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A Graphical Method to Evaluate Spectral Preprocessing in
Multivariate Regression Calibrations: Example with
Savitzky–Golay Filters and Partial Least Squares Regression

STEPHEN R. DELWICHE* and JAMES B. REEVES, III
USDA/ARS, Beltsville Agricultural Research Center, Food Quality Laboratory, Building 303, BARC-East, Beltsville, Maryland 20705-2350
(S.R.D.); and USDA/ARS Environmental Management and Byproduct Utilization Laboratory, Beltsville, Maryland, 20705-2350 (J.B.R.)

In multivariate regression analysis of spectroscopy data, spectral

preprocessing is often performed to reduce unwanted background

information (offsets, sloped baselines) or accentuate absorption features

in intrinsically overlapping bands. These procedures, also known as

pretreatments, are commonly smoothing operations or derivatives. While

such operations are often useful in reducing the number of latent

variables of the actual decomposition and lowering residual error, they

also run the risk of misleading the practitioner into accepting calibration

equations that are poorly adapted to samples outside of the calibration.

The current study developed a graphical method to examine this effect on

partial least squares (PLS) regression calibrations of near-infrared (NIR)

reflection spectra of ground wheat meal with two analytes, protein content

and sodium dodecyl sulfate sedimentation (SDS) volume (an indicator of

the quantity of the gluten proteins that contribute to strong doughs).

These two properties were chosen because of their differing abilities to be

modeled by NIR spectroscopy: excellent for protein content, fair for SDS

sedimentation volume. To further demonstrate the potential pitfalls of

preprocessing, an artificial component, a randomly generated value, was

included in PLS regression trials. Savitzky–Golay (digital filter) smooth-

ing, first-derivative, and second-derivative preprocess functions (5 to 25

centrally symmetric convolution points, derived from quadratic polyno-

mials) were applied to PLS calibrations of 1 to 15 factors. The results

demonstrated the danger of an over reliance on preprocessing when (1)

the number of samples used in a multivariate calibration is low (,50), (2)

the spectral response of the analyte is weak, and (3) the goodness of the

calibration is based on the coefficient of determination (R2) rather than a

term based on residual error. The graphical method has application to the

evaluation of other preprocess functions and various types of spectroscopy

data.

Index Headings: Preprocessing; Savitzky–Golay; Near-infrared spectros-

copy; NIR spectroscopy; Partial least squares; PLS; Derivative;

Smoothing; Regression.

INTRODUCTION

Near-infrared (NIR) spectroscopy is widely used for
quantitative analysis in the chemical, food, and pharmaceutical
industries because of its ability to generate rapid results and,
more often than not, the accuracy of its predictions. The
success of this technology has come about through the parallel
development of the multivariate statistical regression proce-
dures. Foremost among these procedures has been partial least
squares (PLS) regression. Initially developed in the field of
econometrics1 and later expanded into chemometrics,2 this
procedure has become the technique of choice for NIR
practitioners. Essentially, the PLS procedure, when applied to
NIR spectra typically consisting of several hundred points per
spectrum, reduces the number of needed points of the x block

(the spectra) to a number that is representative of the rank of
the data with respect to the y block (the regression variable).
The PLS regression algorithm works to maximize the
covariance between the y vector and any linear function of
X, the matrix of the spectra, performing this successively with
the residuals from the preceding component.3

Often, to enhance the wanted features of the spectra before
the actual application of the PLS procedure, certain transfor-
mations are performed on the spectral data to reduce unwanted
effects of light scatter caused by features of the physical
structure (i.e., particle size) of the medium. The most common
transformations are the first and second derivatives, which
allow for the removal of vertical offsets and linearly sloping
baselines. In certain instances, derivative preprocessing can
produce calibrations with the lowest prediction error.4

However, accompanying the derivative transformations is the
potential of an increase in noise in the transformed spectra and
the possibility of an apparent, but false, improvement in the
correlation between spectral and chemical readings. These
derivatives when applied to spectra consisting of several
hundred discrete values are actually numerical approximations
of true derivatives of continuous functions that match the
appearance of the spectra.

