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Abstract:

Urban expansion and the scarcity of water supplies in arid and semiarid regions have increased the importance of urban runoff to
localized water resources. However, urban catchment responses to precipitation are poorly understood in semiarid regions where
intense rainfall often results in large runoff events during the short summer monsoon season. To evaluate how urban runoff
quantity and quality respond to rainfall magnitude and timing, we collected stream stage data and runoff samples throughout the
2007 and 2008 summer monsoons from four ephemeral drainages in Tucson, Arizona. Antecedent rainfall explained 20% to 30%
of discharge (mm) and runoff ratio in the least impervious (22%) catchment but was not statistically related to hydrologic
responses at more impervious sites. Regression models indicated that rainfall depth, imperviousness and their combined effect
control discharge and runoff ratios (p< 0.01, r2 = 0.91 and 0.75, respectively). In contrast, runoff quality did not vary with
imperviousness or catchment size. Rainfall depth and duration, time since antecedent rainfall and event and cumulative discharge
controlled runoff hydrochemistry and resulted in five specific solute response patterns: (i) strong event and seasonal solute
mobilization (solute flush), (ii) event chemostasis and strong seasonal flush, (iii) event chemostasis and weak seasonal flush,
(iv) event and seasonal chemostasis and (v) late seasonal flush. Our results indicate that hydrologic responses of semiarid
catchments are controlled by rainfall partitioning at the event scale, whereas wetting magnitude, frequency and timing alter solute
stores readily available for transport and control temporal runoff quality. Copyright © 2012 John Wiley & Sons, Ltd.
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INTRODUCTION

Programs such as the Nationwide Urban Runoff
Program (Athayde et al., 1983), the National Stormwater
Quality Database (Pitt et al., 2008) and an extensive body
of research (e.g. Brabec et al., 2002; Maestre and Pitt,
2006; Wenger et al., 2009) have advanced our under-
standing of how urbanization alters runoff quantity and
quality. Despite these advances nationally, little attention
has been paid to how urbanization affects storm runoff
quantity and quality in arid and semiarid catchments.
Efforts in these regions largely have focused on
describing runoff characteristics across urban land cover
types (e.g. Maestre and Pitt, 2006; Tiefenthaler et al.,
2008), and few studies have addressed the seasonal
variability of runoff quantity and quality (e.g. Lee et al.,
2004), which is of particular importance in arid and
semiarid regions where water resources are limited,
streamflows are episodic and urban runoff is increasingly
viewed as a renewable water resource. Given that arid and
semiarid regions are experiencing some of the fastest urban

growth (Berling-Wolff and Wu, 2004; Norman et al.,
2009) and may be facing increased aridity and increased
variability in rainfall (Seager et al., 2007; Serrat-Capdevila
et al., 2007), understanding how the seasonal variability of
rainfall affects runoff and water quality will be critical for
managing future water resources.
The importance of ‘focused urban runoff recharge’ as a

renewable water resource has increased in recent years in
arid and semiarid regions (Decook and Foster, 1984;
Chralowicz et al., 2001; City of Santa Clara, 2011). It is
well established that urbanization increases runoffmagnitude
and duration, decreases time to concentration and increases
water yields (Paul and Meyer, 2001; Walsh et al., 2005;
Maestre and Pitt, 2006; Kennedy, 2007; Shaver et al., 2007).
It is also established that ephemeral waterways, in addition
to mountain front and mountain block recharge, are areas of
focused runoff infiltration, making stream channel losses
an important groundwater recharge pathway in arid and
semiarid regions (Eastoe et al., 2004; Goodrich et al., 2004;
Pool, 2005; Blasch et al., 2006; Scanlon et al., 2006; Coes
and Pool, 2007). Therefore, by increasing the magnitude of
runoff and streamflow, urbanization in arid and semiarid
regions may enhance ephemeral channel losses and
groundwater recharge and subsequently augment renewable
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groundwater resources. However, increasing the magnitude
of runoff and streamflow from urban areasmay also increase
the delivery of contaminants to areas of focused recharge
(Fischer et al., 2003; Carlson et al., 2011).
A substantial number of studies indicate that stream

water quality decreases as urbanization increases (e.g.
Walsh et al., 2005; Rose, 2007). Early stormwater studies
and monitoring efforts focused on the role of land use as
the primary control of runoff quality (Klein, 1979;
Heaney and Huber, 1984). However, findings from
extensive national stormwater monitoring programs,
such as the Nationwide Urban Runoff Program and the
National Stormwater Quality Database, suggest that the
characteristics of the regional rainfall regime impart a
stronger effect on stormwater quality than land use alone
(Athayde et al., 1983; Pitt et al., 2008). The effects of
rainfall characteristics in controlling urban runoff quality,
solute sourcing and transport have received little attention
in arid and semiarid regions where rainfall is episodic.
Several studies indicate that solute flushing from semiarid
uplands and hill slopes in response to summertime rainfall
result in elevated streamflow solute concentrations (Parks
and Baker, 1997; Brooks et al., 2007; Harms and Grimm,
2010). In addition, positive correlations between solute
concentrations in runoff, antecedent dry days and rainfall
characteristics have been identified in both, semiarid urban
and nonurban systems (Ishaq andAlassar, 1999;Westerhoff
and Anning, 2000; Welter et al., 2005; Lewis and Grimm,
2007), suggesting that solute sourcing, retention and
transport are controlled by the frequency and magnitude
of wetting (Welter et al., 2005; Harms and Grimm, 2010).
Given that the temporal distribution of rainfall may

control catchment hydrologic and hydrochemical
responses in semiarid regions, in this study, we ask: How
do urban runoff quantity and quality vary throughout the
summer monsoon and what are the controlling mechan-
isms? Here we examine monsoonal urban runoff quantity
and quality of four urbanized catchments in Tucson,
Arizona. We expected that runoff quantity would increase
with impervious cover, rainfall magnitude and cumulative
rainfall, whereas solute concentrations in runoff would
vary inversely with rainfall and discharge magnitude and
decrease as the summer monsoon progressed.

