maize

MIR604 (US EPA 2007; Hibbard et al. 2011). Further,

males have been shown to prefer larger females under

laboratory conditions (Kang and Krupke 2009b),

which could result in assortative mating too (Murphy

et al. 2011). While caution must be exercised when

extrapolating these laboratory results (Kang and

Krupke 2009a, b) to field conditions (Carrière et al.

2012), they indicate that the larval ecological behav-

iour and adult mating behaviour of WCR and their
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quantitative measurements are complex, and that

further investigations are required to sort out the

demographics of populations emerging from refuges

and Bt-maize (Onstad et al. 2011).

Given that there is considerable movement of

males, planting refuges for Diabrotica-active

Bt-maize adjacent to, or within the Bt-maize field,

preferentially in large blocks or as row strips of at

least four or more rows, was considered adequate by

US EPA (2007, 2010a, b) to ensure that males from

refuges encounter receptive females on Bt-maize in

time to mate. The rationale for wider row strips stems

from concerns about larval movement, a major

concern for Bt-crops that are truly high dose (Mallet

and Porter 1992), but this may be less critical for

WCR (see ‘‘Seed blends’’). IRM plans for WCR for

Bt-maize expressing a single Bt-toxin require farmers

to plant 20 % of the Bt-maize area into non-Bt-

maize, either within the Bt-maize field as block or

row strips, or adjacent to the Bt-maize field (edges or

headlands). In cases where larger fields are planted to

Bt-maize, Gassmann et al. (2012) indicated that the

effectiveness of a block refuge may be diminished

due to the likely uneven dispersal of WCR with a

higher density of insects near the refuge. Therefore, it

is advisable to define the upper limit of the Bt-maize

surface at which interspersed block refuges should be

established. Likewise, refuges planted as separate

fields may only be effective if planted within a

designated distance from the Bt-maize field and be

separated by no more than an alley or road from the

Bt-maize field. Since the life cycle of WCR extends

over two consecutive maize growing seasons, EFSA

(2011c) considered that separate fields designed to

deliver susceptible WCR adults are suitable as refuge

only if they have been cropped with non-Diabrotica-

active Bt-maize for at least two successive years in

the EU.

To limit non-synchronous emergence of WCR from

refuge and Bt-maize fields, the type of maize to be

planted as refuge should be of a similar hybrid/variety,

as close as possible to the Bt-maize. Refuge maize

should therefore be selected based on equivalent

maturity to Bt-maize, and be planted within the same

planting window as Bt-maize. They should also be

managed using comparable agronomic (fertilisation,

weed and pest management and irrigation) practices.

US EPA (2007, 2010a, b) considered it acceptable to

treat refuges for Bt-maize with seed treatments or soil-

applied insecticides to control WCR larvae, as this is

not expected to adversely affect adult emergence from

the refuge. However, it is not acceptable to treat

refuges for adult WCR control since these treatments

may diminish the efficacy of the refuge. Foliar

applications for adult control are an option only if

both refuge and Bt-maize fields are treated equally,

and only if adult population densities are very high

(US EPA 2007, 2010a, b).

Resistance alleles are partially or fully recessive

If resistance is completely recessive, then heterozy-

gous offspring resulting from crosses between resis-

tant and susceptible individuals are expected to be

susceptible to the Bt-toxin, thus preventing or slowing

resistance evolution (Bates et al. 2005). The longest

delays in resistance evolution are expected for resis-

tance traits that are completely recessive. The dom-

inance value (h), which can be estimated based on the

survival of susceptible and resistant genotypes after

exposure to the Bt-toxin, gives an indication on the

inheritance of the resistance alleles, with values of 0

and 1 indicating completely recessive and completely

dominant inheritance, respectively (Liu and Tabash-

nik 1997). As the survival of the susceptible target

insect pest on a Bt-crop increases, resistance is

expected to be more additive (0.5) in nature, and at a

sufficiently high level of survival, resistance may be

dominant.

In the case of Bt-maize MON 863, Meihls et al.

(2008) yielded hybrid progeny of WCR in reciprocal

crosses that were incompletely recessive, and calcu-

lated an h value of 0.285 for larvae and 0.296 for

adults. Other researchers also assessed the inheritance

of the Cry3Bb1 resistance through reciprocal crosses

of a resistant and susceptible WCR colony, and

concluded too that Cry3Bb1 resistance is inherited in

a non-recessive manner (Petzold-Maxwell et al.

2012b). Using the data reported by Lefko et al.

(2008), Onstad and Meinke (2010) determined that the

h values range from 0.5 to 0.75 for Bt-maize DAS-

59122-7. So far, no dominance values have been

reported for Bt-maize MIR604 in the scientific liter-

ature. The calculations of h values point to non-

recessive inheritance of resistance under artificial

selection experiments, which could accelerate the

evolution of resistance in WCR in the field (Onstad

and Meinke 2010; Pan et al. 2011).
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Fitness costs are associated with the resistance

Fitness costs associated with resistance occur when

fitness on the non-Bt-crop is lower for resistant insects

than the susceptible ones (Gassmann et al. 2009). As

the most likely cause of instability of resistance to a Bt-

toxin is the fitness cost associated with resistance

(Tabashnik 1994), such costs could cause declines in

resistance when the selection exerted by Bt-maize

ceases. In refuges where resistant insects are not

exposed to the Bt-toxin, fitness costs would exert

control over the frequency of resistance alleles, and

delay or reverse resistance by selecting against resis-

tant genotypes, thereby increasing the effectiveness of

refuges for delaying resistance (Gould 1998; Carrière

and Tabashnik 2001; Crowder and Carrière 2009).

Refuges would delay resistance evolution not only by

providing susceptible individuals to mate with resistant

individuals, but also by selecting against resistance.

Gassmann et al. (2009) documented that the magnitude

of fitness costs is positively correlated with resistance

ratios, with more resistant strains suffering greater

fitness costs. Based on reported resistance ratios (see

‘‘Laboratory- and greenhouse-selected resistance’’),

only low fitness costs are expected to be associated

with resistance to Bt-toxins in WCR.

Few studies have analysed fitness costs associated

with Cry3Bb1, Cry34Ab1/Cry35Ab1 and mCry3A

resistance in WCR, but preliminary data suggest that

fitness costs associated with Cry3Bb1 resistance are

minimal (French et al. 2008; Meihls et al. 2008;

Bagley et al. 2009; Meihls 2010). Recently, Oswald

et al. (2012) investigated the performance of Cry3Bb1

resistant WCR colonies reared on Bt-maize MON 863

and its near-isogenic line. Analysis of survivorship,

fecundity and viability on the near-isogenic line

confirmed that no fitness costs are associated with

Cry3Bb1 resistance. Meihls et al. (2008) reported little

reduction in resistance after six generations of removal

from selection in a laboratory-selected colony, show-

ing that fitness costs (if any) were not significantly

decreasing the resistance under the conditions studied.

However, when Meihls (2010) considered fecundity,

hatch rate and adult emergence (including percent

female) of Cry3Bb1 resistant WCR colonies reared on

the near-isogenic line together, the potential rate of

increase per generation for selected colonies was 0.66

that of control colonies, suggesting some fitness costs

were associated with Cry3Bb1 resistance in terms of

female fecundity (Meihls LN, personal communica-

tion). Likewise, some fitness costs were reported by

Gassmann et al. (2012), as some of the WCR

populations they tested displayed significantly lower

survival on non-Bt-maize than control populations.

