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This dissertation research concerns a novel self-encoded spread spectrum. It provides a 

feasible practical implementation for random spreading codes. The traditional transmit 

and receive PN code generators are not needed. Instead, the spreading codes are extracted 

from the user's information bits itself. Comparing to conventional CDMA, SESS 

completely abandons the use of pseudo-random spreading codes. The code variability 

doesn't depend on the spreading length like pseudo-random codes.  

 

But because the self-encoded spreading sequence is random and time varying, data 

recovery requires that the despreading sequence be identical with the spreading sequence 

at the start of the transmission. Synchronization is one of the key techniques in SESS 

which seeks to recover the initial spreading sequence at the receiver without any prior 

knowledge. It includes two phases: initial acquisition and tracking. We consider initial 

acquisition as a global optimization problem and employ genetic search algorithm for 

converging to the global optimization efficiently. In the tracking phase, we use Markov 

chain analysis to examine the mean tracking time. We can verify them by simulation 



results as sequence length N=8. By comparing the analytical and simulation results, we 

can conclude that the Genetic model and Markov chain analysis can describe the process 

of the synchronization of SESS system reliably. We extended such synchronization model 

of SESS to longer sequence length as N=64 and achieved the shortest synchronization 

time by setting an optimum threshold. Optimal parameters are also considered to improve 

the synchronization time. 

 

   We also consider incorporating SESS with cooperative diversity technique to achieve 

spatial diversity gain with the number of relays. We observe the system’s stability in 

highly correlated rayleigh channels as well as in severe fading channels. Meanwhile, we 

also consider channel coding for time diversity gain (together with the soft decision 

Viterbi detection in receiver). Notice that we achieve both time diversity and special 

diversity while maintaining the same average power as the maximum ratio combiner.  

  

 

 

 

 

 

 

 

 

 



i 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright 

 

by 

 

Kun Hua 

 

2008 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my wife Ying Zhang, and my family members, with 

profound love and appreciation. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

 

 

 

Acknowledgments 
 

In my Ph.D. research, many people have helped and encouraged me. The first two 

individuals who deserve special thanks are Professor Lim Nguyen and Professor Won 

Mee Jang, my dissertation advisors, for their guidance, support and encouragement 

throughout the course of my graduate research. I would like to express my deepest 

appreciation to Professor Nguyen, who, with great intelligence and incredible work ethic, 

provided me with both intellectual help for the theoretical aspects of my research and 

instructive help for my simulated work on the synchronization of self-encoded spread 

spectrum. I am thankful to Professor Jang for broadening my knowledge in the exciting 

research field of cooperative diversity, and for her sharp scientific intuition, meticulous 

scholarship and warm heartedness, which have profoundly influenced me. I would also 

like to thank my committee, Professor Yaoqing Yang, Professor Haifeng Guo, Professor 

Lisong Xu. Thanks to Professor Yang for encouraging me in rigorous analysis and 

thought, and sharing with me his expertise in communication networks. Thanks to 

Professor Guo, for his suggestions, inspirations and the solid foundation of genetic 

algorithm knowledge. Thanks to Professor Xu for helping me well organize the thesis and 

for his infectious research enthusiasm. 

    My association with Professors Nguyen and Jang’s research groups has been an 

invaluable experience for me. I would like to thank my colleagues, past and present, Yan 

Kong, Sergio Angarita, Wei Zhang, Kim Tae hyung, Puttipong Mahasukhon, Ting Zhou, 

Honggang Wang, Wei Wang, Dalei Wu, Jiucai Zhang, Haiyan Luo and Sichuan Ma. I 



iv 

 

 

have very fond memories of our stimulating discussions at the group meetings, the days 

and nights working on experiments, the good humors and the precious friendships. 

Especially thanks to Professor Hamid Sharif, who recruited me into UNL CEEN 

graduate program, for his tremendous helps on my graduate study. And Professor David 

Y. S. Lou, who introduced UNL to me five years ago in China, helped me to realize the 

dream of abroad study. I am indebted to Dr. Harvey Siy and Samantha: their sacrificial 

friendship has made my graduate study in Omaha an extremely enjoyable journey. 

Finally, I would like to thank my parents for their love and support. 

 

                                                    Kun Hua 

The University of Nebraska-Lincoln 

May, 2008 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

 

 

TABLE OF CONTENTS 
 

 

Chapter 1. Introduction                                            1 

 1.1 Historical Backgrounds of Spread Spectrum 

 1.2 Introduction of Cooperative Diversity 

1.3 Motivation and Scope of Research 

 

Chapter 2. Self-encoded Spread Spectrum                            13 

 

 2.1 Decision Feedback Receiver 

 2.2 Iterative Receiver 

 2.3 Self-encoded Multiple Access 

 2.4 Summary 

  

   Chapter 3. Self-encoded Spread Spectrum Synchronization              26 

 3.1 Genetic Algerithm SESS Initial Acquisition 

 3.2 Markov Chain Analysis 

 3.3 Synchronization 

 3.4 Summary 

  