STUDY REGION OVERVIEW AND STUDY PERIOD

The study sites are located within an alluvium-filled valley
in the Basin and Range region of southern Arizona and
form part of the Tucson Metropolitan area, which is
bounded by the Santa Catalina Mountains to the north, the
RinconMountains to the east and the TucsonMountains to
the west. The study sites drain to Rillito Creek (Figure 1),
which along with the Santa Cruz River and its major
tributaries, Canada del Oro, Pantano Wash and Tanque
Verde Creek, flow intermittently towards the northwest
(Wilson et al., 1998). Because these major ephemeral
waterways have been identified as areas of focused
groundwater recharge, they are particularly important for

localized water resources conservation and management.
Intense groundwater mining to support agriculture and
urban growth has lowered the water table up to 61m in
areas of the basin’s central well field, shifting the
streamflow regime of the basin waterways from perennial
to ephemeral (Wilson et al., 1998; Gelt et al., 1999).
The mean annual temperature and precipitation in the

Tucson Basin are 20.2 �C and 310mm, respectively. The
climate is semiarid with an annual potential evaporation
of 1960mm, six times more than the mean annual
precipitation (Wilson et al., 1998; Gelt et al., 1999),
whereas annual evapotranspiration can exceed 250mm
(Unland et al., 1996). Precipitation is distributed
bimodally with approximately 48% of rainfall occurring
during the summer months and 52% occurring in the
winter (Gelt et al., 1999). Summer monsoonal rainfall
events are short in duration, high in intensity, spatially
heterogeneous and follow an extended period of hot and
dry conditions and are driven by atmospheric convection
(Gelt et al., 1999; Hoffmann et al., 2007; Renard et al.,
2008; Stone et al., 2008). Summertime storms generate a
larger fraction of annual runoff than winter precipitation
events (Goodrich et al., 2008; Stone et al., 2008), which
are colder, of lower intensity and longer duration. This
study was conducted during the 2007 and 2008 summer
monsoons, which officially span the period between 15
June and 30 September (Guido, 2008). The Tucson Basin
received approximately 172.2 and 242.8mm of rainfall
during the 2007 and 2008 monsoon, respectively.

METHODS

Catchment characterization

We used surface topography and stormwater drainage
system data provided by the City of Tucson’s Office of
Conservation and Sustainable Development to select study
sites that are hydrologically contiguous and isolated from
adjacent catchments. The selected catchments captured a
range of urban catchment sizes, slopes, orientations and land
uses typical of the Tucson Basin (Gallo et al., in revision). In
brief, percent impervious cover (IC; imperviousness hence-
forth) was 22%, 41%, 46% and 91% in the low-density
(LD), medium-density (MD), mixed (MX) and commercial
(CM) catchment, respectively, and was calculated as

IC ¼ 100
ac

�
Xn

x¼i

aLCx�f ICLCx (1)

where ac is the catchment size or area in square kilometers
and aLCx is the area in square kilometers of land cover x,
whichwere calculated inArcMap 9.0 using the default ‘Area
Calculation by Gauss’ method, and fICLCx is the fraction of
the imperviousness of land cover x obtained from the City of
Tucson’s Office of Conservation and Sustainable Devel-
opment. Here we do not use the 2001 National Land
Cover Database imperviousness product because large
parcels that were not urbanized in 2002 had been
developed by 2005. Other catchment descriptions such
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as channel substrate characteristics and land use can be
found in the work of Gallo et al. (in revision).

Monsoonal rainfall

The spatial distribution ofmonsoonal precipitation in the
Southwest is highly variable (Comrie and Broyles, 2002;
Goodrich et al., 2008; Renard et al., 2008), and most
summertime rain days receive only one precipitation pulse.
Although radar rainfall products exist, they tend to
underestimate convective rainfall depth and overestimate
rainfall duration (Xie et al., 2006). Therefore, to calculate
rainfall depth in millimeters (Pdepth) for any given rainfall
event at each site during the study period, we used an
inverse distance weighted method as outlined by Garcia
et al. (2008) to interpolate spatially distributed precipita-
tion point data obtained from Rainlog.org (http://rainlog.
org) and the Pima County Regional Flood Control District
Automated Local Evaluation in Real Time (ALERT)
System (http://www.rfcd.pima.gov/wrd/alertsys/index.
htm; Figure 1). Several rainfall monitoring sites within
our study catchments were also equipped with Rainlog.org
tipping bucket rain gauges or were located near the ALERT
System tipping buckets. Therefore, we used Rainlog.org
and ALERT System tipping bucket rain gauge data
(tipping resolutions of 2.54 and 1mm, respectively) to
calculate (i) rainfall duration (Pduration) in hours, (ii) time
since antecedent rainfall or time since last rain in days and
(iii) the fraction of rainfall that precipitated during each
rainfall pulse on the few days when more than one rainfall
event was observed. Some studies indicate that under very
high and very low rainfall intensity tipping, buckets may
underestimate Pdepth (e.g. Ciach, 2003). To generate a

spatially weighted catchment wide rainfall intensity
(Pintensity) estimates, we calculated Pintensity by dividing
Pdepth by Pduration. Antecedent rainfall depth, duration and
intensity refer to the Pdepth, Pduration and Pintensity of the
prior rainfall event. Cumulative rainfall over the duration
of the monsoon was calculated by adding the depths of all
monsoonal rainfall events.

Discharge and runoff ratio

We installed pressure transducers (Submerged Flow
Module 720, Teledyne Technologies, Lincoln, Nebraska,
stage accuracy� 0.3 cm) along stable cross sections at the
outlet of each catchment to record stage data every minute.
We calculated instantaneous discharge (Qt) in liters per
second using Manning’s equation (ASCE, 1996):

Qt ¼ A
1000
n

s
1=2R

2
3=

h (2)

where A is the cross-sectional area of flow within the
channel in m2, n is the channel roughness coefficient, Rh is
the hydraulic radius in meters and s is the energy slope. The
energy slope was assumed to be approximately equal to
the bed slope. We chose a Manning’s approach because of
the lack of pre-existing discharge data at these sites and
because generating rating curves presented itself as a
physical hazard because of the flash flood conditions that
accompany monsoonal stream flow. On the basis of the
channel substrate, we used n values of 0.025 for earthen
channels at LD andMX, 0.013 for a concrete lined channel
at CM and 0.024 for a corrugated metal pipe atMD (ASCE,
1996). Owing to data losses during download, we present
discharge data for three of our four sites for 2007.

