Research Papers in Physics and Astronomy


Date of this Version

October 2000


Published by American Physical Society. Phys. Rev. B 62, 8969-8975 (2000). Copyright © 2000 American Physical Society. Permission to use.


The metastable Ni3C phase has been produced by mechanically alloying Ni and C. Ni3C particles of diameter 10 nm are produced after 90 h of mechanical alloying with no evidence of crystalline Ni in x ray or electron diffraction. Linear muffin-tin orbital band-structure calculations show that Ni3C is not expected to be ferromagnetic due to strong Ni-C hybridization in the ordered alloy; however, the introduction of even small amounts of disorder produces locally Ni-rich regions that can sustain magnetism. Mechanically alloyed Ni3C is ferromagnetic, with a room-temperature coercivity of 70 Oe and a magnetization of 0.8 emu/g at 5.5 T, although the hysteresis loop is not saturated. The theoretical prediction that interacting locally nickel-rich regions may be responsible for ferromagnetic behavior is supported by the observation of magnetically glassy behavior at low magnetic fields.

Included in

Physics Commons