   Chapter 4. Coded Cooperative Diversity with Spread Spectrum          58 

4.1 Introduction  

 4.2 Coded Cooperative Diversity System Model 

 4.3 Coded Cooperative Diversity System Analysis 



vi 

 

 

 4.4 Simulation Result 

 4.5 Summary 

  

   Chapter 5.  Self-encoded Spread Spectrum with Cooperative Diversity   74 

 5.1 Introduction 

 5.2 Cooperative SESS System Model  

 5.3 Cooperative SESS System Analysis  

 5.4 Simulation Result 

 5.5 Summary 

 

Chapter 6.  Concluding Remarks and Future Work                   89 

 

Appendix A: Examples of Simulink structures of SESS 

 

Appendix B: Mean First Passage Time Matrix Calculation  

Appendix C: Variance coefficient Calculation of Correlated Channels  

 

References                                                      100 

 

 

 

 

 

 



vii 

 

 

 

List of Figures 
 

2.1Structure of self-encoded spread spectrum scheme. 

2.2 Self-encoding feedback detection performance, 

N=1,4,8,16,128,1024 

2.3 Comparison of feedback and iteration detection, N=4,8,128,512 

2.4 BER performance of iteration detection for iteration 1-4 

2.5 Structure of SEMA with decision feedback detection 

2.6 Comparison of the BER performance of SEMA for K=1,2,4,8,16 for 

iteration detection with N=64 and feedback detection. 

 

3.1 Receiver structure for SESS initial acquisition. 

3.2 Genetic algorithm procedures 

3.3 Initial acquisition time 2L1 (bits) for N = 8, 64. 

3.4 Acquisition time 2L1 (bits) with SNR for N = 8. 

3.5 Theoretical tracking time L2 (bits) SNR for N = 8. 

3.6 Simulation of tracking time L2 (bits) for N = 8. 

3.7 Theoretical and simulation results of synchronization time 2L1 + L2 (bits) for 

N = 8 under high SNR. 

3.8 Initial acquisition time 2L1 (bits) for N = 64. 

3.9 Tracking time L2 (bits) for N = 64. 

3.10 Synchronization time 2L1+L2 (bits) under different SNR for N = 64. 

3.11 Initial acquisition time 2L1 (bits) with parallel correlators for N = 64. 



viii 

 

 

3.12 Initial acquisition time 2L1 (bits) with larger sequence pool for N = 64. 

3.13 Initial acquisition time 2L1 (bits) with larger sequence pool for cross-over=90% and 

mutation=5% 

3.14 Synchronization time 2L1+L2 (bits) improvement with parallel correlators and a 

larger sequence pool for N = 64. 

 

4.1 Cooperative diversity structure. 

4.2 Cooperative diversity structure with convolutional coding. 

4.3 Simulation BER, CCC and MRC, 10 K = 20 K = 30 K =1, 12 K = 13 K = 1. 

4.4 Analytical and simulation BER of MRC. 

4.5 Simulation BER of MRC with 10 K = 20 K = 30 K =0.5, 12 K = 13 K = 0.5, for 

various correlation values of correlated channel. 

4.6 Simulation BER of CCC with 10 K = 20 K = 30 K =0.5, 12 K = 13 K = 0.5, in 

correlated channel. 

4.7 Simulation BER of MRC with 10 K = 20 K = 30 K = 0.5, 12 K = 13 K = 0.5, under 

different bit loss percentage. 

4.8 Simulation BER of CCC with 10 K = 20 K = 30 K =0.5, 12 K = 13 K = 0.5, under 

different bit loss percentage. 

 

5.1 Cooperative self-encoded spread spectrum structure. 

5.2 Simulation BER, SESS-CD (64 chips/bit) and MRC, K10 = K20 = K30 = 1;K12 

= K13 = 1. 

5.3 Probability density function of exact pdf and is pread approximation, 64 



ix 

 

 

chips/bit, Eb/No = 5 and 10 dB 

5.4 Simulation BER of SESS-CD, 64 chips/bit. 

5.5 Simulation BER of MRC and SESS-CD (64 chips/bit) with K10 = K20 = K30 = 

0.5;K12 = K13 = 0.5, for various correlation values of correlated channel. 

5.6 Simulation BER of MRC and SESS-CD (64 chips/bit) with K10 = K20 = K30 = 

0.5,K12 = K13 = 0.5, under different bit loss percentage. 

 



1 

 

 

 

CHAPTER 1 

Introduction 

1.1 Historical Backgrounds of Spread Spectrum 

Spread Spectrum (SS) refers to a class of modulation techniques in which the 

bandwidth of the transmitted signal is much higher than the bandwidth of the information 

being transmitted. To spread the spectrum, for example, the original signal is multiplied 

by a known code of much larger bandwidth which is independent of the signal and the 

receiver can reconstruct this code for synchronous detection.  

 

There are several reasons for the spread spectrum to be used. 