0 3 Km

CM
MD
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LD
Rillito Creek

Santa Cruz River

Phoenix

Tucson

Imperviousness

0 - 9

10 - 30

40 - 50

60 - 70
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Rain gauges

Rainlog.org volunteer

TP - Rainlog.org

TP - Pima ALERT
Area 
(km2) 

Impervious 
Cover (%) 

Low Density (LD) 4.44 22 
Medium Density (MD) 0.45 41 
Mixed (MX) 4.69 46 
Commercial (CM) 0.33 91 

Figure 1. Location and major characteristics of our five study sites in the Tucson Basin and of rain gauges used to quantify precipitation in the study. All
catchments drain untreated storm runoff to Rillito Creek, a major ephemeral wash. The catchments span a range of sizes (0.32–4.69 km2) and impervious

covers (22%–91%). Black circles denote locations of manual rain gauges, triangles and squares denote location of tipping bucket rain gauges
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Event discharge depth in millimeters (Q, discharge
henceforth) was calculated as

Q ¼ 6� 10�5

ac
�
Xi

t¼0

Qt (3)

where 6.0 � 10�5 is a conversion factor with units of
seconds per cubic millimeter. The event runoff ratio has
units of percentage of Pdepth, calculated by dividing
discharge by Pdepth and multiplying by 100. Monsoonal
discharge accumulated up to and including runoff event i
(CQ, cumulative discharge henceforth) was calculated as

CQ ¼
Xi

i¼1

Qi (4)

Total cumulative monsoonal discharge (CQtot) at each
site per year was calculated by adding the discharge depth
of all monsoonal runoff events. Normalized cumulative
monsoonal discharge for each event (NCQ) was calcu-
lated as the ratio of CQ to CQtot.

Runoff sample collection

Runoff samples were collected every 20 min for up to 4 h
in clean acid washed, combusted (500 �C for 3 h) 1-l glass
bottles using automatic samplers (Teledyne ISCO 6712,
Lincoln, NE) with TeflonW tubing installed at the outlet of
each catchment. An additional uncapped bottle was added
as a control blank, which was filled with deionized water
and processed in the same way as the runoff samples. The
samples were capped with Teflon caps, placed in dark
chilled (~4 �C) coolers and immediately transported to the
University of Arizona for processing.

Laboratory analysis and solute load calculations

Sample aliquots for bacterial analyses were immedi-
ately poured off into sterile 250-ml HDPE bottles and
shipped overnight on ice to the USDA-ARS in Maricopa,
Arizona. All other aliquots were filtered within 24 h of
sample collection and stored at 4 �C with the exception of
aliquots for metal analysis, which were stored at room
temperature. Sample aliquots for nutrient analysis, in-
cluding ammonium-nitrogen (NH4-N), orthophosphate-
phosphorous (PO4-P), dissolved organic carbon (DOC)
and total dissolved nitrogen (TDN), were filtered through
precombusted 0.7-mm glass fiber filters (Whatman GF/F)
and stored in clean precombusted amber glass bottles with
Teflon-lined caps. Aliquots for anion, cation and metal
analyses were filtered through 0.45-mm membrane filters
(Millipore MF). Analysis of NH4-N and PO4-P were
performed on a SmartChem Discrete Analyzer (Westco
Scientific, Brookfield, CT) with detection limit (DL) of
0.002 and 0.001mg l�1 for NH4-N and PO4-P, respectively.
Dissolved organic carbon and TDN analyses were
performed on a Shimatzu TOC/TN Analyzer (Shimadzu,
Columbia, MD) with a method DL of 0.05mg l�1 for DOC
and 0.05mg l�1 for TDN. Anions (Cl, nitrate-N (NO3-N),
nitrite-N (NO2-N) and sulfate-S (SO4-S)) were analyzed in a

Dionex Ion Chromatograph (ICS-3000, DIONEX, San
Jose, CA) with an AS23 column (DL = 0.05mg l�1).
Dissolved organic nitrogen (DON) was calculated by
subtracting NO3-N, NO2-N and NH4-N from TDN. Base
cations (calcium (Ca), sodium (Na), magnesium (Mg),
potassium (K)) and metals (lead (Pb), zinc (Zn), iron (Fe),
copper (Cu), cobalt (Co), nickel (Ni), aluminium (Al),
manganese (Mn), vanadium (V), cadmium (Cd), arsenic
(As) and mercury (Hg)) were analyzed on an inductively
coupled plasma mass spectrometer (Elan DRC-II ICP-MS,
DL = 0.001 mg l�1) using sample aliquots stored in
precleaned glass bottles with Teflon caps and preserved
with nitric acid (HNO3) to approximately 1% and pH 2 to 3.
Escherichia coli analyses followed US Environmental
Protection Agency method 1604 (EPA, 2002). Duplicates
of two sample dilutions (1.0 and 0.1ml) were passed
through a 0.45-mm sterile filter to retain bacteria, plated in
BBL™MI agar (Becton, Dickinson and Co.), supplemented
with 5mgml�1 of cefsulodin to inhibit Gram-positive
bacterial growth and incubated at 35 �C for 24 h. Blue or
indigo colonies were counted as presumptive for E. coli.
Solute loads for each runoff event (Le) were calculated as

Le ¼ 60
Xn

t¼1

ct�Qt (5)

where 60 has units of seconds and ct is the solute
concentration in mass per liter. Linear interpolation was
used to calculate ct between two measured data points.
Monsoonal loads accumulated up to and including runoff
event Le (CLe) were calculated as

CLe ¼
Xi

i¼1

Lei (6)

The CLe for each solute at each site for each year were
summed to calculate the total cumulative monsoonal load
(CLtot). The normalized cumulative monsoonal load
(NCL) for each event refers to the ratio of CLe to CLtot.