Fitness costs associated with resistance can be

influenced by several factors, including inter-specific

interactions with entomopathogens (Gassmann et al.

2009). Entomopathogens can serve as biological

control agents (Toepfer et al. 2008, 2009; Meissle

et al. 2009; Petzold-Maxwell et al. 2012a). Theoret-

ically, treating refuges with entomopathogens for the

target insect pest could magnify fitness costs and be

useful to delay resistance evolution. However, in their

study, Petzold-Maxwell et al. (2012b) found no

differences in survival among the four genotypic

classes of WCR larvae (Cry3Bb1-resistant, Cry3Bb1-

susceptible, Cry3Bb1-resistant $ crossed with

Cry3Bb1-susceptible #, and Cry3Bb1-resistant #

crossed with Cry3Bb1-susceptible $) reared on non-

Bt-maize seedlings in the presence of different con-

centrations of the entomopathogenic nematode spe-

cies Steinernema carpocapsae and Heterorhabditis

bacteriophora (both of which can kill WCR larvae and

occur in maize fields), indicating that Cry3Bb1

resistance in the presence of these two entomopath-

ogenic nematodes is not associated with fitness costs.

Because most of the data indicate no fitness costs

are associated with resistance to Cry3Bb1, it is prudent

to infer that major fitness costs are not necessarily

present in field populations and thus, fitness costs may

not help to substantially delay WCR resistance.

Maize volunteers

The extent with which Diabrotica-active Bt-maize

volunteers in subsequent crops (including Diabrotica-

active Bt-maize) may affect the rate of resistance

evolution is unclear (Marquardt et al. 2012). In the case

of Bt-maize MON 863, Krupke et al. (2009) argued that

the unpredictable and varying levels of the Cry3Bb1

protein in the roots of volunteer plants may facilitate

more rapid evolution of resistance in WCR popula-

tions; larvae may survive exposure simply because the

dose is lower, even without any differential feeding

behaviour. It is also possible that due to larval

movement (Hibbard et al. 2005; Zukoff et al. 2012)

larvae would be exposed to sublethal doses of the

Cry3Bb1 protein at later instar stages by feeding on a
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combination of volunteer and Bt-maize plants (Meihls

et al. 2008; Krupke et al. 2009; Murphy et al. 2010).

However, there is also the possibility that larvae may

exhibit a feeding behaviour that minimises exposure to

Bt-toxins. How much each of these mechanisms will

contribute to the speed of resistance evolution overall

is dependent upon the amount and type of Bt-maize

planted, the number of maize volunteers present and

the level of Bt-toxins expressed by those plants. The

early and timely control of volunteer plants may

decrease the potential selection pressure on WCR

populations, as these plants would be killed before the

larval development of WCR is completed (Olmer and

Hibbard 2008; Marquardt et al. 2012).

Compliance with refuge requirements

Compliance with refuge requirements is a critical

factor contributing to the success of IRM plans in

delaying the rate at which resistance evolves (Bourg-

uet et al. 2005; Kruger et al. 2009, 2012; Huang et al.

2011; Onstad et al. 2011).

Education (training) programs

In the case of Bt-maize MON 863 and MON 88017,

failure to fully comply with the refuge requirements and

to carry out the operational details of IRM plans is likely

to have contributed to the field-selected Cry3Bb1

resistance reported in the USA (Andow et al. 2010;

Gassmann et al. 2011). A survey of farmers in the USA

found that approximately 25 % were not in compliance

with refuge requirements in terms of either the size or

location of refuges (Jaffe 2009). Model predictions by

Pan et al. (2011) documented that resistance evolved

faster when compliance levels declined: 70 % compli-

ance may roughly double the rate of resistance evolution

when 20 % block refuges that are in a fixed location are

deployed. It is therefore important that education

(training) programs form an integral part of IRM plans,

as they aid farmers to understand the importance of

adhering to IRM requirements and are key to the success

of the HDR strategy (Glaser and Matten 2003; Bates

et al. 2005; Andow 2008; Head and Greenplate 2012).

IRM plans generally propose education programs and

specific means for communicating IRM requirements

such as technical user guides, newsletters, technical

bulletins, product brochures, sales meetings, presenta-

tions by local experts to farmers, and the requirement to

attend education meetings for purchase of the product.

All of these can be used in addition to the traditional

label that accompanies the Bt-crop and which outlines

the contents of the product and standard directions for

use (Alcalde et al. 2007; MacIntosh 2010). Besides

education programs, compliance can be maximised via

farmer contracts, certification tests, audits, rewards for

compliance, crop insurance for refuges, databases of

non-compliant farmers, sales restrictions, and fines for

non-compliance.

Seed blends

Seed blends (also termed seed mixtures or refuge in a

bag), composed of a 5–10 % blend of non-Bt-maize

serving as refuge seed in the Diabrotica-active Bt-maize

seed bag, are approved for commercial cultivation in the

USA (US EPA 2010c, 2011b). Seed blends will result in

100 % compliance and are more convenient for farmers

to plant than the usual block and row strip refuges

(Onstad et al. 2011). The use of seed blends also

distributes refuge plants relatively uniformly within the

Bt-crop field. Further, when compared with block

refuges, WCR emerging from refuge plants emerges

more synchronously with those emerging from Diab-

rotica-active Bt-maize plants in seed blends. This

increased proximity in both space and time may

facilitate random mating between adults emerging from

Bt-maize and refuge plants compared with block refuges

(Murphy et al. 2011). However, the advantages of seed

blends may be offset by the potential for larval

movement between roots of Bt-maize and refuge plants,

and the exposure of later instars to sublethal doses of the

toxin (Goldstein et al. 2010; Murphy et al. 2011; Onstad

et al. 2011; Razze and Mason 2012; Zukoff et al. 2012).

For Bt-crops that are truly high dose, Mallet and Porter

(1992) indicated that the movement of larvae between

Bt-crop and refuge plants may lower the selective

differential between susceptible and resistant geno-

types, and increase the effective dominance of resis-

tance by producing more heterozygote individuals

(Glaum et al. 2012; Siegfried and Hellmich 2012; but

see Tabashnik 1994).

Larval movement by WCR between Bt-maize and

refuge plants is partly understood (Schumann and

Vidal 2012), and documented in both directions

(Hibbard et al. 2003, 2004, 2005; Zukoff et al.

