US Geological Survey

 

Geomorphic Segmentation, Hydraulic Geometry, and Hydraulic Microhabitats of the Niobrara River, Nebraska—Methods and Initial Results

Jason S. Alexander
Ronald B. Zelt
Nathaniel J. Schaepe

Document Type Article

Prepared in cooperation with the Nebraska Game and Parks Commission. Published by U.S. Department of the Interior, U.S. Geological Survey.

Abstract

The Niobrara River of Nebraska is a geologically, ecologically, and economically significant resource. The State of Nebraska has recognized the need to better manage the surface- and ground-water resources of the Niobrara River so they are sustainable in the long term. In cooperation with the Nebraska Game and Parks Commission, the U.S. Geological Survey is investigating the hydrogeomorphic settings and hydraulic geometry of the Niobrara River to assist in characterizing the types of broad-scale physical habitat attributes that may be of importance to the ecological resources of the river system. This report includes an inventory of surface-water and ground-water hydrology data, surface water-quality data, a longitudinal geomorphic segmentation and characterization of the main channel and its valley, and hydraulic geometry relations for the 330-mile section of the Niobrara River from Dun¬lap Diversion Dam in western Nebraska to the Missouri River confluence. Hydraulic microhabitats also were analyzed using available data from discharge measurements to demonstrate the potential application of these data and analysis methods.
The main channel of the Niobrara was partitioned into three distinct fluvial geomorphic provinces: an upper province characterized by open valleys and a sinuous, equiwidth channel; a central province characterized by mixed valley and channel settings, including several entrenched canyon reaches; and a lower province where the valley is wide, yet restricted, but the river also is wide and persistently braided. Within the three fluvial geomorphic provinces, 36 geomorphic segments were identified using a customized, process-orientated classification scheme, which described the basic physical characteristics of the Niobrara River and its valley. Analysis of the longitudinal slope characteristics indicated that the Niobrara River longitudinal profile may be largely bedrock-controlled, with slope inflections co-located at changes in bedrock type at river level. Hydraulic geometry relations indicated that local (at-a-station) channel adjustments of the Niobrara River to changing discharge are accommodated mainly by changes in velocity, and streamwise adjustments are accommodated through changes in channel width. Downstream hydraulic geometry relations are in general agreement with values previously published for rivers of the Great Plains, but coefficients are likely skewed low because the locations of the streamflow-gaging stations used in this analysis are located at natural or engineered constrictions and may not be accurately representing downstream adjustment processes of the Niobrara River. A demonstration analysis of hydraulic microhabitat attributes at a single station indicated that changes in velocity-related habitat types is the primary microhabitat adjustment over a range of discharges, but the magnitude of that adjustment for any particular discharge is temporally variable.