1. Spread spectrum increases tolerance to interference and jamming. 

2. Spread spectrum lowers the probability of hostile interception by masking the 

transmitted signal in the background noises.   

3. In fading channels, by the use of a RAKE receiver, a spread-spectrum receiver 

can obtain an important advantage in diversity. 

4. More than one user is allowed to access a common communication channel. 

The choice of spreading codes is critical to reducing multiple-access 

interference (spreading-code cross-correlations) and multi-path 

self-interference (spreading code autocorrelation).  

 

Spread spectrum has its origin in the military communication and navigation system 
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in 1950’s [1]. Communication systems that employ spread spectrum to reduce the 

communicator's detectability and combat the enemy-introduced interference are 

respectively referred to as low probability of detection (LPD) and anti-jam (AJ) 

communication systems. In 1949 John Pierce wrote a technical memorandum where he 

described a multiplexing system in which a common medium carries coded signals that 

need not be synchronized. This system can be classified as a time-hopping spread 

spectrum multiple access system [2]. Claude Shannon and Robert Pierce had introduced 

the basic ideas of CDMA in 1949 by describing the interference averaging effect and the 

graceful degradation of CDMA [3]. De Rosa-Rogoff defined the direct sequence spread 

spectrum method and introduced the processing gain equation and noise multiplexing 

idea in 1950 [3]. Price and Green filed for the anti-multipath RAKE patent [4]: signals 

arriving over different propagation paths can be resolved by a wideband spread spectrum 

signal and combined by the RAKE receiver. The near-far problem was first mentioned in 

1961 by Magnuski [3].  

 

The cellular spread-spectrum application was suggested by Cooper and Nettleton in 

1978 [4]. The first-generation (1G) cellular and cordless telephone networks based on 

analog frequency modulation (FM) were introduced in 1981. To maximize the capacity in 

an interference-limited cellular environment, the systems used analog technology based 

on frequency division multiple access (FDMA) scheme. Examples of first-generation 

cellular systems were Advanced Mobile Phone System (AMPS) in North America, 

Nordic Mobile Telephone System (NMT-450) in Europe, and Nippon Telephone and 

Telegraph (NTT) in Japan, with channel bandwidths of 30 kHz, 25 kHz, and 25 kHz, 
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respectively.  

 

With the advent of very large scale integration (VLSI) chip designs and increasingly 

sophisticated microprocessor implementation, the second generation (2G) cellular 

systems emerged in the 1990s. These systems employed digital modulation techniques 

and spectrally efficient multiple access schemes, referred to as time division multiple 

access (TDMA) and code division multiple access (CDMA). Although these systems 

were more complex than their analog counterparts, they offered certain benefits, such as 

increased capacity, the implementation of voice and low data rate (facsimile) services, 

and enhanced authentication capabilities. Well-known examples of the second generation 

systems include the Europe’s TDMA Global System for Mobile communication (GSM); 

North America’s TDMA Interim Standard-54 (IS-54), TDMA IS-136, and CDMA IS-95; 

and Japan’s TDMA Personal Digital Cellular (PDC). Moreover, additional services, such 

as roaming, security, call forwarding, and messaging, were implemented into the 2G 

systems. During the 1980s, Qualcomm investigated DS-CDMA techniques, in the form of 

the narrowband IS-95 standard in July 1993 that let to the commercialization of cellular 

spread spectrum communications in 1996. Multiuser detection (MUD) has been subject 

to extensive research since 1986 when Verdu formulated an optimum multiuser detection 

for the additive white Gaussian noise (AWGN) channel, based on the maximum 

likelihood sequence estimator (MLSE) [5]. 

 

With the development of personal communication services (PCS) in recent years, the 

third generation (3G) systems are driven by the ever-increasing need for high speed data 
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transmission with mobile capabilities. The requirements for high data rate, especially 

packet data transmission, bring new challenges for 3G systems. With substantially 

enhanced capacity and quality of services, 3G wireless technology can provide users with 

high speed wireless access to the Internet and multimedia services anytime, anywhere 

and in any form. 3G system attempts to unify the existing diverse wireless systems into a 

seamless worldwide radio infrastructure, which will be capable of offering the service of 

global roaming. A worldwide standard is the International Mobile Telecommunication 

2000 (IMT-2000) in 1995. The 3G standard that has been agreed upon for Europe and 

Japan is known as the Universal Mobile Telecommunications System (UMTS).  UMTS 

is an upgraded version fo the Global System for Mobile Communication (GSM) via the 

General Packet Radio System (GPRS) or Enhanced Data Rates for GSM Evolution 

(EDGE). The terrestrial part of UMTS is known as UMTS Terrestrial Radio Access 

(UTRA). The UTRA standard is a wideband CDMA (WCDMA) technology that features 

easy integration with the existing GSM protocol. The frequency division duplex (FDD) 

part of UTRA, which is based on the WCDMA standard, offers very high data rates, up to 

2 Mbps. The time division duplex (TDD) part of UTRA is called TD-CDMA. The main 

global competitor to UMTS standards is CDMA2000, which was developed by 

Qualcomm in the United States. CDMA2000 can deliver full IMT-2000 capabilities (data 

rates up to 2 Mbps) in one-third as much spectrum as in WCDMA [50]. 