Statistical analysis of rainfall–runoff

Statistical analyses of rainfall–runoff and runoff quality
were performed using JMP 8.0.2 (JMPW, Version 8.0.2.
SAS Institute Inc., Cary, NC, 1989-2009). Data were log
transformed before analysis to normalize the distribution
of the variance in our data set (Driver and Troutman,
1989). To determine whether rainfall characteristics were
significantly different between water years and among
sites, we performed mean t-tests across water years and
Tukey–Kramer comparison of means across sites on the
total number of rainfall events, cumulative rainfall, Pdepth,
Pduration, Pintensity, time since antecedent rainfall and
antecedent rainfall depth, duration and intensity. To
identify whether discharge and runoff ratios varied over
the monsoon, we regressed discharge and runoff ratios
versus day of year and cumulative rainfall. We also used
linear regression to determine if discharge and runoff
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ratios varied with imperviousness, catchment size or any
other rainfall characteristic across sites. To determine how
discharge and runoff ratios relate to rainfall characteristics
at each site, we regressed discharge and runoff ratios
against day of year, cumulative rainfall, Pdepth, Pintensity,
Pduration, time since antecedent rainfall and antecedent
rainfall conditions. On the basis of the correlation
analysis, we generated a two-component regression
model for discharge and runoff ratios that included the
multiplicative effects of rainfall characteristics with
imperviousness and catchment size.

Statistical analysis of runoff quality

To identify how solute concentrations changed over the
season, we regressed mean event concentrations (solute
concentrations henceforth) versus day of year and
cumulative rainfall. For further statistical analyses, solute
concentrations, discharge, cumulative discharge and all
rainfall characteristics were log-transformed to linearize
power relationships and to normalize the distribution of
our data (Edwards, 1973; Godsey et al., 2009). We
assessed the effect of rainfall and runoff characteristics
and timing on runoff solute hydrochemistry by calculat-
ing the coefficient of correlation (r) of solute concentra-
tions against discharge, cumulative discharge, runoff
ratios, Pdepth, Pduration, Pintensity, time since antecedent
rainfall, antecedent rainfall conditions, imperviousness
and catchment size. Solute concentration–discharge
relationships (ce–Q) with significant negative slopes were
interpreted as solute dilution, whereas nonsignificant
regressions (slope = 0) were indicative of solute chemos-
tasis (Godsey et al., 2009). Solute chemostatic conditions
indicate that solute concentrations are stable and non-
variant with respect to stream discharge suggesting that
discharge is not a primary control of solute dynamics
(Godsey et al., 2009). We calculated the slope (m) and
performed t-tests (Ho: m= 1) of the NCL to normalized
cumulative discharge regression (NCL-NCQ) to distin-
guish early seasonal flushing (m< 1) from late seasonal
flushing (m> 1) and seasonal chemostasis (m= 1).
Although this technique has been mainly used to describe
event scale solute flushing patterns in urbanized catch-
ments (Deletic, 1998; Lee et al., 2003; Obermann et al.,
2009), here we have modified it similar to Lee et al.
(2004) to identify seasonal solute responses.
We used a standardized Wards clustering analysis (Sall

et al., 2007) on the r values of each solute to rainfall,
runoff and land cover variables to identify groups of
solutes with similar seasonal responses. Only independent
variables with more than four significant solute correla-
tions were included in the clustering analysis. For further
analysis and interpretation, we retained solute response
clusters with a standardized Euclidian distance between
them greater than 2.0. Finally, we use a Tukey–Kramer
method to compare mean coefficients of correlation (�r) of
the previously selected rainfall and runoff characteristics
across solute clusters and test for between grouping
response differences.

RESULTS

Sampling period and monsoonal rainfall

Rainfall–runoff monitoring and water quality collec-
tions spanned a large range of Pdepth and time since the
onset of the monsoon over the 2 years of study (Figure 2).
The 2007 monsoon had significantly (p< 0.05) less
seasonal rainfall than the 2008 monsoon (average
seasonal rainfall of 193 and 247mm, respectively), which
can be attributed to a significantly lower number of
rainfall events in 2007 than in 2008 (23.0 and 28.3
average rainfall events, respectively; Table I). Although
seasonal rainfall was greater in 2008, there were no
significant differences in Pdepth, Pintensity and Pduration or
time since antecedent rainfall between monsoon seasons,
and rainfall characteristics did not vary significantly with
day of year and were similar to those reported in other
studies in the region (e.g. Mendez et al., 2003).

Figure 2. Rainfall hyetographs and discharge for the 2007 (gray) and 2008
(black) summer monsoons at each of our study sites. Circles indicate
discharge events sampled for runoff quality. Discharge records for the

Medium Density site during 2007 are not available
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Discharge and runoff ratio

Across sites, discharge and runoff ratios did not vary
significantly or predictably with day of year or cumulative
rainfall. However, discharge and runoff ratios increased
significantly with Pdepth (r2 = 0.52 and 0.08, respectively),
imperviousness (r2 = 0.20 and 0.65, respectively) and
antecedent rainfall duration (r2 = 0.13 and 0.12, respectively)
and decreased significantlywith catchment size (r2 = 0.15 and
0.20, respectively). Not surprisingly, discharge and runoff
ratios were significantly larger at the commercial site (CM),
which has the highest imperviousness, than at all other sites
(Table I). At each site, discharge and runoff ratios were most
significantly correlated with Pdepth (Table II). The strongest
discharge–Pdepth correlation was at CM (r=0.95) and the
weakest at the low density (LD) site (r=0.47) (Table II).
Correlations of discharge and runoff ratios to Pduration and
Pintensity were weaker than correlations with Pdepth. Interest-
ingly, discharge and runoff ratios correlated significantlywith
antecedent rainfall depth and duration at LD only, whereas
discharge or runoff ratios did not correlate with day of year,
cumulative rainfall or antecedent rainfall characteristics at any
of the sites.
On the basis of the results of the discharge and runoff

ratio regression analyses, we constructed multiple regres-
sion models with discharge and runoff ratio as response
variables and land cover (imperviousness or catchment
size), rainfall characteristics (Pdepth, Pduration, Pintensity or
antecedent rainfall duration) and interactive terms (e.g.
imperviousness � Pdepth) as independent variables. No
significant correlations between imperviousness, catchment
size and rainfall characteristics were observed. Statistical
models including catchment size explained a smaller
fraction of the discharge and runoff ratio variance than
models that included imperviousness. Of the models
generated, the most robust included Pdepth, imperviousness
(IC) and their interaction (Pdepth� IC) and predicted 91%of
the variance in discharge and 75% of the variance in runoff
ratio (p< 0.01; Figure 3). Removing large Pdepth values
from the model returned r2 values of 0.87 and 0.73 for
discharge (Q) and runoff ratio (RR), respectively, demon-
strating that large Pdepth did not weigh disproportionately
into the model. The regression equations are as follows:

Q ¼ �4:91þ 0:23Pdepth
� �þ 0:09ICð Þ

þ 0:01 Pdepth � 13:13
� �

IC� 45:37ð Þ� � (7)

RR ¼ �18:65þ 0:39Pdepth
� �þ 0:58ICð Þ

þ 0:02 Pdepth � 13:13
� �

IC� 45:37ð Þ� � (8)

The next best performing statistical model included
antecedent rainfall duration, imperviousness and ante-
cedent rainfall duration � imperviousness predicted 25%
and 65% of the variance in discharge and runoff ratio,
respectively. Models that included more than two
independent variables (e.g. imperviousness, Pdepth and
antecedent rainfall duration) did not improve the fraction
of the variance explained by the statistical model.
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Table II. Coefficient of correlation and significance of fit (r and p) of discharge and runoff ratio to rainfall characteristics

Catchment (n) Pdepth Pintensity Pduration

Antecedent rainfall

intensity duration

Discharge LD (20) 0.42 (0.04) ns ns �0.47 (0.04) 0.55 (0.02)
MD (17) 0.92 (<0.01) 0.58 (0.01) 0.54 (0.02) ns ns
MX (18) 0.92 (<0.01) 0.69 (<0.01) 0.65 (0.01) ns ns
CM (12) 0.95 (<0.01) 0.77 (0.01) ns ns ns

Runoff ratio LD (20) ns ns ns �0.46 (0.05) 0.57 (0.01)
MD (17) 0.58 (0.01) ns 0.48 (0.04) ns ns
MX (18) 0.70 (<0.01) 0.56 (0.02) ns ns ns
CM (12) 0.64 (<0.01) ns ns ns ns

Nonsignificant correlations (p> 0.05) are reported as ‘ns’.

Figure 3. (a) Observed discharge versus predicted discharge and (b) observed runoff ratio versus predicted runoff ratio from a two-component least
squares statistical model that includes Pdepth, imperviousness and Pdepth � imperviousness. Both models are highly significant (p< 0.01). Dashed lines

denote the 95% prediction interval

Figure 4. Mean seasonal solute concentrations of (a) Cl, (b) DOC, (c) NO3-N and (d) Pb against day of the year during both the 2007 and 2008 monsoon.
We observe a significant exponential decrease in Cl and DOC concentration as the monsoon progresses. In contrast, concentrations of NO3-N and Pb do

not vary significantly over the monsoon

1001TEMPORAL VARIABILITY OF SEMIARID URBAN RUNOFF QUANTITY AND QUALITY

Copyright © 2012 John Wiley & Sons, Ltd. Hydrol. Process. 27, 995–1010 (2013)



Solute hydrochemistry

Most solute concentrations exhibited seasonal responses
like those illustrated by Cl and DOC, where concentrations
decreased significantly and exponentially with increasing
day of year (Figures 4a and 4b) and cumulative rainfall.
However, NO2-N, E. coli and PO4-P concentrations
exhibited seasonal responses similar to those illustrated
by NO3-N and Pb, which remained invariant with respect
to day of year (Figures 4c and 4d) and cumulative rainfall.
Solute concentration responses to Pdepth, Pduration, time

since antecedent rainfall, discharge and cumulative
discharge varied in their strength and direction (Table III).
For example, as illustrated in Figures 5a and 5b, DOC
significantly decreased as discharge increased, NO3-N
weakly increased (0.1> p> 0.05) with discharge and Cl
and Pb varied independently of discharge and behaved
chemostatically (m = 0). Similarly, the log–log regressions
of solute concentration versus cumulative discharge
indicate that Cl and DOC significantly decreased as
cumulative discharge increased, NO3-N significantly
increased with cumulative discharge and Pb behaved
chemostatically (Figures 5c and 5d). Most solute
concentrations (n> 19) significantly decreased as cumu-
lative discharge and Pduration increased and significantly

increased as time since antecedent rainfall increased.
About half the solutes significantly decreased as dis-
charge and Pdepth increased, and most solutes did not
correlate with imperviousness, catchment size (Table III),
Pintensity or antecedent rainfall depth, intensity and
duration. Interestingly, E. coli did not correlate signifi-
cantly with any rainfall or runoff characteristics. The
NCL-NCQ analyses indicate that about half of the solutes
(n= 12) exhibited an early season solute flush (m< 1;
Table III), for example, Cl and DOC (Figures 6a and 6b),
whereas approximately half (n= 12) exhibited seasonal
solute chemostasis (m= 1), for example, NO3-N and Pb
(Figures 6c and 6d). Interestingly, PO4-P was the only
solute to exhibit a late seasonal flush (m> 1).
Five distinct seasonal solute response patterns, clusters

C1–C5, were identified with the clustering analyses
(cluster distance> 2.0; Figure 7). The mean correlation
( �r ) and maximum significance values of solute
concentrations versus Pdepth, Pduration, time since ante-
cedent rainfall, discharge and cumulative discharge and
the mean NCL-NCQ regression slope (�m) for each cluster
(Table IV) highlight differences in seasonal solute cluster
responses to rainfall and runoff. Specifically, cluster C1
was the only cluster that was significantly and negatively

Table III. Correlations (r) of mean storm solute concentrations to select rainfall and runoff characteristics, imperviousness and
catchment size; and slope of normalized cumulative load to normalized cumulative discharge regression (mNCL-NCQ)

