Natural Resources, School of

 

Date of this Version

2-2011

Comments

Published in Climate Dynamics (2011); doi: 10.1007/s00382-011-1020-6
Copyright © 2011 Springer-Verlag. Used by permission.

Abstract

The ecosystems in the Arctic region are known to be very sensitive to climate changes. The accelerated warming for the past several decades has profoundly influenced the lives of the native populations and ecosystems in the Arc­tic. Given that the Köppen-Trewartha (K-T) climate classifi­cation is based on reliable variations of land-surface types (especially vegetation), this study used the K-T scheme to evaluate climate changes and their impact on vegetation for the Arctic (north of 50°N) by analyzing observations as well as model simulations for the period 1900–2099. The models include 16 fully coupled global climate mod­els from the Intergovernmental Panel on Climate Change Fourth Assessment. By the end of this century, the annual-mean surface temperature averaged over Arctic land re­gions is projected to increase by 3.1, 4.6 and 5.3°C under the Special Report on Emissions Scenario (SRES) B1, A1b, and A2 emission scenarios, respectively. Increasing tem­perature favors a northward expansion of temperate cli­mate (i.e., Dc and Do in the K-T classification) and boreal oceanic climate (i.e., Eo) types into areas previously cov­ered by boreal continental climate (i.e., Ec) and tundra; and tundra into areas occupied by permanent ice. The tundra region is projected to shrink by −1.86 × 106 km2 (−33.0%) in B1, −2.4 × 106 km2 (−42.6%) in A1b, and −2.5 × 106 km2 (−44.2%) in A2 scenarios by the end of this century. The Ec climate type retreats at least 5° poleward of its present lo­cation, resulting in −18.9, −30.2, and −37.1% declines in ar­eal coverage under the B1, A1b and A2 scenarios, respec­tively. The temperate climate types (Dc and Do) advance and take over the area previously covered by Ec. The area covered by Dc climate expands by 4.61 × 106 km2 (84.6%) in B1, 6.88 × 106 km2 (126.4%) in A1b, and 8.16 × 106 km2 (149.6%) in A2 scenarios. The projected redistributions of K-T climate types also differ regionally. In northern Europe and Alaska, the warming may cause more rapid expansion of temperate climate types. Overall, the climate types in 25, 39.1, and 45% of the entire Arctic region are projected to change by the end of this century under the B1, A1b, and A2 scenarios, respectively. Because the K-T climate classi­fication was constructed on the basis of vegetation types, and each K-T climate type is closely associated with certain prevalent vegetation species, the projected large shift in cli­mate types suggests extensive broad-scale redistribution of prevalent ecoregions in the Arctic.

COinS