2012). Zukoff et al. (2012) found significantly more

WCR beetles emerging from non-infested Bt-maize

282 Transgenic Res (2013) 22:269–299

123



plants when these plants were surrounded by two

refuge plants as compared with any other plant

configuration tested in one of the two years of the

study. The authors postulated that larval movement

from refuge to Bt-maize plants would deliver addi-

tional susceptible individuals emerging from within

the seed blend field, because much of their initial

larval development was on refuge plants. In addition,

older (later) instars are inherently less susceptible to

Bt-toxins and therefore have a greater potential to

survive exposure to Bt-toxins when moving from

refuge to Bt-maize plants (see ‘‘Bt-toxin is expressed

at appropriate levels in relevant plant parts’’). These

findings support the suggestion by Onstad (2006) of a

reduced effect of late larval movement from the refuge

to Bt-maize plants that are not truly high dose on

resistance evolution. Likewise, larvae finishing their

development on refuge plants after being reared on

Bt-maize did not evolve resistance when assayed in a

no-choice experiment with only Bt-maize (Meihls

et al. 2008). Binning et al. (2010) reported that the

recovery of larvae that move from Bt-maize to refuge

plants may be close to 1.0 due to the relatively little

selective differential existing between susceptible and

resistant genotypes. Therefore, the effect on larvae

from feeding on Bt-maize is considered chronic and

temporary, if Bt-maize plants are surrounded by refuge

plants and larvae move from the Bt-maize to refuge

plants. Whether resistance would have evolved in

larvae that had been exposed to the Bt-toxins for

longer periods remains unclear (Zukoff et al. 2012).

Overall, resistance evolved more slowly under seed

blend scenarios than for WCR colonies reared fully on

Bt-maize, indicating that the WCR biology seems to

lend itself to the seed blend concept (US EPA 2009a).

Fully rearing of WCR larvae on Bt-maize MON 863 led

to resistance within three generations, while selection

for resistance when first instars were fed the near-

isogenic maize and third instars were fed Bt-maize

MON 863 led to the evolution of resistance within six

generations of selection (Meihls et al. 2008).

Resistance and compliance monitoring

Resistance monitoring

IRM plans for Bt-crops require routine monitoring for

resistance evolution, so that early warning signs

indicating increases in tolerance in the field may be

detected (Siegfried and Spencer 2012). A timely

detection of such signs enables actions to limit the

survival of resistant insects and to slow or prevent their

spread should resistance has evolved among field

populations (Siegfried et al. 2007). Data generated

through resistance monitoring also enables researchers

and regulators to assess whether the HDR strategy

delays resistance evolution in the target insect pest

adequately and efficiently. Resistance monitoring

programmes for Bt-crops usually follow a two-

pronged approach, consisting of monitoring for

changes in susceptibility to the Bt-toxin in the target

insect pest, and monitoring of unexpected field

damage caused by the pest (Glaser and Matten 2003;

Bates et al. 2005; Alcalde et al. 2007; Andow 2008;

MacIntosh 2010; Wilhelm et al. 2010; EFSA 2011b,

2012). Monitoring for WCR susceptibility is more

likely to detect changes in susceptibility occurring at a

broader spatial scale than reports of unexpected field

damage that target the detection of localised resis-

tance. Resistance monitoring is to be performed on a

regular basis to ensure that any resistance is detected

timely.

Baseline and monitoring WCR susceptibility to plant-

produced Bt-toxins

Resistance monitoring aims to measure the baseline

susceptibility of WCR to the Bt-toxin and shifts in that

susceptibility over time. This baseline susceptibility

represents the natural variability in response to the

Bt-toxin among WCR populations across their geo-

graphic distribution range prior to first introductions of

Bt-maize (Siegfried et al. 2005). Susceptibility is

usually measured by sampling target pest insects from

field populations, rearing their offspring in the labo-

ratory, and determining how the progeny respond to

diets containing the Bt-toxin (Andow 2008; Tabashnik

et al. 2008a, 2009; Siegfried and Spencer 2012). To

obtain comparable data and to detect actual shifts in

susceptibility at an early stage, a consistent method-

ology in terms of sampling, laboratory bioassays and

toxin standardisation is required.

(1) It is recommended to utilise appropriate sam-

pling strategies to collect individuals in the field;

setting the most adequate and precise susceptibility

baselines can be achieved through random sampling,

whilst measuring shifts in that susceptibility can be
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realised through targeted sampling in areas where the

selection pressure is believed to be highest and which

correspond to those areas where WCR populations are

known to regularly reach high infestation levels and

where Diabrotica-active Bt-maize deployment is

highest (‘hotspot areas’). The target pest population

needs to be large enough to provide sufficient numbers

of healthy individuals for collection. Widely adopted

guidelines for sampling corn borers recommend the

sampling of 200 larvae, 200 adults, 100 mated

females, or 100 egg masses per sampled population

and set the minimum population size considered a

valid sample for testing at 50 larvae, 50 adults, 25

mated females, or 25 egg masses. Similar guidelines

for sampling WCR are under development (Siegfried

and Spencer 2012). The sampling strategy should

include fields cropped to Diabrotica-active Bt-maize

and adjacent fields cropped to non-Diabrotica-active

Bt-maize or conventional maize, annual sampling

during each maize growing season, follow-up sam-

pling of the same populations in subsequent seasons

and sampling at appropriate times. As resistance is less

likely to evolve rapidly in maize areas with a low

adoption rate of Diabrotica-active Bt-maize, sampling

in such areas could be at a lower frequency, compared

with hotspot areas, and serve to establish susceptibility

baselines. Baseline data are established preferentially

before the first introductions of the Bt-maize, but at

least during the initial years of launch prior to high

market penetration. Ideally, the same areas should be

monitored over time to reduce the natural geograph-

ical variation in susceptibility (Farinós et al. 2004,

2011, 2012; Saeglitz et al. 2006; Gaspers et al. 2011).

Appropriately designed sampling strategies should

account for the abundance, distribution and dispersal

behaviour of WCR, and local variability in suscepti-

bility levels.

(2) Most resistance monitoring studies have used

insect diet bioassays to determine LC50 and EC50

values in individuals derived from field-collected

populations exposed to Bt-crops, and to compare

those with that of susceptible laboratory reference or

non-exposed field-derived colonies (Siegfried et al.

2007; Andow 2008; Tabashnik et al. 2008a, 2009;

Siegfried and Spencer 2012). The estimation of LC50

and EC50 values and the establishment of dose–

response relationships require data from several toxin

concentrations, and allow the calculation of resistance

ratios. An increase in the resistance ratio indicates a

decrease in susceptibility, which may be heritable. The

dose–response bioassay method has proved adequate

for documenting resistance that reached high levels,

but is insensitive to small changes in resistance allele

frequency, especially in the early stage of resistance

evolution when resistance is first appearing and the

frequency of resistant individuals is relatively low

(Bourguet et al. 2005; Siegfried et al. 2007; Tabashnik

et al. 2009; Siegfried and Spencer 2012).

Alternatively, susceptibility testing is performed

with larvae (F1 offspring) obtained from field-col-

lected individuals using a diagnostic or discriminating

dose of the Bt-toxin incorporated into an artificial diet

(Siegfried et al. 2007; Andow 2008; Tabashnik et al.

2008a, 2009; Siegfried and Spencer 2012). Such a

dose, when carefully selected, ensures 100 % mortal-

ity of fully susceptible WCR populations (LC99),

survival of only resistant individuals, and discrimina-

tion between resistant and susceptible individuals.