The common numerical algorithm for the derivative is the
Savitzky–Golay (S-G) approach,5 which is based on a localized
linear regression of several neighboring points to determine a
best fit polynomial, whereupon this polynomial can be
mathematically differentiated and evaluated at the x values
coincident with wavelength collection points. In practice, a
mathematical equivalent of the regression and differentiation
procedure is performed by a convolution with a set of derived
coefficients.6 The NIR practitioner then finds the convolution
window width that produces the best PLS calibration. Too
large a window results in a distortion of the derivatized curve,
while too small a window can introduce unwanted noise. Prior
knowledge of the filter settings for S-G derivatives that produce
optimal model performance is generally not known and
therefore requires time-consuming search schemes.7

The goal of this study is to showcase a graphical procedure,
based on contour plotting, that can be used in the evaluation of
PLS preprocessing operations. An additional goal is to
demonstrate through example the dangers of an over-reliance
on the derivative, including the zeroth order (smooth), as a
spectral pretreatment. This is done by using a set of low-noise
NIR spectra of ground wheat, for which two chemical
properties are known. The first property, protein content, is
known to produce highly accurate NIR calibrations. The other
property, sodium dodecyl sulfate (SDS) sedimentation volume,
is of intermediate quality in modeling ability. Used as a protein
quality indicator, SDS sedimentation is a measurement of the
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settling volume of flour or meal hydrated in a solution (of
water, SDS, and lactic acid) that produces a differential
swelling and flocculation of glutenin and other insoluble
constituents.8 A third, fictitious property, derived by random
number assignment, is introduced to demonstrate the pitfalls of
a PLS analysis when sample size, method of validation,
derivative window width, and number of PLS factors are not
carefully considered.

EXPERIMENTAL

Samples. Ground wheat was used in this study, as this is a
formulation that is ideally suited to diffuse reflection NIR
spectroscopy and has been reported on for more than 30 years.9

The wheat samples originated from a breeder’s field perfor-
mance trials of hard red winter and hard white wheat in
Nebraska. Field replicated plots of approximately ten white and
ten red cultivars/lines of wheat were planted at ten geographical
locations within the state, which provided diversity in weather
and soil conditions. Additional information on these samples
can be found in a previous study.10

At each location, randomized plots were completely
replicated twice, such that the number of samples available

for spectral analysis was as follows: 2 field reps 3 2 wheat
classes 3 10 lines 3 10 locations ’ 400. Approximately 15 g of
each sample was ground in a cyclone mill (Udy, Fort Collins,
CO) equipped with a 0.5 mm screen. The ground samples were
held, one location at a time, at 33% relative humidity (at ’22
8C) in a desiccator containing a saturated solution of MgCl2
until the time of scanning. Grinding, conditioning, and
scanning took place as each location’s samples were delivered,
which occurred over a two-month period.

Analytes. Although the original study contained a number
of properties of interest to wheat breeders, such as yield and
environmental stress indicators,10 only two are used herein.
The two properties, protein content and SDS sedimentation
volume, were purposely chosen because the first is easily and
very accurately measureable by NIR, while the second is also
measurable by NIR but at a much lower level of performance.
A third ‘‘analyte’’ was generated for this study. Random
numbers were drawn from a normal distribution with a mean
equal to 100 and standard deviation equal to 15.

Protein Content. Protein content (N 3 5.7) was measured by
combustion (Model FP-428, Leco, St. Joseph, MI). Each
sample was measured in duplicate 150 mg portions, then
averaged. Precision of this procedure, determined as the
standard deviation of 88 single analyses conducted on portions
of the same sample over a one-month period, was 0.109%
protein by weight.