 

The good of 3G mobile cellular systems is to adopt the diverse wireless systems into 

a seamless universal standard that will facilitate global roaming and provide a wide range 

of services, including multimedia. The 3G wireless systems will generally support high 
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speed voice and data services in many different radio propagation environments.    

 

There are three basic spread-spectrum techniques: direct sequencing (DS), frequency 

hopping (FH) and time hopping (TH) [28]. With direct sequence spreading, the original 

signal is multiplied by a known pseudo-random code of much larger bandwidth. 

Pseudo-random appears random, but is actually deterministic, so that the receiver can 

reconstruct the code for synchronous detection. This pseudo-random code is also called 

pseudo-noise (PN). With frequency-hopped spreading, the center frequency of the 

transmitted signal is varied in a pseudo-random pattern. For time hopping (TH), the 

bursts of signal are initiated at pseudo-random times [29]. 

 

  Spread spectrum bandwidth expansion can also be obta ined by the 

redundancy from error correcting codes. In a conventional narrow-band communication 

system, bandwidth expansion is generally an undesired feature. However, in spread 

spectrum systems high efficiency is achievable by employing low rate channel codes 

alone for bandwidth expansion. We will refer to spreading by channel 

codes as combined coding and spreading or code-spreading. A limiting factor, though 

has been the lack of good low rate codes. Spreading and coding are substitute by a single 

low rate convolutional code and Viterbi decoder is used at the receiver instead of the 

conventional despreading detector. However this solution is infeasible for practical 

application when spreading factor is large due to the complexity of the Viterbi decoder.  

A scrambling code for users separation is always required.  
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1.2 Introduction of Cooperative Diversity 

 

The requirement of the new generation wireless communication includes increasing 

channel capacity and improve the quality of communication. Multi-path fading is one of 

key difficult factors to fulfill such requirement. To overcome multi-path fading, diversity 

technique is introduced to duplicate signal samples from the transmitter. Each signal 

sample passes through independent fading channels, and combined at the receiver. Such 

techniques include: time diversity, frequency diversity and spatial diversity [53].   

In telecommunications, a diversity scheme refers to a method for improving the 

reliability of a message signal by utilizing two or more communication channels with 

different characteristics. Diversity plays an important role in combating fading and 

co-channel interference and avoiding error bursts. It is based on the fact that individual 

channels experience different levels of fading and interference. Multiple versions of the 

same signal may be transmitted and/or received and combined in the receiver. 

Alternatively, a redundant forward error correction code may be added and different parts 

of the message transmitted over different channels. Diversity techniques may exploit the 

multipath propagation, resulting in a diversity gain, often measured in decibels. 

The following classes of diversity schemes can be identified: 

• Time diversity: Multiple versions of the same signal are transmitted at different time 

instants. Alternatively, a redundant forward error correction code is added and the 

message is spread in time by means of bit-interleaving before it is transmitted. Thus, error 

bursts are avoided, which simplifies the error correction.  
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• Frequency diversity: The signal is transmitted using several frequency channels or 

spread over a wide spectrum that is affected by frequency-selective fading. For example, 

microwave radio relays often use several regular wideband radio channels, and one 

protection channel for automatic use by any faded channel. More recent examples 

include:  

o OFDM modulation in combination with subcarrier interleaving and forward   

error correction  

o  Spread spectrum, for example frequency hopping or DS-CDMA.  

• Space diversity: The signal is transmitted over several different propagation paths. In 

the case of wired transmission, this can be achieved via multiple wires. In the case of 

wireless transmission, it can be achieved by antenna diversity using multiple transmitter 

antennas (transmit diversity) and/or multiple receiving antennas (diversity reception). In 

the latter case, a diversity combining technique is applied before further signal processing 

takes place. If the antennas are at far distance, for example at different cellular base 

station sites or WLAN access points, this is called macrodiversity. If the antennas are at a 

distance in the order of one wavelength, this is called microdiversity. A special case is 

phased antenna arrays, which also can be utilized for beamforming, Mutiple Input 

Multiple output (MIMO) channels and space–time coding (STC).  

Among them, spatial diversity is more attractive because it does not require extra 

time and bandwidth resources and can be combined with other diversity techniques.  

 

   Although MIMO has obvious advantages and is gradually accepted by new 
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generation wireless communication protocols [30], problems still exist: The spatial 

diversity generally requires more than one separated antenna at the mobile terminal. 

Unfortunately, this is impractical in wireless cellular system due to the size or hardware 

complexity of the mobile terminal. To solve this limitation, a new form of spatial 

diversity called cooperative diversity was proposed by Sendonaris [6-7]. Compared to the 

spatial MIMO system, the cooperation diversity enables single antenna mobiles in a 

multi-user receiver.  