Decreased susceptibility and potential field-selected

resistance are then demonstrated as the percent

individuals surviving exposure to a fixed amount of

the Bt-toxin. Ideally, resistant individuals are needed

to determine the discriminating dose, but in the

absence of resistant individuals, some multiple of the

LC50 or LC99 for susceptible larvae is commonly used

(Andow 2008). The discriminating dose bioassay is a

cost-effective method that allows the testing of many

individuals at an appropriate dose, and will detect low

frequencies of both polygenic and multiple resistance

(Bates et al. 2005). However, Bourguet et al. (2005)

indicated that the discriminating dose bioassay is more

likely to detect dominant resistance alleles, and would

be inefficient at detecting recessive alleles in hetero-

zygotes (see also Siegfried and Spencer 2012). As

individuals heterozygous for a recessive resistance

allele have a susceptible phenotype, they will not

survive the discriminating dose, and therefore reliable

detection of allele frequencies below 10 % (0.1) is

impractical (Siegfried et al. 2007).

The F2 screen was proposed as a method to detect

rare and highly recessive resistance alleles in a

heterozygous state (Andow and Alstad 1998, 1999;

Andow and Ives 2002). This methodology involves

establishing single-female family lines from a large

number of field-collected individuals by inbreeding

the offspring of each collected female within family

lines. The offspring of these matings (i.e., the F2 of the

collected generation) are then screened at a
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discriminating dose to detect any homozygous indi-

viduals (Zhao et al. 2002). The purpose of the

inbreeding process is to allow potentially heterozy-

gous offspring of the field-collected females to mate

with each other, generating a significant and easily

detectible fraction of homozygous resistant offspring.

Through back-calculation of the frequency of family

lines containing a resistant allele, the frequency of the

resistance allele in the sampled population can be

estimated (Siegfried and Hellmich 2012; Siegfried and

Spencer 2012). The F2 screen is far more sensitive than

a discriminating dose bioassay to detect recessive

traits, though it does not allow detecting polygenic

resistance (Zhao et al. 2002). Moreover, it does not

require obtaining previously a resistant WCR colony.

However, given the time and effort required for the F2

screen, the fact that resistance to Cry3Bb1, Cry34Ab1/

Cry35Ab1 and mCry3A is most likely polygenic and

that resistance alleles may be more common than

initially thought in WCR, the F2 screen may not offer

significant benefits over the dose–response and dis-

criminating dose bioassay.

The surface treatment of diet is usually utilised in

diet bioassays to generate dose–response curves, or to

discriminate between resistant and susceptible indi-

viduals. Instead of incorporating the toxin uniformly

in the diet, it is added to the surface of the diet (e.g.,

Marçon et al. 1999; Siegfried et al. 2000, 2005;

Farinós et al. 2004, 2011, 2012; Blanco et al. 2008;

Gaspers et al. 2011). Important advantages of the

surface treatment are the lower amount of Bt-toxin

required for each test and the reduction in costs

associated with Bt-toxin preparation (Blanco et al.

2008). However, compared with the surface treatment,

the incorporation technique allows a more homoge-

nous distribution of the Bt-toxin solution in the diet

and thus a consistent exposure of each larva. As larvae

may be exposed inconsistently to the Bt-toxin when

directly burrowing and feeding into the diet instead of

grazing on the diet surface, this technique may be

prone to error. However, a side-by-side comparison

between the surface and incorporation treatment led to

similar levels of variability in susceptibility, indicat-

ing that there are no major differences between both

techniques (Saeglitz et al. 2006; Siegfried et al. 2007).

Further, Siegfried and Spencer (2012) pinpointed that

strict quality control of bioassays using surface

treatment through visual inspection is essential to

minimise potential inconsistencies in terms of

non-uniform treatment and inconsistent exposure of

larvae (see also Gaspers et al. 2011). Given the costs

associated with Bt-toxin preparation, its instability,

and limitations in the amount that can be produced,

Siegfried et al. (2007) considered that the advantages

of the surface treatment outweigh the possible

increased uniformity of exposure that may be associ-

ated with incorporating the Bt-toxin in rearing diet.

Based on resistance monitoring data for Cry3Bb1

provided by the applicant, US EPA (2011a) concluded

that all field-collected populations in Illinois, Iowa and

Nebraska (USA) in 2009 had greater mean LC50 and

EC50 values than those for the susceptible laboratory

reference colony, in some instances by an order of

magnitude. In the case of Cry34Ab1/Cry35Ab1, US

EPA (2010b) considered there was a trend of decreas-

ing susceptibility in WCR: all measured and extrap-

olated mean LC50 and EC50 values in WCR

populations collected in Illinois, Iowa and Nebraska

(USA) in 2008 were higher than those reported in

previous years (2004–2005, 2006, 2007). However,

the sensitivity of diet bioassays used to monitor WCR

susceptibility in order to detect WCR resistance has

been questioned (Nowatzki et al. 2008; Siegfried and

Spencer 2012). This is because WCR larvae are not

that susceptible to Cry3Bb1, Cry34Ab1/Cry35Ab1

and mCry3A (see ‘‘Bt-toxin is expressed at appropriate

levels in relevant plant parts’’), so achieving signifi-

cant mortality in WCR larvae can be challenging even

at the highest toxin doses used. In addition, available

WCR baseline susceptibility data for Cry3Bb1 (Sieg-

fried et al. 2005; US EPA 2011a), Cry34Ab1/

Cry35Ab1 (US EPA 2011a) and mCry3A (US EPA

2007) have shown that the range of natural variation in

baseline susceptibility can be greater than fivefold

(Siegfried and Spencer 2012). Therefore, discerning

populations with decreased susceptibility (but falling

in the range of natural variation in baseline suscepti-

bility) from those with actual resistance to the toxin

can be problematic. The consequence is that small

changes in toxin susceptibility, which could signifi-

cantly affect product performance, could go unde-

tected (Nowatzki et al. 2008).

Additional challenges are that artificial diets are

prone to microbial contamination resulting in high

rates of control mortality, WCR larvae may survive

without feeding in three-day diet bioassays leading to

an underestimation of the actual percent mortality due

to toxin exposure, and that only one generation of
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WCR can be tested in a given year, as WCR is

univoltine and its life cycle involves an obligatory egg

diapause (US EPA 2011a; Siegfried and Spencer

2012). Therefore, alternative methods to the dose–

response and discriminating dose bioassays such as the

sublethal seedling assay have been developed (Now-

atzki et al. 2008) and applied to detect resistance in

WCR (Lefko et al. 2008; Gassmann et al. 2011, 2012).

The sublethal seedling assay consists of exposing

populations of neonate WCR to seedlings from either

Bt-maize or the near-isogenic line for a fixed duration

of time (usually 17 days), and to measure the total

larvae recovered and age structure of the larval

population. Delays in larval development are detected

in the distribution of the different larval instars, which

are determined based on head capsule width (Ham-

mack et al. 2003). Higher proportions of later instars

recovered on Bt-maize roots during the fixed duration

of exposure to maize roots indicate higher rates of

larval population development and increased toler-

ance to the Bt-maize event. This method has proved

adequate to detect subtle changes in population

susceptibility and is more sensitive than the standard

diet bioassays that typically rely on mortality or

growth inhibition as endpoints (Lefko et al. 2008;

Nowatzki et al. 2008). This can be attributed to the

more ecologically relevant larval exposure that is

similar to that under field conditions, and to the use of

the increased sensitivity of a sublethal endpoint (Lefko

et al. 2008).