Sodium Dodecyl Sulfate Sedimentation Volume. Measure-
ment of SDS sedimentation volume was by AACC Approved
Method 56-70,11 with slight modifications. Briefly, ground
wheat (’2 g, ,0.5 mm particle size) was added to a fixed
volume of distilled water (’25 mL) in a graduated cylinder and
agitated for several minutes. Upon agitation, the volume was
doubled by addition of a solution of 3.0% (w/w) sodium
dodecyl sulfate and 2.0% (w/w) 1.2 N lactic acid stock
solution, whereupon the mixture was agitated for several more
minutes. After resting in the vertical position for 20 minutes,
the sediment volume was measured. Precision of this
procedure, as determined by the standard deviation of 30
replications on one control wheat over a one month period, was
2.2 mL.

FIG. 1. Distributions of the analytes used in PLS calibration and validation
trials: (A) protein content and (B) SDS sedimentation volume.

FIG. 2. Characterization of spectral noise, as represented by the standard
deviation of the difference between raw and Savitzky–Golay smoothed spectra
of the calibration samples (n¼198) at the two extremes in convolution window
width (5 and 25 points). Also included is the mean raw spectrum (right axis
scale).
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FIG. 3. Contour plots of PLS regression trials of protein content, using three Savitzky–Golay preprocess functions, (A) smooth, (B) first derivative, and (C) second
derivative. Within each preprocess function, a column corresponds to the number of samples used in calibration (first¼ 30, second¼ 58, third¼ 114, fourth¼ 198)
and a row corresponds to a normalized statistical figure of merit (top ¼ cross-validation RMSD/SD198 calibration samples, middle ¼ R2, bottom ¼ validation SEP/
SD200 validation samples).
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Near-Infrared Acquisition. Diffuse reflection (1100–2498
nm) readings of ground meal in a 30 mm diameter ring cell
with quartz window were recorded at 2 nm increments (700
points total) using an analytical scanning monochromator
(Foss-NIRSystems Model 6500, Laurel, MD) equipped with a
spinning cup module. Reflectance readings (32 scans) were
referenced to corresponding readings from a ceramic tile
collected before each sample. Log(1/R) values of duplicate
packs were averaged and stored to disk for later analysis.

Partial Least Squares Analysis. For each analyte, the
number of calibration samples consisted of four sizes, ranging
from the maximum number available in one field replicate
(198), to a first subset of 114 samples, and to a remaining sub-
subset and sub-sub-subset of 58 and 30 samples, respectively.
The smallest set was formed by ordering all calibration samples
by the analyte, selecting the first and last sample, and selecting
a sample from each of 28 equally spaced groups. The
intermediate sized sets were formed by selecting one or three
additional samples from each group. The ordering procedure
and subset formation was separately performed for each of the
three analytes. The other field replicate (n¼ 200) was reserved
for model validation. Histograms of the sets used in PLS
calibrations for protein content and SDS sedimentation volume
are shown in Fig. 1. Similarly, histograms of the validation set
for these two analytes are contained in this figure.

Partial least squares (PLS-1) regressions on mean-centered
data were performed separately on each of the three analytes. A
one-sample-out cross-validation scheme was employed. Three
common spectral preprocesses involving S-G convolutions
(smooth, first derivative, and second derivative) were sepa-
rately applied. In each case, centrally symmetric convolution

windows varying from 5 points (10 nm) to 25 points (48 nm) in
increments of 2 points (4 nm), based on quadratic polynomials,
were applied and PLS calibrations were developed thereupon.
The degree of noise in the spectra is represented by plots of the
standard deviation of differences between the raw and
smoothed spectrum at convolution windows of 5 and 25
points (Fig. 2). During PLS modeling, the number of factors
ranged between 1 and 15, with the following statistical indices
recorded at each number: root mean square of the differences
(RMSD) of the cross-validation, multivariate coefficient of
determination of the calibration equation (R2), and standard
deviation of the residuals (i.e., standard error of performance)
of the validation set (SEP). Partial least squares routines were
implemented in SAS (v. 9.1.3, SAS Institute, Inc., Cary, NC)
using the PLS procedure (PROC PLS) in a macro program
statement structure that allowed for looping across the number
of factors and the convolution window width.12 Later, the
RMSD and SEP values were divided by the standard deviation
(SD) of the analyte’s reference values from the calibration and
validation sets, respectively. Contour plots of the normalized
statistical indices were formed from 165 entries (11 convolu-
tion window sizes 3 15 PLS factors) per plot.