 

 Cooperative diversity networks are attracting increasing attention as a new and 

promising diversity technique [31]. Somewhat inspired by multi-antenna systems the 

technology exploits the fact that around a given terminal, there can be other 

single-antenna terminals which can be used to enhance diversity by forming a distributed 

(or virtual) multi-antenna system. Cooperative diversity can achieve a diversity order 

equal to the number of paths between the source and the destination, and in this sense, 

they offer similar advantages to any existing diversity technique. 

 

User cooperative diversity was introduced as a way to obtain multiple antenna gains 

even when each user has only one antenna. Cooperative diversity is defined as a 

communication technique that achieves a diversity gain by using the combination of the 

relayed signal and the direct signal. A conventional single hop system uses direct 

transmission where a receiver decodes the information only based on the direct signal 

while regarding the relayed signal as interference, whereas the cooperative diversity 

considers the relayed signal as contribution. That is, cooperative diversity decodes the 
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information from the combination of two signals. Hence, it can be seen that cooperative 

diversity is an antenna diversity that uses distributed antennas belonging to each node in a 

wireless network. It is applicable to sensor or mobile communication networks, where, 

individual sensors, mobiles, or PDAs communicate with a common base station (BS) or 

access point (AP).   

 

Results have shown that, even though the inter-user channel is noisy, cooperation 

leads not only to an increase in capacity for both users but also to a more robust system, 

where users’ achievable rates are less susceptible to channel variations. The mobile radio 

channel suffers from fading, implying that, within the duration of any given call, mobile 

users go through severe variations in signal attenuation. By effectively transmitting or 

processing independently fading copies of the signal, diversity is a method for directly 

combating the effects of fading. 

 

Cooperative diversity was originally proposed as multiple transmitters cooperate by 

repeating detected symbols of the others, thereby forming a repetition code with spatial 

diversity [6-7]. These ideas have led to more sophisticated cooperative coding techniques 

[8] along with forms of cooperative diversity other than coding. For example, network 

coding fuses data received along multiple routes to increase network capacity [9-11].  

 

  There are three different cooperative methods [32]: 

1. Amplify-and-Forward, AF 

• The user (relay) receives a noisy version of the signal transmitted by the 
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partner (source). 

• The noisy signal is simply amplified and retransmitted. 

2. Decode-and-Forward, DF 

•  The user (relay) attempts to detect the partner’s bits (source) and then 

retransmits the detected bits. 

• The partner has to be assigned mutually by the base station. 

3. Coded Cooperation , CC 

• This method integrates cooperation into channel coding. 

• It sends different portions of each user’s code word via two independent 

fading paths. 

• Each user tries to transmit incremental redundancy for its partner. 

 

It is noteworthy that cooperative diversity can increase the diversity gain at the cost 

of lossing the wireless resource such as frequency, time and power resources for the 

relaying phase. Wireless resources are wasted since the relay node uses wireless 

resources to relay the signal from the source to the destination node. Hence, it is 

important to note that there is trade-off between diversity gain and spectrum resource in 

cooperative diversity. 

 

 

1.3 Motivation and Scope of Research 

This dissertation research concerns a novel self-encoded spread spectrum (SESS) which 

is first proposed in [12]. It provides a feasible practical implementation for random 
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spreading codes. The traditional transmit and receive PN code generators are not needed. 

Instead, the spreading codes are extracted from the user's information bits itself. 

Comparing to conventional CDMA, SESS completely abandons the use of 

pseudo-random (PN) spreading codes. The code variability does not depend on the 

spreading length like PN codes [51]. In this dissertation, we will study the 

synchronization of SESS and the BER performance of the coded cooperative SESS 

system. 

 

Because the self-encoded spreading sequence is random and time varying, data 

recovery requires that the despreading sequence be identical with the spreading sequence 

at the start of the transmission. We consider SESS synchronization which seeks to 

recover the initial spreading sequence at the receiver without any prior knowledge. It 

includes two phases: initial acquisition and tracking. We consider initial acquisition as a 

global optimization problem and employ genetic search algorithm for converging to the 

global optimization efficiently [14]. In the tracking phase, we use Markov chain analysis 

to examine the mean tracking time. By comparing the analytical and simulation results, 

we conclude that the Genetic model and Markov chain analysis can describe the process 

of SESS synchronization reliably.  

   We also consider incorporating SESS with cooperative diversity technique to achieve 

spatial diversity gain with the number of relays. We observe the system’s stability in 

highly correlated rayleigh channels as well as in severe fading channels. Meanwhile, we 

also consider channel coding for time diversity gain (together with the soft decision 

Viterbi detection in receiver). Notice that we achieve both time diversity and special 
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diversity while maintaining the same average power as the maximum ratio combiner 

(MRC).  