Solute Pdepth
a Pduration

a
Time since
last rainb

Discharge
depthc

Cumulative
dischargec

Impervious
covera

Catchment
areaa mNCL-NCQ

c

Cl �0.35 * �0.57 * 0.61 * �0.24 �0.48 * 0.31 ** �0.18 0.90*
NO2-N �0.27 0.06 0.34 * �0.01 �0.13 0.09 �0.03 0.90**
NO3-N �0.04 0.37 * �0.41 * 0.36 ** 0.49 * �0.06 0.02 1.01
NH4-N �0.37 * �0.43 * 0.31 ** �0.41 * �0.55 * �0.01 �0.20 0.88 **
DON �0.52 * �0.45 * 0.43 * �0.19 �0.44 * �0.02 �0.04 0.50*
SO4-S �0.57 * �0.54 * 0.62 * �0.43 * �0.6 * 0.10 �0.03 0.87*
PO4-P �0.04 0.24 �0.38 * 0.45 * 0.40 * 0.34 * �0.14 1.06*
DOC �0.51 * �0.57 * 0.66 * �0.51 * �0.71 * �0.11 0.01 0.80*
Escherichia colid �0.09 0.09 0.44 �0.04 �0.24 0.38 0.31 n.a.
Ca �0.09 �0.49 * 0.56 * �0.26 �0.35 * 0.12 �0.1 0.97
K �0.25 �0.48 * 0.71 * �0.33 �0.68 * �0.12 �0.03 0.96
Mg �0.43 * �0.55 * 0.66 * �0.45 * �0.66 * �0.06 �0.13 0.95
Na �0.28 �0.48 * 0.64 * �0.27 �0.37 * 0.26 �0.13 0.93
As �0.16 �0.52 * 0.64 * �0.23 �0.45 * 0.01 0.02 0.96*
Al �0.04 �0.24 0.41 * �0.25 �0.41 * �0.22 0.02 0.98
Cd �0.29 ** �0.43 * 0.47 * �0.35 ** �0.44 * 0.22 �0.35 * 0.93
Co �0.48 * �0.52 * 0.46 * �0.40 * �0.69 * �0.05 �0.19 0.87*
Cu �0.57 * �0.58 * 0.70 * �0.35 ** �0.6 * 0.15 �0.12 0.88*
Fe �0.25 �0.35 * 0.41 * �0.45 * �0.67 * �0.20 0.07 0.99
Hg �0.64 * �0.56 * 0.63 * �0.84 * �0.70 * 0.11 �0.16 0.90
Mn �0.49 * �0.49 * 0.53 * �0.53 * �0.68 * �0.25 �0.03 0.95
Ni 0.03 �0.34 * 0.53 * �0.11 �0.24 0.06 �0.19 0.93
Pb 0.27 0.01 0.33 * 0.01 0.05 0.03 �0.27 0.97
V �0.41 * �0.61 * 0.73 * �0.40 * �0.65 * 0.12 �0.18 0.93*
Zn �0.46 * �0.46 * 0.65 * �0.28 �0.45 * 0.27 �0.27 0.81*

Only rainfall variables that yielded significant solute regressions are shown. Correlations with a significance level less than 0.1 are in bold.
a n= 35 for all solutes except for E. coli, where n= 9, and Hg, where n= 13.
b n= 31 for all solutes except for E. coli, where n= 9, and Hg, where n= 13.
c n= 26 for all solutes except for E. coli, where n= 6 and Hg, where n= 9.
d Because E. coli was only measured for two to three storm events for each site, we have not calculated NCL.
*Solute correlations and mNCL-NCQ with p< 0.05.
**Solute correlations and mNCL-NCQ with 0.05< p< 0.1.
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correlated with Pdepth (�r= �0.51). Clusters C1 and C2
were significantly and negatively correlated with Pduration

(�0.56 and �0.46, respectively). Clusters C1, C2 and C3
were positively correlated with time since antecedent

rainfall, with C1 having the strongest significant positive
correlation (�r= 0.62, 0.53 and 0.53 for C1, C2 and C3,
respectively), whereas C5 exhibited a significant negative
correlation to time since antecedent rainfall (�0.39). Only

Figure 5. Mean event concentrations of Cl, DOC, NO3-N and Pb against (a and b) discharge and (c and d) cumulative discharge. Data that plot along a 0
slope line denote solute chemostasis, whereas points plotting along a �1:1 line exhibit solute dilution

Figure 6. NCL versus NCQ for Cl, DOC, NO3-N and Pb. Solid lines denote slope (m) = 1; dotted lines are regressions for NCL-NCQ. Slopes (m)< 1
denote early seasonal solute flushing, m> 1 indicate late season flush and m= 1 indicate seasonal solute chemostasis
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clusters C1 and C5 were significantly correlated with
discharge; C1 was negatively correlated (�0.48), whereas
C5 was positively correlated (0.41). A similar pattern was
observed for cumulative discharge where C1 had a
stronger significant negative correlation (�0.67) than C2
(�0.51) and C5 had a significant positive correlation
(0.47). Curiously, C4 was not significantly or strongly
correlated to any of the aforementioned variables,
although the strongest correlation was with time since
antecedent rainfall.

DISCUSSION

Hydrology

Although a larger number of rainfall events led to
greater cumulative seasonal rainfall for the 2008 mon-
soon, the consistency of rainfall characteristics across
sites and years suggests that the differences observed in
discharge and runoff ratios across catchments arise
because of differences in rainfall partitioning at each site.
Across sites, the runoff ratios that we report in this study
agree with runoff ratios reported for other arid and
semiarid urban catchments (Ishaq and Alassar, 1999;
Goldshleger et al., 2009) and are consistent with other
studies where the smallest and largest discharge and
runoff ratios occur at the lowest and highest impervious-
ness (Arnold and Gibbons, 1996; Rose and Peters, 2001;
Lerner, 2002; Burns et al., 2005; Endreny, 2005; Shuster

et al., 2005; Glick, 2009). The runoff ratios that we report
are larger than those in nonurbanized catchments in the
semiarid Walnut Gulch Experimental Watershed (e.g.
mean runoff ratios of 2.4, 4.6 and 5.5 % at watersheds 11,
112, and 4, respectively; http://www.tucson.ars.ag.gov/
dap/; Goodrich et al., 2008), providing further evidence
that urbanization increases runoff quantity in small
semiarid catchments and suggesting that urbanization
alters the localized water balance by reducing catchment
water storage and enhancing runoff generation.
Hydrologic responses at the more impervious sites,