RESULTS

Protein Content. The modeling results of the various PLS
trials with n¼ 30, 58, 114, and 198 calibration samples, with a
S-G smoothing preprocess of varying window width (5 to 25
points) and PLS factors (1 to 15) are summarized in the contour
plots of Fig. 3A. The graphs in Fig. 3A, as well as all
remaining figures, are arranged in three rows and four columns.
Each column corresponds to a calibration with a fixed number

FIG. 3. Continued.
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FIG. 4. Contour plots of PLS regression trials of SDS sedimentation volume, using three Savitzky–Golay preprocess functions, (A) smooth, (B) first derivative, and
(C) second derivative. Within each preprocess function, a column corresponds to the number of samples used in calibration (first¼ 30, second¼ 58, third¼ 114,
fourth¼198) and a row corresponds to a normalized statistical figure of merit (top¼ cross-validation RMSD/SD198 calibration samples, middle¼R2, bottom¼validation
SEP/SD200 validation samples).
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of samples: 30, 58, 114, and 198 for the first, second, third, and
fourth columns, respectively. The first row represents one-
sample-out cross-validation RMSD normalized by the SD (n¼
198) of the analyte by the reference method (i.e., RMSD/SD).
The second row represents the R2 value of the calibration, and
the third row of graphs is similar to the first row, but with the
SEP of the validation set (n¼ 200) normalized by the SD of the
reference values for this set (SEP/SD). Each row contains a
legend for the contour values that applies to all graphs within
the row.

Apparent from normalized RMSD values (first row of
graphs) of Fig. 3A is a lack of effect of S-G window width, as
shown by the horizontal striped appearance of these graphs.
Over the convolution width range of 5 points (8 nm) to 25
points (48 nm), RMSD is basically unchanged. The much
larger effect on RMSD occurs as the number of PLS factors is
varied; in the case of protein content, the RMSD improves as
the number of samples is increased and the number of factors is
increased. At the two larger sample number sets (114 and 198),
model performance is nearly identical, such that for 10 to 15
PLS factors the RMSD approaches 5% of the natural variation
of the analyte. Even the 30-sample RMSD graph indicates
model performance consistent with the models developed using
the larger numbers of samples. This observation is not true
when comparing the R2 graphs (second row). Based on R2

alone, the 30-sample calibration appears superior to the higher
sample calibration equations, both in terms of higher values
and a smaller number of factors needed to achieve these
elevated values, with R2 . 0.98 for calibrations of seven
factors and higher. However, as the number of samples

increases, especially when going from 58 to 114, the R2 values
decline slightly, though they are still greater than 0.95. The
appearances of the 114- and 198-sample R2 graphs are nearly
identical, which indicates that the potential change in protein
content calibration performance with sample augmentation is
minimal. The result that 30- and 58-sample calibrations lead to
inflated correlation statistics supports the recommendation of
ASTM that the number of spectra in a calibration should be at
least six times larger than the number of PLS latent variables.13

Although external set validation is considered to be the best
indicator of PLS calibration performance, this form of
validation is often absent in studies, especially when the
number of samples is limited. The importance of external
validation is demonstrated in the third row graphs of Fig. 3A.
Whereas according to the RMSD and R2 indicators, in which
the small sample number set (n¼ 30) is favored, the calibration
resulting therein is not as robust as the calibrations based on
more samples. Again, in comparing the SEP graphs of the
rightmost two graphs of this row, little difference in
performance is observed between the n ¼ 114 and 198
calibrations. Similar to the contour plots of RMSD and R2, the
effect of window width of the smooth convolution on SEP is
minimal for protein content.

When the first-derivative convolution function is applied to
the PLS protein calibrations (Fig. 3B), the effects on RMSD,
R2, and SEP are somewhat similar to the corresponding
indicators of the smooth convolution. The most noticeable
change is an expansion of the region of high model
performance. Defining such performance to be RMSD/SD ,
10%, R2 . 0.98, and SEP/SD , 10%, the change from smooth

FIG. 4. Continued.