 

The dissertation is organized as follow: In chapter 2, we introduce the structure of 

SESS modulation. Iterative detection and self-encoded multiple access are discussed in 

detail. In chapter 3, SESS synchronization is studied by a genetic model and a Markov 

chain analysis. In chapter 4, cooperative diversity with convolutional coding and Viterbi 

detection are studied for a fading channel. SESS cooperative diversity scheme with 

iterative detection is introduced in chapter 5. Finally, future works and some concluding 

remarks are given in chapter 6. 
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CHAPTER 2 

 

Self-encoded Spread Spectrum 

 

 
In CDMA communications, each user is assigned a unique PN spreading sequence that 

has a low cross correlation with other users' sequences [15]. This deterministic sequence 

has random-like properties with the low cross correlations that are critical for achieving 

good system performance. A fundamental problem with the deterministic PN codes is 

that they can be duplicated, potentially compromising the transmission security.  

 

SESS is a novel spread spectrum technique that does not use PN codes. The new 

technique is unique in that traditional transmit and receive PN code generators are not 

needed. The transmission security is enhanced not only due to the spread spectrum nature 

of the signal, but also from the stochastic nature of the unique spectrum spreading and 

de-spreading processes [33]. As a result, data recovery by an unintended receiver is 

practically impossible, resulting in ideally secure transmissions. The proposed techniques 

provide a feasible implementation of random-coded spread spectrum systems that 

previously have been thought to be impractical.  In this chapter, we introduce the basics 

of SESS communication systems. The BER performance of the decision feedback 

receiver is analyzed in section 2.1. Iterative detection is analyzed and compared with the 

feedback detection in section 2.2. Self-encoded multiple access is considered in section 

2.3. 
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2.1 Feedback Detection 

Figure 2.1 shows the block diagram of direct sequence SESS. The spreading code is 

obtained from the random digital information source itself. At the transmitter, the delay 

registers are constantly updated from an N-tap, serial delay of the data, where N is the 

code length. The current bit is spread by the time varying, N chip sequence that has been 

obtained from the previous N data bits. The random nature of the digital information 

source is assured by applying appropriate data compression methods to remove any 

redundancy in the data stream, thereby maximizing its entropy. The binary data symbols 

therefore can be modeled as independent and identically distributed Bernoulli random 

variables. Symbol values of +1 and -1 occur equally likely with a probability of 1/2. As a 

result, the spreading sequence is not only randomly generated and independent of the 

current symbol, but also dynamically changing from one symbol to the next. This 

smoothes out the spectrum of the signals and eliminates the spectral lines associated with 

PN sequences [16]. 

 

The self encoding operation at the transmitter is reversed at the receiver [55]. The 

recovered data are fed back to the N-tap delay registers that provide an estimate of the 

transmitter's spreading codes required for signal de-spreading. Data recovery is by 

means of a correlation detector. Notice that the contents of the delay registers in the 

transmitter and receiver should be identical at the start of the transmission. This is 

accomplished as part of the initial synchronization procedure. Unless initially  
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Figure 2.1 Structure of self-encoded spread spectrum scheme. 
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synchronized and having a complete knowledge of the tap register structure (intended 

receiver), data recovery will be extremely unreliable since the spreading codes as 

constructed are time-varying, random, and uncorrelated. As a result, self encoding 

makes data recovery by an unintended receiver practically impossible.  

 

Figure 2.2 shows the BER performance of the feedback detector. The plots show 

that self interference causes a performance degradation compared to BPSK modulation at 

low SNR (< 4dB). Also at low SNR region, the BER performance degrades as N decreases. 

The degradation is caused by error propagation such that each detection error contributes 

to a larger attenuation of the signal strength for smaller values of N. The effect of self 

interference is reduced as the spreading length increases, and is practically eliminated for 

N>64. 

 

2.2 Iterative Receiver 

We can write the transmitted SESS signals as: 

s1 =     b0b1,    b-1b1,   … b-N+1b1 

s2 =    b1b2,    b0b2,   … b-N+2b2 

s3 =    b2b3,    b1b3,   … b-N+3b3 

... 

sN=    bN-1bN,    bN-2bN,   … b0bN 

                  sN+1=   bNbN+1,    bN-1bN+1, … b1bN+1             (2.1) 

 

where bi is the data bit. Since the current bit is spread by N previous bits, we can observe 

that current detecting bits bi is spread by N previous symbols bi-1…bi-N at a rate N/T. From  
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Figure 2.2 Self-encoding feedback detection performance. 
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the above equations, we can see, for example, the current detecting bit b1 is not only 

modulated by the previous N information bits, which are stored in the delay shift register 

b-N+1…b0, but also appears in N future transmitted signals s2,…, sN+1: there is one chip in 

each N future transmitted signal, s2,…, sN+1 , that contains the information about b1. By 

incorporating future transmitted signals together with previous detected bits, we expect to 

improve the performance over the feedback detector, which only estimates the current 

bits by correlating with N previous detected bits [56]. 

 Figure 2.3 compares the BER performance of the feedback and iterative detectors, 

for N=4,8,128,512. A 3dB performance gain can be achieved by the iterative detectors. 