MD, MX and CM, appear to be mainly controlled by the
depth of each individual rainfall event and not by the
temporal distribution of rainfall. The larger impervious-
ness and therefore smaller soil footprint at these sites may
explain the lack of correlation of discharge and runoff
ratio to antecedent conditions, cumulative rainfall and
time since antecedent rainfall, which point to the absence
of seasonal catchment wetting. It is plausible that by
reducing pervious surfaces, imperviousness diminishes a
catchment’s capacity for soil-water storage, which when
combined with the high daily evapotranspirative demand
typical of arid and semiarid regions (Howell et al., 1983;
Grimmond and Oke, 1999), may decrease or eliminate the
effect that antecedent conditions could affect rainfall–
runoff responses.
In contrast, antecedent conditions explain a significant

fraction of the variance in discharge and runoff ratio at
LD (Table II), which is the least impervious (21%) site,
suggesting that the degree of catchment wetting before a
rainfall event is a more important control of hydrologic
responses at low imperviousness than Pdepth and Pintensity.
Several studies clearly demonstrate that antecedent
conditions significantly affect rainfall–runoff processes
in nonurbanized semiarid catchments (Osborn and Lane,
1969; Loik et al., 2004); however, similar results have
been reported in only a handful of urban studies and
laboratory experiments (e. g. Shuster et al., 2008; Smith
et al., 2005). It is plausible that a larger fraction of rainfall
is partitioned into soil infiltration and ephemeral channel
storage at this low imperviousness site, thus reducing the
soil-water storage capacity and increasing the proportion
of rainfall partitioned into runoff during subsequent
precipitation events.
Our analyses indicate that independently, Pdepth,

imperviousness and all other rainfall variables are poor
predictors of hydrologic responses. However, our two-
component statistical model indicates that combined,
Pdepth and imperviousness impart a significant effect on
discharge and runoff ratios (Figure 3; Equations 7 and 8).
Specifically, our model suggests that the hydrologic
responses resulting from any given rainfall input largely
depend on the degree of imperviousness.
Although our study was not designed to test the effect

of catchment size on hydrologic responses, our data
indicate that discharge and runoff ratios decrease with
increasing catchment size, which is consistent with
observations made in other semiarid sites (Boughton
and Stone, 1985; Stone et al., 2008). Surprisingly, models
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in our study including catchment size and Pdepth did not
yield significant statistical predictions of discharge and
runoff ratio. We hypothesize that shifts in rainfall
partitioning post-urbanization as well as the high spatial
variability of summertime convective rainfall may obscure
the effect of catchment size on discharge magnitude
and timing. In summary, we show that urbanization alters
rainfall partitioning in semiarid catchments resulting in
decreased seasonal catchment wetting and enhanced
delivery of event runoff to ephemeral waterways, suggest-
ing that by delivering more runoff to areas of focused
recharge, urbanization may enhance renewable ground-
water supplies.

Water quality

In contrast with a large body of literature documenting
urban runoff quality across a range of climates, we found
that the overall quality of urban runoff does not vary in
response to catchment size or imperviousness (Table III,
e.g. Brabec et al., 2002; Glick, 2009; Schueler et al., 2009;
Walsh et al., 2005; Wenger et al., 2009), suggesting that
variable solute sourcing and pervious areas play an
important role in solute transport during storm events and
retention between storm events. Consistent with a large
number of urban (e.g. Lee et al., 2002; Westerlund et al.,
2003; Asaf et al., 2004; Soller et al., 2005) and nonurban
studies (e.g. Kirchner et al., 2000; Welter et al., 2005;
Godsey et al., 2009), we observed variable solute
responses to rainfall and discharge (Figures 4 and 5;
Table III). Specifically, several solutes exhibited event and
seasonal solute dilution, whereas other solutes did not vary
with discharge and cumulative discharge, indicating event
and seasonal chemostasis. The NCL-NCQ regressions for
half of the solutes addressed in this study are indicative of
early seasonal solute flushing (Figure 6 and Table IV),
which are consistent with observations made by Asaf et al.
(2004) and Lee et al. (2004) and which are clearly
highlighted by the exponential decay of Cl and DOC
(Figure 4), among others, over time.
Most striking is that most solute concentrations, with

the exception of NO3-N and PO4-P, varied positively with
time since antecedent rainfall, suggesting that mobile
solute reservoirs increase with increasing time between
rainfall events. Our results are consistent with the
‘pollutant washoff’ concept and with literature where
solute loads are, in part, reported to be a function of the
length of time between rainfall events (e.g. Barbe et al.,
1996; Lee et al., 2004; Soller et al., 2005; Maestre and
Pitt, 2006; Lewis and Grimm, 2007; Soonthornnonda
et al., 2008; Avellaneda et al., 2009). It is important to
note that an increase in the magnitude of solute reservoirs
does not exclusively refer to solute store replenishment via
wet and aeolian deposition. Mechanisms that may increase
the magnitude of easily mobilized solute reservoirs include
physical and chemical weathering of geologic and urban
materials (Norra et al., 2008), photo degradation of organic
matter (Austin and Ballare, 2010), nonpoint solute
sourcing (Lohse et al., 2008), variable contributing areas

and solute transport (Bencala, 1984; Harms and Grimm,
2010) and processes such as decomposition and
mineralization of organic matter in soils (Schlesinger,
1997) of pervious areas and within stream channels.
Overall, our study supports the findings of Lee et al.
(2004), who show that antecedent dry days have a
larger effect on solute concentrations than rainfall
characteristics.
The high variability of solute responses to rainfall and

runoff presents a challenge in identifying the factors that
control urban runoff quality. However, with the clustering
analysis, we identified five solute response patterns that
point to distinct solute sourcing and mobilization mechan-
isms (Table IV). Clusters C1 and C2 exhibit similar solute
response patterns. The negative correlation of C1 solutes to
Pduration and discharge, and the significant positive
correlation to time since antecedent rainfall suggests that
these solutes are readily flushed during runoff events and
that solute reservoirs rapidly increase in magnitude
between runoff events. The significant negative correlation
of C1 and C2 to cumulative discharge and the NCL-NQL
slopes point to an early seasonal solute flush and to
potential solute retention and cycling later in the season
of biogeochemically active solutes like DOC, SO4-S, DON
and NH4-N. The major difference in the response between
C1 and C2 responses is that C1 solutes appear to be more
readily mobilized than C2 solutes as indicated by the
stronger negative Pdepth, discharge and cumulative dis-
charge correlations. Interestingly, priority pollutants such
as Zn, Co, Cd and Hg (Athayde et al., 1983) and
biogeochemically active solutes DOC, SO4-S, DON and
NH4-N clustered with C1 and C2, suggesting that in
semiarid catchments, major factors controlling urban
runoff quality are solute mobilization and potential
retention and biogeochemical cycling as wetting event
magnitude and duration increases.
Concentrations of C3 solutes, in contrast, do not vary

