Entomology, Department of

 

ORCID IDs

Nicholas Miller

Date of this Version

2016

Citation

Ecology and Evolution 2016; 6(3): 818–829. doi: 10.1002/ece3.1908

Comments

Copyright (c) 2016 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License

Abstract

Bacterial endosymbionts can drive evolutionary novelty by conferring adaptive benefits under adverse environmental conditions. Among aphid species there is growing evidence that symbionts influence tolerance to various forms of stress. However, the extent to which stress inflicted on the aphid host has cascading effects on symbiont community dynamics remains poorly understood. Here we simultaneously quantified the effect of host-plant induced and xenobiotic stress on soybean aphid (Aphis glycines) fitness and relative abundance of its three bacterial symbionts. Exposure to soybean defensive stress (Rag1 gene) and a neurotoxic insecticide (thiamethoxam) substantially reduced aphid composite fitness (survival 9 reproduction) by 74 ± 10% and 92 ± 2%, respectively, which in turn induced distinctive changes in the endosymbiont microbiota. When challenged by host-plant defenses a 1.4-fold reduction in abundance of the obligate symbiont Buchnera was observed across four aphid clonal lines. Among facultative symbionts of Rag1-stressed aphids, Wolbachia abundance increased twofold and Arsenophonus decreased 1.5-fold. A similar pattern was observed under xenobiotic stress, with Buchnera and Arsenophonus titers decreasing (1.3-fold) and Wolbachia increasing (1.5-fold). Furthermore, variation in aphid virulence to Rag1 was positively correlated with changes in Arsenophonus titers, but not Wolbachia or Buchnera. A single Arsenophonus multi-locus genotype was found among aphid clonal lines, indicating strain diversity is not primarily responsible for correlated host-symbiont stress levels. Overall, our results demonstrate the nature of aphid symbioses can significantly affect the outcome of interactions under stress and suggests general changes in the microbiome can occur across multiple stress types.

Included in

Entomology Commons

Share

COinS