This is because iterative detection not only uses the last N-bits sequence to achieve data 

in receiver, but also employs N future sequences for decoding decision: the detector SNR 

is thereby doubled. 

Figure 2.4 shows the BER performance by the iterative detector with iteration from 1 

to 4. The BER improves some what as the number of iteration increases, especially at 

moderate SNR from 0dB to 4dB, the errors are more likely to be corrected by re-estimates 

with additional iterations. The most improvement in terms of BER is achieved with 

iteration 1 and 2. But limited performance gain is achieved by the number of iteration 

higher than 2. Iterative detector can achieve a 3dB gain compare to BPSK performance 

which is the upper bound curve.  
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Figure 2.3 Comparison of feedback and iteration detectors. 
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Figure 2.4 BER performance of iteration detector from Iteration 1-4 iterations 
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2.3 Self-Encoded Multiple Access 

 

   The classical way of thinking about communication is considering the signaling 

between a transmitter in one place and a receiver somewhere else. If there is more 

than one transmitter or more than one receiver involving in the signaling, this 

is called multiuser or multiple access communications [57]. Nowadays multiple access 

communication are widely used in wireless communications to allow many mobile 

users to share a finite amount of radio spectrum at the same time. 

 

Figure 2.5 illustrates the self encoded multiple access system. Bandwidth expansion 

is achieved using SESS modulation for each individual user, producing N encoded chips 

per information bit. These chips are then transmitted over mobile radio channel to the 

receiver. SESS signals from other users (MAI) are added, producing the resulting 

received signal [52]. Unlike code spreading CDMA system, where long PN scrambling 

sequences are required for user separation, SEMA do not require additional PN codes. 

The self-encoded structure not only spread the information bits but also separates signals 

from the individual users. Note that SEMA is different from random spreading system in 

that the users' spreading sequences are not only random, but also changing dynamically 

from symbol to symbol. 
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Figure 2.5 Structure of SEMA with decision feedback detection 
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Severe MAI and error propagation in SEMA receivers may cause the despreading 

sequences to be mismatched with spreading sequences [58]. In the multiuser case, 

mismatch of the spreading sequences also results in crosstalk, where unintended signals 

are received by the  desired receiver. When crosstalks occur, the despreading sequence 

of the desired receiver may correlate better to other users' spreading sequences [59]: the 

desired receiver then will detect the unintended signal instead. Due to self encoding, the 

desired receiver may continue to detect the unintended signals from other users. 

Figure 2.6 shows the BER performance of iterative and feedback detectors with 

N=64. The plots show that the BER degrades gradually as the number of users increases. 

For K>1, the gain of the iterative detector is less than 3dB due to error propagation and 

MAI. The results also show that Iterative detector can improve the multi-user 

performance.   
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Figure 2.6  Comparison of the BER performance of SEMA for K=1,2,4,8,16 for 

iteration detection with N=64 and feedback detection. 
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2.4 Summary 

In this chapter, we introduced the structure of SESS system. We investigated the 

performance of the decision feedback correlation receiver for SESS, and compared it 

with the iterative detector. Iterative detector provided a 3dB performance gain at high 

SNR compared to the feedback detector.  The detectors were also analyzed for multiple 

access channel with AWGN noise. The BER performance of SEMA is improved by 

iterative detection which exploits the data redundancy of SEMA signals to mitigate MAI.  
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CHAPTER 3 

Synchronization of Self-Encoded Spread Spectrum 

In traditional spread spectrum communication, the deterministic PN code is known by 

both the transmitter and receiver [34,35]. The receiver regenerates the code locally and 

phase synchronization is set up by a partial correlation over a length of the known 

spreading codes. If the correlation threshold is exceeded, the de-spreading and spreading 

sequences are assumed to align and code synchronization is declared [13,15,17,18]. 

 

However, in SESS the self-encoded spreading sequence is random and time varying. 

An exhaustive optimum acquisition of an initial random spreading sequence of length N 

requires that 2
N
 sequences be generated and searched. Clearly, this is impractical. 

 

In this chapter, we consider SESS synchronization which seeks to recover the initial 

spreading sequence at the receiver without any prior knowledge [22]. It includes two 

phases: initial acquisition and tracking.  Initial acquisition is achieved when the 

transmitter spreading sequence has been reproduced at the receiver to within an 

acceptable number of initial chip errors. This requires that the receiver performs a 

random search over a vast possible solutions set. Thus, initial acquisition can be 

considered as a global optimization problem. We propose to employ genetic search 

algorithm (GA) in the sequence generation and revision for converging to the global 

optimization efficiently. The search ends when the generated sequence matches with the 

received sequence with no more than a specified number of chip errors m.  In the 
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tracking phase, the detected chip errors in the receiver delay register transits from the 

initial state of m errors into the error-free state. The mean tracking time can be examined 

via Markov chain analysis.  