(3) The susceptibility of the target insect pest has

been shown to vary considerably depending upon the

source of Bt-toxins used. Therefore, the same Bt-toxin

source should be used throughout the duration of

resistance monitoring (Farinós et al. 2004; Saeglitz

et al. 2006; US EPA 2011a).

Unexpected field damage caused by WCR

The monitoring of greater-than-expected-field-

damage due to WCR is an important component of

the early detection of resistance, as it allows capturing

early warning signs indicating increased tolerance in

the field and reporting those timely. Greater-than-

expected-field-damage resulting from WCR control

failures can easily be observed and reported by

farmers, provided that farmers know what level of

WCR damage is to be expected under various

conditions and what level of WCR control is normally

achieved (see Gassmann et al. 2011; Gray 2011a, b;

US EPA 2011a). Ideally, a comparison of performance

of Bt-maize and refuge plants should occur; if damage

levels on Bt-maize plants surpass economic thresholds

and exceed those observed on refuge plants, then field

resistance could be a concern. Such observations may

reveal the occurrence of localised tolerance before it

spreads, and may serve as a trigger for further

investigation. For non-pyramided Bt-maize (see ‘‘Dis-

cussion’’) US EPA (2011a) set the greater-than-

expected-field-damage threshold at 1.0 (node-injury

scale, NIS; Oleson et al. 2005). Damage ratings of 1.0

in 50 % of the sampled plants serve as a trigger: (1) to

instruct farmers to use alternate WCR management

options; and (2) to initiate sampling of WCR adults in

the fields of concern for the purpose of further

evaluation and laboratory testing to confirm potential

resistance. If adult beetles cannot be collected from

problem fields during the season, adult sampling

should occur in the problem area the following season,

irrespective of the pest infestation levels and damage

in the problem year. Otherwise, early resistance events

could be missed in these areas due to low population

densities of WCR and root damage in the subsequent

season, especially if farmers sprayed their fields or

used another integrated pest management (IPM) tactic

to manage their problem fields (US EPA 2011a). The

majority of WCR adults do not disperse long dis-

tances, so the greatest probability to capture resistant

genotypes is in problem fields and possibly, in

adjacent fields. Sampling in neighbouring fields is

reasonable during the following year, as adults may

have moved from the problem fields to those fields, but

only after in-field collection in problem fields have

occurred.

Appropriate communication mechanisms should be

in place for the timely reporting of farmer complaints

regarding product performance. Farmer question-

naires, directed at farms or production systems where

GM crops are grown, form an useful tool to collect and

report first hand data on the performance and impacts

of GM crops and their cultivation in the EU (Wilhelm

et al. 2010; EFSA 2011a, b, 2012). This approach uses

first-hand observations and relies on farmers’ knowl-

edge and experience of their local agricultural envi-

ronments, comparative crop performance and other

factors that may influence events on their land. Only if

completed and submitted timely, farmer question-

naires could serve as an early-warning tool to report
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unexpected field damage caused by WCR larvae,

which would trigger additional investigations, should

alternative causes of unexpected field damage have

been ruled out and the greater-than-expected-field-

damage threshold has been exceeded.

It is critical that responses to farmer complaints

about product failure and hence greater-than-

expected-field-damage are taken timely, so that sus-

pected resistance can be declared confirmed resistance

and remedial measures be implemented, or be refuted

without undue delays (Tabashnik and Gould 2012).

Compliance monitoring

Farmer questionnaires can also be designed to collect

information on the implementation of refuges, tech-

nology adoption levels, and farmer use patterns (such

as applied pest management practices). Such infor-

mation will give indications on whether farmers

followed and adhered to the refuge requirements when

growing Diabrotica-active Bt-maize, and hence on

compliance levels (EFSA 2011a, b, 2012). Specific

questions on: the proportion of non-Bt-maize com-

pared with Bt-maize on the farm; refuge planting

configurations; the distance between the refuge and

the monitored Bt-maize field if the refuge is planted as

a separate field adjacent to the Bt-maize field;

differences in pest management practices of the

refuge; and on whether the seperate refuge has been

cropped with non-Bt-maize for at least two successive

years could be considered in farmer questionnaires.

The reporting of non-compliance with refuge require-

ments, especially in areas where the uptake of

Bt-maize is high, may serve as a trigger to strengthen

education (training) programs to aid farmers in

understanding the importance of adhering to refuge

requirements, and to impose penalties for non-com-

pliance (such as the lack of access to the technology

for deviations from the refuge requirements) (see

‘‘Compliance with refuge requirements’’). Head and

Greenplate (2012) indicated that compliance monitor-

ing remains challenging due to the resources required

to visit and to assess an appropriate number of farmers,

and the potential bias present in telephone- and

computer-based surveys. Compliance monitoring can

also be achieved through surveys of farmers conducted

by an independent third party.

Remedial measures

Besides implementing refuges of non-Bt-maize, mon-

itoring for resistance and compliance, and implement-

ing education (training) programs, IRM plans provide

a range of measures to respond to confirmed resis-

tance. Remedial measures are intended to either

mitigate the further evolution of resistance in other

areas (prevent its spread) or eradicate resistance (if

detected timely). It is considered very difficult to

eradicate resistance, but slowing the spread of resis-

tance genes is more practical. Meihls et al. (2008)

reported that resistance remained at a similar level

after six generations without selection in a laboratory-

selected colony, suggesting that resistance may persist

in a population (see also Gassmann et al. 2012; Storer

et al. 2012a).

Remedial measures have multiple components,

and knowledge about the nature and distribution of

the resistance helps to determine what sort of

remedial measures are needed to contain the spread

of resistance (Head and Greenplate 2012). Options

for remediation of confirmed resistance include: the

use of alternate pest management options (e.g.,

through the use of conventional insecticides to

control adults of WCR during the on-going season,

applying alternative methods to deter the establish-

ment of potentially resistant individuals during the

following season, and rotating Bt-maize with a non-

maize crop); monitoring to determine the resistance

allele frequency (with rapid verification and alter-

nate control strategies for verified resistance); sales

suspensions of the affected product in the region;

monitoring to determine the effectiveness of the

implemented remedial measures; an assessment of

how the resistance problem occurred; and appropri-

ate procedures to inform relevant stakeholders (such

as farmers, farmer organisations, crop consultants,

seed suppliers, local academic/scientific experts and

industry players) and regulatory authorities (Glaser

and Matten 2003; Alcalde et al. 2007; MacIntosh

2010; US EPA 2011a). In the case of Bt-maize

MON 88017, US EPA 2011a recommended that

remedial measures are put in place in areas expe-

riencing greater-than-expected-field-damage; such

measures may remain implemented until restoration

of susceptibility to Cry3Bb1 has been demonstrated.
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Discussion

The global cultivation area of GM crops [including

soybean, maize, cotton, canola (oilseed rape) and

sugar beet] has consistently increased since they were

first cultivated commercially in 1996, reaching 160

million hectares in 2011. By 2011, the global area

planted to Bt-crops was 66 million hectares. The rapid

adoption of Bt-crops indicates that they have become a

primary tool for managing mayor lepidopteran and

coleopteran target pest species in cotton and maize. A

concern is, however, that the selection pressure

exerted by the widespread cultivation of Bt-crops

increases the risk of target insect pests to evolve

resistance to plant-produced Bt-toxins, as resistant

populations could affect the sustainable use of

Bt-crops and alter pest management options.

