Mechanical & Materials Engineering, Department of


Date of this Version



Journal of Heat Transfer, JULY 2006, Vol. 128, pp. 709-716; DOI: 10.1115/1.2194040 Copyright © 2006 by ASME. Used by permission.


Methods of thermal property measurements based on steady-periodic heating are indirect techniques, in which the thermal properties are deduced from a systematic comparison between experimental data and heat-transfer theory. In this paper heat-transfer theory is presented for a variety of two-dimensional geometries applicable to steady-periodic thermal-property techniques. The method of Green’s functions is used to systematically treat rectangles, slabs (two dimensional), and semi-infinite bodies. Several boundary conditions are treated, including convection and boundaries containing a thin, highconductivity film. The family of solutions presented here provides an opportunity for verification of numerical results by the use of distinct, but similar, geometries. A second opportunity for verification arises from alternate forms of the Green’s function, from which alternate series expressions may be constructed for the same unique temperature solution. Numerical examples are given to demonstrate both verification techniques for the steady-periodic response to a heated strip.