78 Volume 64, Number 1, 2010



FIG. 5. Contour plots of PLS regression trials of a random number, using three Savitzky–Golay preprocess functions, (A) smooth, (B) first derivative, and (C)
second derivative. Within each preprocess function, a column corresponds to the number of samples used in calibrations (first¼ 30, second¼ 58, third¼ 114, fourth
¼ 198) and a row corresponds to a normalized statistical figure of merit (top¼ cross-validation RMSD/SD198 calibration samples, middle¼R2, bottom¼ validation SEP/
SD200 validation samples).
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to first derivative typically allows similar performance to occur
with one to two fewer PLS factors. For example, in a
calibration involving all 198 samples, the high performance
region of the normalized SEP begins at 4 and 3 factors for the
smooth and first-derivative convolutions, respectively. Also,
similar to the smooth convolution, the effect of window width
of the first-derivative convolution is insignificant. Recent
simulation modeling of light through turbid liquid with four
absorbing components produced a similar finding that
derivative preprocessing leads to PLS models that require
fewer latent variables, but without an improvement in
performance.14

Second derivatives are often the transfer functions of
preference because of their dual ability to reduce the effect of
baseline shifts and sloping baselines and to accentuate the
appearance of previously overlapping absorbers, with peaks
coincident with the absorption frequencies. For protein content
(Fig. 3C), the main result of the second derivative has been to
expand the region of high performance (defined above).
However, in this case, the slight curved nature of the contours
(most evident by following the regions of yellow color in the
color versions of the graphs) suggests that convolution window
width now has a slight effect on model performance. In
particular, wider windows are favored when the number of
factors is small (,4); however, this effect is diminished as the
number of calibration samples is increased. Another feature
that is common to all three convolution functions is the
misleading nature of R2. Whereas the 30-sample calibrations
consistently appear superior to the higher sample calibrations,

regardless of convolution function, the opposite effect is borne
out in the SEP.

Sodium Dodecyl Sulfate Sedimentation Volume. Partially
due to an inherent positive correlation to the overall
concentration of protein (i.e., protein content), SDS sedimen-
tation volume, which is an indicator of gluten protein quality, is
an analyte that achieves moderate success in NIR equation
development.10 This is demonstrated in the contour plots of
Figs. 4A–4C, which are arranged in the same manner as the
plots for protein content in Figs. 3A–3C. However, the scales
for the contour regions of RMSD/SD, R2, and SEP/SD are
different with respect to those for protein content to reflect the
overall reduction in model performance for this analyte. In
examining the effect of the smooth convolution function, it is
apparent that the best RMSD/SD is approximately 40%, as
opposed to between 5% and 10% for protein content. Similarly,
the best normalized SEP values rise by the same amount.
Whereas protein content produces the best NIR models of any
naturally occurring analyte, SDS sedimentation volume is
probably more typical for NIR calibration development trials.

Poorer model performance is attributed to two main reasons.
First, the property, instead of being a concentration, is an
indicator of the quality of the wheat gluten protein that comes
from a measurement procedure that is less precise than either
Kjeldahl or Dumas (combustion). Secondly, the homologous
nature of the endosperm proteins makes it very difficult to
spectrally discern quality-enhancing glutenin from quality-
neutral proteins. When RMSD/SD graphs are examined, it is
found that unlike protein content the SDS sedimentation
volume calibrations are noticeably influenced by the number of

FIG. 5. Continued.
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samples. Calibrations involving a small number of samples (30
and 58) favor a small number of PLS factors (2 to 6). As the
number of samples increases, however, the behavior begins to
resemble that of protein content such that the recommended
number of PLS factors expands to form a wide range, between
2 and 15. This phenomenon is mirrored in the validation
graphs, where it is noted that the validation set performance is
improved when the regression equation is based on the second
to largest (114) or largest number of samples (198). In fact, the
30-sample and 58-sample calibrations produce misleading R2

results because they seemingly favor a large number of factors,
which is contrary to the behavior of either the calibration set
RMSD or the validation set SEP. Consistent with protein
content modeling there is no effective influence of the width of
the smooth convolution window.