To delay resistance evolution, IRM plans relying on

the HDR strategy have been implemented for several

Bt-crops in several countries. The lack of resistance in

some major insect pests targeted by Bt-crops attests

that the HDR strategy is capable to prevent or at least

delay resistance under field conditions, despite

15 years of intensive use of some Bt-crops (Andow

2008; Tabashnik et al. 2008a, b, 2009; Huang et al.

2011; Siegfried and Hellmich 2012). In contrast, when

the conditions contributing to the success of the HDR

strategy were not met, field-selected resistance to

Bt-crops has occurred. Instances of field-selected

resistance to Bt-maize have been reported in popula-

tions of the African stem borer (Busseola fusca) in

South Africa (van Rensburg 2007; Kruger et al. 2009,

2011), and in populations of the fall armyworm

(Spodoptera frugiperda) in Puerto Rico (Matten

et al. 2008; Moar et al. 2008; Tabashnik 2008;

Tabashnik et al. 2008a; Storer et al. 2010, 2012a),

where larvae were able to survive on Cry1Ab-

expressing Bt-maize MON 810 and Cry1F-expressing

Bt-maize TC1507, respectively. Reasons for these

instances of field-selected resistance range from the

insufficient planting of refuges of non-Bt-maize in

South Africa to the autosomally, non-recessive inher-

itance of resistance by S. frugiperda in Puerto Rico,

and specific agronomic/environmental factors (Huang

et al. 2011). South African farmers declared non-

irrigated conventional maize as refuges for irrigated

Bt-maize, which most likely decreased random mating

and egg laying, as moths prefer high humidity (van

Rensburg 2007; Kruger et al. 2011). In Puerto Rico,

factors that may have contributed to unprecedented

levels of selection pressure on S. frugiperda populations

are: continuous year-round planting of Bt-maize; limited

migration from external ecosystems (island geography);

and drought conditions that concentrated pest popula-

tions in irrigated fields (Storer et al. 2010, 2012a).

Gassmann et al. (2011) reported the first instance of

field-selected Cry3Bb1 resistance in WCR in Iowa

(USA). They found significantly higher survival of

WCR larvae on Bt-maize MON 88017 when from

fields suffering severe WCR feeding damage, than

when from control fields. Common features of

affected fields include a history of continuous planting

to Cry3Bb1-expressing Bt-maize for multiple succes-

sive years, the use of this Bt-maize as sole pest

management option against WCR, non-compliance

with refuge requirements, and most likely high WCR

infestation levels. Of additional concern are data

suggesting that several conditions contributing to the

success of the HDR strategy may not be met for Bt-

maize MON 863 and MON 88017, DAS-59122-7 and

MIR604 and WCR: (1) the Bt-toxins are expressed

heterogeneously at a low-to-moderate dose in roots

from Bt-maize MON 863 and MON 88017, DAS-

59122-7 and MIR604; (2) resistance alleles may be

present at a higher frequency than initially assumed;

(3) WCR may mate in a non-random manner; (4)

resistance traits could have non-recessive inheritance;

and (5) fitness costs may not necessarily be associated

with resistance. While these factors are expected to

increase the risk of WCR to evolve resistance, models

developed to estimate the evolution of resistance in

WCR populations predicted that a 20 % refuge can

delay resistance evolution for Bt-maize under certain

conditions (Onstad et al. 1999, 2001a, b; Storer 2003;

Crowder and Onstad 2005; Crowder et al. 2005, 2006;

US EPA 2007, 2010a, b; Onstad and Meinke 2010;

Pan et al. 2011). In some of these models, a range of

efficacy and genetic parameter values were explored;

adaptation to low-to-moderate dose Bt-crops were

simulated by accounting for the fact that many or most

of the individuals surviving on Bt-crops have suscep-

tible phenotypes; multi-locus models for resistance

were considered instead of single-locus, two-allele

models for resistance; a spatially-explicit model

structure was accounted for; and more realistic data

on the biology of WCR were integrated. Depending on

the underlying model assumptions and parameter

values used in these models, which explore more or
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less conservative scenarios, resistance has been pre-

dicted to evolve in three to more than 20 years. With a

20 % block refuge planted every year in the centre of a

Bt-maize field of 80 ha, Pan et al. (2011) estimated

delays in resistance of at least 20 years when the initial

resistance allele frequency was 0.001. For an initial

resistance allele frequency of 0.01 the resistance allele

frequency was likely to exceed 50 % (0.5) in seven

years. With the annual relocation of the 20 % block

refuge, the resistance allele frequency would exceed

50 % in nine and five years, if the initial resistance

allele frequencies were 0.001 and 0.01, respectively.

Without adequate risk management strategies, resis-

tance evolved in five and three years for initial

resistance allele frequencies of 0.001 and 0.01,

respectively (Pan et al. 2011). Similar trends were

reported for dominance; as the h value increased, the

time to 50 % allele frequency decreased. For cases of

additive resistance (h = 0.5) resistance was predicted

to evolve in 7–11 years under 20 % block refuge

scenarios (Onstad and Meinke 2010). However,

Tabashnik and Gould (2012) pinpointed that resis-

tance may evolve faster, as initial resistance allele

frequencies in WCR may be 20–200 times higher than

typical empirical estimates of 0.01–0.001 for other

target insect pests (Carrière et al. 2010; Onstad and

Meinke 2010). Further, modelling predictions often

assume complete compliance with refuge require-

ments (Pan et al. 2011; Gassmann 2012).

Glaser and Matten (2003) observed that effective

IRM may still be possible under non-high dose

conditions. If the high dose condition of the HDR

strategy is not achieved, model predictions indicated

that resistance evolution can be delayed by requiring

restrictions on the management of these refuges

(Andow 2008), or by increasing refuge abundance to

compensate for survival of hybrid progeny on Bt-crops

(Gould 1998; Tabashnik et al. 2004). In the latter case,

the strategy for managing resistance in WCR would

rely solely on a refuge to maintain a susceptible

population (Murphy et al. 2010). Tabashnik and Gould

(2012) recently advocated increasing refuge abun-

dance by requiring a 50 % refuge of non-Bt-maize

instead of the current 20 % for the first generation of

Diabrotica-active Bt-maize; modelling suggested that

a 50 % refuge would delay the time to resistance at

least twice as the current 20 % refuge. As the

effectiveness of larger refuges may be diminished by

the likely uneven dispersal of WCR under certain

configurations, the authors recognised the need to fine-

tune their recommendation and to account for different

spatial configurations of refuges. Refuge configura-

tions for Diabrotica-active Bt-maize are best opti-

mised within the Bt-maize field as row strips or seed

blends. Both modelling and retrospective analysis of

resistance and compliance monitoring data in con-

junction with spatial and temporal distribution of Bt-

maize and refuges may support the development of

optimal refuge recommendations on a case-by-case

basis (Carrière et al. 2012). Nonetheless, depending on

refuge configurations, increased refuge abundance

may have economic trade-offs that may offset incen-

tives to implement refuges leading to reduced farmer

compliance, or to adopt the technology.