significantly with Pdepth or discharge, although mobile
solute reservoirs appear to increase rapidly in magnitude
between rainfall events and do exhibit a very weak early
season solute flush. These complex responses may arise
from variable solute sourcing and mobilization. Cluster
C3 solutes, specifically Ca and Ni, are geologically
abundant in the Tucson Basin (Robertson, 1989;
Tadayon, 1995a; Tadayon, 1995b). It is plausible that
early season mobilization of large solute stores accumu-
lated over the dry months preceding the summer
monsoon, coupled with widespread solute sourcing
throughout the monsoon and weathering of geologic
materials during and between rainfall events, results in
solute chemostasis with respect to discharge and an
overall weak seasonal flushing response.
Cluster C4 exhibits the strongest solute chemostasis,

indicating that solute mobilization is invariant over time.
Solute chemostasis may arise from variable solute
sourcing and transport among our sites. For example,
we expect E. coli stores to increase at different rates among
our sites between rainfall events because known E. coli
sources (e.g. wildlife, agricultural livestock and pets) are
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related to land use. The variability of solute sourcing
across sites results in a chemostatic response pattern.
Therefore, we suggest that the seasonal dynamics of C4
solutes are more tightly linked to the spatial characteristics
of land cover than to the temporal characteristics of rainfall
and runoff (Gallo et al., in revision).
Finally, cluster C5 is the only cluster that exhibits a

significant positive response to discharge and cumulative
discharge, a late season flush and decreasing solute
concentrations with increasing time since antecedent
rainfall. Phosphorous (P) mobility in desert soils with
abundant carbonates is driven by the preferential sorption
of P to Ca and subsequent precipitation of Ca-P
complexes (Lajtha and Schlesinger, 1988; Gonzalez-
Pradas et al., 1993; Cross and Schlesinger, 2001; Carreira
et al., 2006). Laboratory experiments show that a fraction
of labile sorbed phosphorous can be released with salt and
acidic solutions (Cross and Schlesinger, 2001; Carreira
et al., 2006) within hours of soil treatment (Shariatmadari
et al., 2006; Biabanaki and Hosseinpur, 2009). The rapid
desorption and mobilization of phosphorous observed in
laboratory experiments suggests that the PO4-P we
observed in runoff could be mobilized after soil wetting
and may vary with the extent of wetting, resulting in
increasing concentrations with increasing discharge and
cumulative discharge. Interestingly, PO4-P was the only
solute to exhibit a significant positive correlation with
imperviousness. Although a type I error could explain this
relationship, it is plausible that in addition to sourcing
form Ca-P complex dissolution, elevated PO4-P depos-
ition, as has been shown in the urban core of Phoenix,
Arizona (Lohse et al., 2008), in the months preceding the
monsoon and enhanced mobility from impervious areas
result in a positive correlation of solute concentrations
with imperviousness.
With regard to NO3-N, water limitations and the quick

resetting of moisture conditions in the interstorm period
(Table II) may limit biogeochemical processes such as
nitrogen mineralization and fixation and subsequent
NO3-N production in soils. Physical sorption and precipi-
tation of PO4-P in soil solution and biological uptake of
PO4-P and NO3-N are additional mechanisms that may
decrease solute stores as time since antecedent rainfall
increases. Although decreasing PO4-P with increasing time
since antecedent rainfall is reported in at least one other
study (Passeport and Hunt, 2009), the arid land literature
reports increasing rather than decreasing NO3-N as time
since antecedent rainfall increases because of elevated
nitrification after a rainfall pulse and as flow path length
increases (Welter et al., 2005). It is plausible that the
changes in flow paths and the quickly resetting moisture
conditions alter physical and biogeochemical processes
that control nitrogen, phosphorous and carbon fluxes and
transformations in urban catchments. Further work is
needed to assess how urbanization alters biogeochemical
processes and nutrient cycling pathways given that the soil
properties, the magnitude and frequency of wetting, the
type of urban landscape and the length and characteristics
of flow paths significantly affect nitrogen dynamics in

semiarid regions (Loik et al., 2004; Welter et al., 2005;
Hall et al., 2009; McIntyre et al., 2009).

CONCLUSIONS

The variability of hydrologic responses across the study
sites was best explained by the combined effect of rainfall
depth with imperviousness, indicating that the effect of
rainfall on runoff responses varies with the extent of
imperviousness. With the exception of the low impervi-
ousness catchment, we found no evidence of seasonal
catchment wetting resulting in increased water yields
across our sites. Combined with increases in discharge
and runoff ratio as imperviousness increases, our study
suggests that urbanization enhances rainfall partitioning
to runoff, decreases the potential for catchment water
storage and enhances the resetting of moisture conditions
between rainfall events. Solute concentrations in runoff
did not vary with catchment size or imperviousness, and
most mobile solute reservoirs increased with increasing
time since antecedent rainfall. Using clustering analyses,
we identified five general seasonal solute responses: (i)
strong event and seasonal solute flush, (ii) event
chemostasis and strong seasonal solute flush, (iii) event
chemostasis and weak seasonal flush, (iv) event and
seasonal chemostasis and (v) late seasonal flush.
Together, our results show that urbanization enhances

the fraction of rainfall delivered to the major ephemeral
waterways of the region, which, through focused
recharge, may be beneficial for sustaining local water
resources. However, rapid resetting of moisture conditions,
particularly at higher imperviousness, may limit biogeo-
chemical processing of solutes between wetting pulses,
which combined with rapid buildup of solute reservoirs
between rainfall events, enhances solute transport during
runoff, pointing to a direct trade-off between the quantity
of runoff available for recharge and its effect on
groundwater supplies. Further research is needed to assess
the extent to which urban runoff in semiarid regions alters
biogeochemical processing between rainfall events and
subsequent solute sourcing, transport and groundwater
quality. However, we show that hydrologic responses of
semiarid catchments are controlled by imperviousness and
event scale hydrologic partitioning, whereas wetting
magnitude, frequency and timing alter solute stores readily
available for transport and control seasonal hydrochemical
responses. We suggest that stormwater monitoring should
be designed to capture a range of rainfall depths and
antecedent dry days throughout the season to appropriately
assess the effect of best management practices on storm-
water quality.
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