Application of a first-derivative preprocessing to the SDS
sedimentation volume PLS calibrations results in performance
trends that differ from smooth preprocessing by showing a
small effect of convolution window width, as seen by the
departure from a strictly horizontal nature of the contours in all
of the R2 graphs and in the intermediate (58- and 114-sample)
graphs of RMSD/SD and SEP/SD (Fig. 4B). Again, the R2

graphs of the first-derivative preprocessing are misleading. In
fact, even the 114-sample and 198-sample calibrations
seemingly favor a large number of factors (12–15) and small
convolution window (,15 points), which is not substantiated
by either the RMSD/SD or SEP/SD graph series. When these
latter two series are compared with the corresponding graphs of
the smooth preprocessing, it is apparent that the first-derivative
preprocess has not produced better performance. This leads to
the question of whether advantages exist for higher order
derivative preprocessing of SDS sedimentation calibrations.
The graphs in Fig. 4C do not reveal an advantage, as this
higher order convolution has introduced a greater dependency
on window size, but with no improvement in best model
performance.

Random Numbers. The results of the PLS calibrations of a
randomly assigned number are shown in the graphs in Figs.
5A–5C. To be expected, the smallest cross-validation RMSD
or validation SEP approaches but never becomes less than the
standard deviation of this analyte due to its artificial
fabrication. Therefore, the scales of the RMSD/SD and SEP/
SD have 100% as the minimum value in the range. Although
the R2 graphs do not show promise for the smooth
preprocessing step, as they shouldn’t, the pitfall of too small
a sample set is shown in the n¼ 30 calibration, in which values
approaching 0.9 occur when the number of factors is high and
the convolution window width is low. A better analysis of the
response is revealed through the RMSD/SD and SEP/SD
graphs. Contrary to well-behaved calibrations such as protein
content, the fact that the RMSD and SEP values are lowest at
the smallest number of factors is an indication of the weakness
of the calibration.

As the derivative order increases from zeroth (smooth) to
first and second, the cross-validation RMSD and validation
SEP indicators remain essentially unchanged with the excep-
tion that the contour patterns now indicate a departure from
horizontal striping, which seemingly indicates an effect of
convolution window width. The most misleading graphs are
the ones of R2. Although this has been the case for the two real
analytes, it is striking to see that R2 values can exceed 0.90

when the number of PLS factors is sufficiently high (.10),
even for calibrations involving more than 100 samples.

DISCUSSION

Early research on the applications of derivatives in
preprocessing was done for the purpose of enhancing
individual bands that were otherwise overlapped with other
bands.15–17 Later research has routinely targeted derivatives as
a preprocessing step that removes or reduces baseline offsets
(first derivative) or baselines that are sloped with respect to the
wavelength axis (second derivative). Often unknown in the
application of derivatives is their effect on the quality of the
spectra in terms of signal-to-noise ratio and on the performance
of the regression models that follow. Because of this, NIR
practitioners run the risk of overly relying on chemometric
software to ascertain the best preprocess conditions for a
particular analyte. Such practices, if not properly interpreted,
can lead to exaggerated model performance, as demonstrated
by the relatively large values for R2 on PLS regression
calibrations of an analyte (random number) that has no inherent
correlation to its corresponding spectra (Figs. 5A–5C). By
example, the general invariance of protein content or SDS
sedimentation volume model performance as the convolution
window width varied in the smooth preprocessing operation
corroborates the findings of Brown and Wentzell,18 who
determined by simulation and analysis of simple mixtures
(using conditions of spectral noise being independent and
identically distributed across wavelengths and calibration
errors being negligible) that smoothing results in spectral
distortion. The spectral noise of adjoining wavelengths
becomes correlated and the ensuing multivariate calibration
error is not reduced.