As WCR larvae feeding on Bt-maize roots may not

be exposed to Bt-toxins uniformly due to their

heterogeneous expression (see ‘‘Bt-toxin is expressed

at appropriate levels in relevant plant parts’’),

Bt-maize itself may also act as refuge (Meihls et al.

2011). Hibbard et al. (2010b) demonstrated that many

or most of WCR individuals initially surviving on Bt-

maize MIR604 after one generation of selection in the

field had a susceptible phenotype, suggesting that

resistant individuals from the Bt-maize are not only

mating with susceptible individuals from the refuge,

but also with susceptible individuals that emerged

from the Bt-maize field. Bt-maize that is not truly high

dose could thus yield susceptible adults that are

available to mate with any WCR potentially carrying

resistance alleles, and hence contribute to slow the

onset of resistance evolution (Crowder and Onstad

2005). Further, evidence has shown that several grass

species can support the growth of WCR larvae (Clark

and Hibbard 2004; Oyediran et al. 2004; Wilson and

Hibbard 2004; Breitenbach et al. 2005) and may

therefore serve as an additional (unstructured) refuge

where such host plants are abundant and appropriately

distributed (Chege et al. 2005, 2009; Oyediran et al. 2005).

The most effective and sustainable use of Bt-crops

is as a component of an IPM approach (Porter et al.

2012). The basic goal of an IPM is to achieve effective

crop protection in a manner that provides sustainable

economic benefits to farmers and society, and minimal

impact on the environment. IPM proscribes the use of

multiple tactics to suppress target insect pest popula-

tions, and to prevent or at least delay resistance

evolution. The incorporation of Bt-crops with current

integrated approaches to pest management will
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therefore help ensure their long-term sustainability

(Meissle et al. 2011b).

(1) Crop rotation is a key component of IPM, and is

an effective tool to manage WCR in areas where no

crop rotation-resistant WCR variant occurs. If Diab-

rotica-active Bt-maize is followed by a different crop

in the consecutive spring, then hatched WCR larvae do

not find enough food and starve quickly (Levine and

Oloumi-Sadeghi 1991; Kiss et al. 2005b, Boriani et al.

2006; Meissle et al. 2011b). Overall, maize-based

cropping systems comprise different shares of maize

(FCEC 2009; Meissle et al. 2010; Vasileiadis et al.

2011) and different egg-laying habitats and feeding

sources for WCR, and are sufficiently diverse to

maintain WCR infestation levels below economically

damaging thresholds. However, maize is often grown

continuously or in short crop rotations comprising just

two permanent crops. Continuous maize-soybean crop

rotations pose a high selection pressure on WCR and

favour those WCR individuals expressing reduced

ovipositional fidelity to maize fields (Spencer et al.

2005), as it has been shown in the USA (Levine and

Oloumi-Sadeghi 1996; Levine et al. 2002; Gray et al.

2009). To delay the evolution of resistance to Bt-toxins

in WCR, or of a crop rotation-resistant WCR variant,

sufficient diversity in crop rotations in space and time

should be ensured, ideally at a regional scale. Alter-

nating Bt-maize with another crop whenever possible

is therefore considered useful, especially in fields with

a high probability of WCR infestation levels.

(2) Additional essential components of IPM, as

practiced with plant protection products, are the

alternation of insecticides with different modes of

action, and the application of insecticides when and

where necessary. Porter et al. (2012) indicated that

rotation of Bt-maize expressing different Bt-toxins as a

WCR management strategy has been neglected in the

USA. In areas with significant WCR infestation levels,

Bt-maize expressing the same Bt-toxin is often planted

in the same field year after year (Gassmann et al. 2011;

Gray 2011a, b; US EPA 2011a). The use of a Bt-maize

expressing a different Bt-toxin than the one that

performed poorly in the previous year would avoid

repeated selection pressure.

Further, Diabrotica-active Bt-maize is being used

prophylactically in US areas with little or no need for

it. Under these conditions, Porter et al. (2012) argued

that planting non-Diabrotica-active Bt-maize can be

profitable and should be one of the IPM tools to

maintain sustainability of Bt-maize; non-Diabrotica-

active Bt-maize, used in conjunction with soil-applied

insecticides or not, would not cause selection for

resistance. In addition, Kiss et al. (2005b) postulated

that non-Diabrotica-active Bt-maize grown continu-

ously for up to three consecutive years within crop

rotation areas may serve as a refuge, delay the

evolution of a crop rotation-resistant WCR variant

and may preserve crop rotation as a means for WCR

management, though this may have economic trade-

offs. Treatment of Diabrotica-active Bt-maize with

insecticides targeting WCR should only be considered

under special circumstances (see ‘‘Unexpected field

damage caused by WCR and remedial measures’’),

and is therefore not a recommended routine manage-

ment strategy, as it masks the geographic extent and

in-field severity of Bt-resistance and selects for

resistance to the insecticides (Porter et al. 2012). To

achieve effective and long-term crop protection, the

decision to apply WCR management measures should

be based on scouting, past experience and the popu-

lation density of adult WCR in the preceding year’s

crop.

(3) The landscape of Diabrotica-active Bt-maize is

changing quickly with several new products being at

various development stages or close to commerciali-

sation, offering additional means for WCR manage-

ment. This new cohort of products combines existing

Bt-toxins, rely on new Bt-toxins, or are based on

alternative strategies involving a different mode of

action than Bt-toxins. Pyramided Bt-maize expressing

amongst others the Cry3Bb1 ? Cry34Ab1/Cry35Ab1

or the Cry34Ab1/Cry35Ab1 ? mCry3A proteins have

been registered for commercial cultivation in the USA

(US EPA 2009b, 2011c) (Table 1). Since the binary

Cry34Ab1/Cry35Ab1 proteins require both proteins to

be toxic (neither is toxic by itself), Bt-maize DAS-

59122-7 is not considered pyramided. Further,

Bt-maize expressing a hybrid-like toxin Cry1Ab/

Cry3A protein (eCry3.1Ab) pyramided with mCry3A

is in the commercialisation pipeline (Walters et al.

2010; Hibbard et al. 2011). The use of RNA interfer-

ence for the management of target insect pests holds

considerable promise (Burand and Hunter 2012), and

its potential was recently demonstrated in the case of

WCR larvae (Baum et al. 2007) and adults (Rangas-

amy and Siegfried 2011). Baum et al. (2007) reported

that RNA interference caused larval mortality in

feeding assays using exposure to double-stranded
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RNA, and that maize plants expressing double-

stranded RNA exhibited reduced root damage from

larval feeding of WCR.

The pyramiding in the same plant of two or multiple

toxins acting independently on WCR midgut receptors

is expected to delay the evolution of resistance to either

toxin effectively when most individuals that are resis-

tant to one toxin are killed by the other, and when

selection for resistance to one of the toxins does not

cause cross-resistance to the other (Roush 1998; Zhao

et al. 2005). In the absence of cross-resistance, model

predictions by Onstad and Meinke (2010) showed that

evolution of resistance to a Bt-toxin in WCR is

generally delayed by pyramided traits in Bt-maize

compared with two single traits deployed sequentially.

