Biological Systems Engineering

 

Date of this Version

2014

Citation

J. Agric. Food Chem. 2014, 62, 9145−9150

Comments

© 2014 American Chemical Society

This is an open access article

dx.doi.org/10.1021/jf502242h

Abstract

Highly water-stable nanoparticles of around 70 nm and capable of distributing with high uptake in certain organs of mice were developed from feather keratin. Nanoparticles could provide novel veterinary diagnostics and therapeutics to boost efficiency in identification and treatment of livestock diseases to improve protein supply and ensure safety and quality of food. Nanoparticles could penetrate easily into cells and small capillaries, surpass detection of the immune system, and reach targeted organs because of their nanoscale sizes. Proteins with positive and negative charges and hydrophobic domains enable loading of various types of drugs and, hence, are advantageous over synthetic polymers and carbohydrates for drug delivery. In this research, the highly cross-linked keratin was processed into nanoparticles with diameters of 70 nm under mild conditions. Keratin nanoparticles were found supportive to cell growth via an in vitro study and highly stable after stored in physiological environments for up to 7 days. At 4 days after injection, up to 18% of the cells in kidneys and 4% of the cells in liver of mice were penetrated by the keratin nanoparticles.

Share

COinS