Brown and co-workers also theoretically examined deriva-
tive preprocessing.7 In that work, the researchers addressed a
commonly held idea that noise is disproportionately increased
with respect to the signal when derivatives are applied. In fact,
when derivatives are accomplished through application of
polynomial least squares convolution filters, such as S-G filters,
signal-to-noise ratio can actually improve. This is especially
true in circumstances when the ‘‘noise’’ or drift of neighboring
wavelength points is correlated, which is the usual case for NIR
spectroscopy data. The order of the derivative affects the
degree of the attenuation of the broad-based trends such as
drift, with higher order derivatives providing greater attenua-
tion. The width on the polynomial filter has an effect on the
‘‘high frequency’’ components, or sharpness, of the spectra
such that larger windows produce a greater suppression of
these features. With respect to the spectra of this study, the fact
that the size of the convolution window had little effect on the
cross-validation RMSD or validation SEP for protein content
suggests that the NIR PLS models of well-modeled naturally
occurring food analytes do not owe their efficacy to high
frequency absorption bands.

The slight effect of the convolution window size for SDS
sedimentation volume, especially for the first and second
derivatives, alludes to the more difficult nature of modeling this
analyte. In fact, the improvement in performance with
derivative order, which was not seen for protein content,
points to the more subtle nature of the SDS sedimentation
spectral response. However, the more apparent effect on SDS
sedimentation modeling is sample size. When the analyte is
easily modeled, the number of samples used in calibration does
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not matter nearly as much as when the analyte is more difficult
to model, as seen by the similarity of the protein contour plots
within a statistical figure of merit (RMSD, R2, or SEP) and
within a preprocessing treatment (Figs. 3A–3C). This is
contrasted with the SDS sedimentation plots, especially those
for SEP/SD, which indicate that the 30- and 58-sample
calibrations were noticeably inferior to the 114- and 198-
sample calibrations.

The clearest indication of the danger of PLS regression
calibration development with a small sample set are the
second-derivative contour plots for the random number models
(Fig. 5C). Without proper attention paid to the residual errors
during either cross-validation or external validation, a reliance
on the multivariate coefficient of determination can lead the
practitioner into accepting calibration equations of little or no
predictive power. The literature suggests that the performance
of multivariate calibrations are enhanced by increased numbers
of calibration samples for two reasons: better reliability of
models through a more accurate representation of the
correlations between the analyte concentrations and the spectral
responses, and better assurance that the larger number of
samples will mathematically span the multitude of components
within a complex mixture, such as a natural biological
compound.19 It is interesting to note that from the analysis of
PLS and PCR models of simulated mixtures,19 model quality
categorization was described that is similar to the current study,
these being that multivariate calibrations could be divided into
three ‘‘regions’’ (as defined by the analyte being modeled): a
region of no predicative ability, a region of good predictive
ability, and a transition, or intermediate region. Respectively,
these regions correspond to the random number, protein
content, and SDS sedimentation volume in the current study.
Although several studies have been performed with synthetic
datasets on the number of calibration samples, the preprocess-
ing method, or the multivariate regression method itself from
which recommendations on modeling have been made, the use
of experimental data consisting of many complex compounds
contributes to the complexity of the regression analysis and its
predictability.20

CONCLUSION

The intention of this study was to provide the NIR
chemometric analyst with a visual representation of the effect
of S-G convolution filters (zeroth, first, and second differen-
tiation order) that are commonly used in spectral preprocessing.
While such filters are used to remove unwanted effects of noise
(zeroth order), or offset (first order) and sloped baselines
(second order) brought on by a scattering medium, careful

interpretation after their use is needed in order to guard against
the development of misleading PLS calibrations. By applying
the visual technique to a spectral set of ground wheat meal, we
have found that smoothing alone does not appear to improve
calibration performance. Secondly, the higher the order of
differentiation, the greater is the risk that PLS calibrations will
produce exaggerated performance, particularly when (1) the
analyte itself is inherently weak in its ability to be modeled, (2)
small sample sets (i.e., n , 50) are used in calibration, and (3)
the multivariate coefficient of determination (R2) is used
instead of residual error-based terms.
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