However, in populations where WCR has begun

adapting or has evolved resistance to one of two

Bt-toxins, the benefit from pyramiding may be dimin-

ished or offset, respectively. Porter et al. (2012) and

Tabashnik and Gould (2012) argued that for popula-

tions of WCR resistant to Cry3Bb1 Bt-maize expressing

the Cry3Bb1 ? Cry34Ab1/Cry35Ab1 proteins are not

fully an effective pyramid due to the reduced efficacy of

Cry3Bb1. The efficacy of pyramided Bt-maize will also

be diminished if cross-resistance occurs. However,

factors facilitating greater larval survival on pyramided

Bt-maize than the additive effect of the individual

proteins have not been identified yet (Hibbard et al.

2011). Further, Gassmann et al. (2011, 2012) reported

that there was no significant correlation among WCR

populations for survival on Bt-maize DAS-59122-7 and

MON 88017. Offspring from WCR collected from

Bt-maize MON 88017 problem fields and control fields

had a similar survival on maize seedlings of Bt-maize

DAS-59122-7 and the near-isogenic line, suggesting a

lack of cross-resistance between Cry3Bb1 and

Cry34Ab1/Cry35Ab1 (Gassmann et al. 2011, 2012).

Because Cry3Bb1 is a typical three domain-like toxin

and has no sequence similarity with the binary-like

toxin Cry34Ab1/Cry35Ab1 (Bravo and Soberón 2008),

it acts on WCR midgut receptors independently from

Cry34Ab1/Cry35Ab1 (US EPA 2010a, b; Gassmann

2012; Gassmann et al. 2011, 2012). Cry3Bb1 is,

however, more similar to mCry3A than Cry34Ab1/

Cry35Ab1, and therefore cross-resistance is more likely

between Cry3Bb1 and mCry3A (Rausell et al. 2004;

Crickmore et al. 2012).

The transition to pyramided Bt-maize only is

ongoing (Storer et al. 2012b), but the current

landscape of Diabrotica-active Bt-maize comprises a

mosaic of Bt-maize expressing a single or multiple

toxins. This situation poses a challenge, as mosaics

could theoretically foster the evolution of resistance to

pyramided Bt-maize if WCR evolved resistance to a

single toxin Bt-maize that is also used in pyramided

Bt-maize (Gould 2003; Zhao et al. 2005; Siegfried and

Hellmich 2012). Therefore, releasing Bt-maize ini-

tially as pyramids rather than single events followed

by pyramids is a better resistance management strat-

egy (Gassmann et al. 2012), provided that the

frequency of resistance alleles is low (Roush 1998;

Gould et al. 2006; Onstad and Meinke 2010).

Whilst empirical data will be needed for each of

these new Diabrotica-active Bt-maize products to

develop optimised IRM plans to delay the evolution of

resistance (Tabashnik and Gould 2012), they offer

alternative means to manage WCR, and can comple-

ment existing management options under certain

conditions. Unlike three domain-like Cry3 toxins

(e.g., Raybould et al. 2007; Devos et al. 2012),

however, the safety of some of these products to

human and animal health and the environment has yet

to be investigated fully (CERA 2011).

Conclusion

Data from both artificial laboratory and greenhouse

selection experiments and the field show that there are

limits to the durability of the first generation of

Diabrotica-active Bt-maize MON 863 and MON

88017, DAS-59122-7 and MIR604 if farmers use the

same Bt-maize repeatedly and exclusively. Selected

WCR populations have evolved resistance to plant-

produced Cry3Bb1, Cry34Ab1/Cry35Ab1 and

mCry3A proteins from Bt-maize MON 863 and

MON 88017, DAS-59122-7 and MIR604, respec-

tively, in twelve of the twelve attempts under labora-

tory and greenhouse conditions. In all artificial

selection experiments reported, resistant WCR popu-

lations were yielded rapidly under conditions of

continuous exposure. Field-selected resistance of

WCR to Cry3Bb1 is documented in some US maize

growing areas, where an increasing number of cases of

unexpected WCR damage to Bt-maize MON 88017

has been reported, so there is concern that Cry3Bb1

resistance is becoming widespread. Common features

of affected maize fields include amongst others a
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history of continuous planting to Cry3Bb1-expressing

Bt-maize for multiple successive years and the use of

this Bt-maize as sole pest management option against

WCR. These practices are, however, not a sound

component of effective IPM. To ensure effective long-

term WCR management and the sustainable use of Bt-

maize, an IPM approach in which Bt-maize is only one

of many management options should be deployed.

Currently implemented IRM plans, designed to

delay resistance evolution in target insect pests to Bt-

crops, usually rely on the HDR strategy. Evidence

(including laboratory, greenhouse and field data),

suggesting that several conditions contributing to the

success of the HDR strategy may not be met for WCR

and Bt-maize MON 863 and MON 88017, DAS-

59122-7 and MIR604, raises concern about the

appropriateness of the current resistance management

for Bt-maize targeting this pest. Model predictions

suggest that a 20 % refuge of non-Diabrotica-active

Bt-maize can delay resistance evolution in WCR under

certain conditions. Because each model is subject to

scientific uncertainty, caution is recommended when

predicting future responses of WCR in specific regions

based on other target insect pest species, or on

experiences elsewhere, as resistance evolution is

dependent upon many factors (Tyutyunov et al.

2008). Caution must also be exercised when extrap-

olating laboratory and greenhouse results to field

conditions (Carrière et al. 2012). Field-scale assess-

ments and further research are therefore needed to

confirm the adequacy and efficacy of the currently

proposed HDR strategy in delaying resistance evolu-

tion in WCR, and to resolve the remaining scientific

uncertainty related to the appropriateness of this

strategy. To compensate for the survival of hybrid

progeny of WCR on Bt-maize that is not truly high

dose, Tabashnik and Gould (2012) recommended

increasing refuge abundance, though this may have

economic trade-offs and may offset implementation

incentives for farmers. Failure to fully comply with

refuge requirements and to carry out the operational

details of IRM plans are likely to have contributed to

the field-selected Cry3Bb1 resistance in WCR, so

measures maximising compliance may help increase

refuge abundance.

Resistance monitoring to detect early warning signs

indicating resistance evolution in the field, compliance

monitoring to assess farmers’ compliance with IRM

requirements, and education (training) programs

aiding farmers to understand the importance of

adhering to IRM requirements are essential to the

success of the HDR strategy and should therefore

continue to form an integral part of IRM plans for Bt-

maize.
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Castañera P (2004) Resistance monitoring of field popu-

lations of the corn borers Sesamia nonagrioides and

Ostrinia nubilalis after 5 years of Bt maize cultivation in

Spain. Entomol Exp Appl 110:23–30

Farinós GP, Andreadis SS, de la Poza M, Mironidis GK, Ortego

F, Savopoulou-Soultani M, Castañera P (2011) Compara-

tive assessment of the field-susceptibility of Sesamia
nonagrioides to the Cry1Ab toxin in areas with different

adoption rates of Bt maize and in Bt-free areas. Crop Prot

30:902–906

Farinós GP, de la Poza M, Ortego F, Castañera P (2012) Sus-
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