 

    In section 3.1, we describe the genetic algorithm acquisition phase. Section 3.2 

analyzes the tracking phase using Markov chain. The over all synchronization time 

performance is analyzed in section 3.3. 

 

3.1 Genetic Algorithm in Initial Acquisition 

Initial acquisition in SESS can be considered an unconstrained optimization problem. 

Finding the global optimization by searching over the entire solution set is the subject of 

deterministic methods like tunneling method, covering method, zooming method, etc. 

These methods find the global minimum by means of an exhaustive search. For instance, 

the basic idea of the covering method is to cover the feasible solution set by evaluating 

the objective function at all points. These algorithms have high reliability and accuracy is 

always guaranteed, but they have a slow convergence rate [19]. 

 

Given the exponential size of our solutions set, we need an efficient algorithm with a 

high reliability and fast convergence rate. Many stochastic optimization algorithms have 

been proposed such as simulated annealing, ant colony, genetic algorithm, etc. GA has 

proven to be the most powerful and successful one for a wide range of applications, that 

strikes a balance between reliability and convergence rate. 
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Genetic algorithm is a search technique used in computing to find exact or 

approximate solutions to optimization and search problems. Genetic algorithms are 

categorized as global search heuristics.They belong to a particular class of evolutionary 

algorithms (also known as evolutionary computation) that use techniques inspired by 

evolutionary biology such as inheritance, mutation, selection, and crossover (also called 

recombination). 

Computer simulations of evolution started as early as in 1954 with the work of Nils 

Aall Barricelli, who was using the computer at the Institute for Advanced Study in 

Princeton, New Jersey. His 1954 publication was not widely noticed. Starting in 1957, 

the Australian quantitative geneticist Alex Fraser published a series of papers on 

simulation of artificial selection of organisms with multiple loci controlling a measurable 

trait. From these beginnings, computer simulation of evolution by biologists became 

more common in the early 1960s, and the methods were described in books by Fraser and 

Burnell (1970) and Crosby (1973). Fraser's simulations included all of the essential 

elements of modern genetic algorithms. In addition, Hans Bremermann published a series 

of papers in the 1960s that also adopted a population of solution to optimization 

problems, undergoing recombination, mutation, and selection. Bremermann's research 

also included the elements of modern genetic algorithms. Other noteworthy early 

pioneers include Richard Friedberg, George Friedman, and Michael Conrad. Many early 

papers are reprinted by Fogel (1998).  

   Although Barricelli, in work he reported in 1963, had simulated the evolution of 

ability to play a simple game, artificial evolution became a widely recognized 
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optimization method as a result of the work of Ingo Rechenberg and Hans-Paul Schwefel 

in the 1960s and early 1970s - his group was able to solve complex engineering problems 

through evolution strategies. Another approach was the evolutionary programming 

technique of Lawrence J. Fogel, which was proposed for generating artificial intelligence. 

Evolutionary programming originally used finite state machines for predicting 

environments, and used variation and selection to optimize the predictive logics. Genetic 

algorithms in particular became popular through the work of John Holland in the early 

1970s, and particularly his book Adaptation in Natural and Artificial Systems (1975). His 

work originated with studies of cellular automata, conducted by Holland and his students 

at the University of Michigan. Holland introduced a formalized framework for predicting 

the quality of the next generation, known as Holland's Schema Theorem. Research in 

GAs remained largely theoretical until the mid-1980s, when The First International 

Conference on Genetic Algorithms was held in Pittsburgh, Pennsylvania. 

As academic interest grew, the dramatic increase in desktop computational power 

allowed for practical application of the new technique. In the late 1980s, General Electric 

started selling the world's first genetic algorithm product, a mainframe-based toolkit 

designed for industrial processes. In 1989, Axcelis, Inc. released Evolver, the world's 

second GA product and the first for desktop computers. The New York Times technology 

writer John Markoff wrote[13] about Evolver in 1990. 

   Genetic algorithms are implemented as a computer simulation in which a population 

of abstract representations (called chromosomes) of candidate solutions to an 

optimization problem evolves toward better solutions. Traditionally, solutions are 
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represented in binary as strings of 0s and 1s, but other encodings are also possible. The 

evolution usually starts from a population of randomly generated individuals. In each 

generation, the fitness of every individual in the population is evaluated; multiple 

individuals are stochastically selected from the current population (based on their fitness), 

and modified (recombined and possibly randomly mutated) to form a new population. 

The new population is then used in the next iteration of the algorithm. Commonly, the 

algorithm terminates when either a maximum number of generations has been produced, 

or a satisfactory fitness level has been reached for the population. If the algorithm has 

terminated due to a maximum number of generations, a satisfactory solution may or may 

not have been reached. 

Genetic algorithms find application in bioinformatics, phylogenetics, computer 

science, engineering, economics, chemistry, manufacturing, mathematics, physics and 

other fields. 

A typical genetic algorithm requires two things to be defined: 

1. A genetic representation of the solution domain,  

2. A fitness function to evaluate the solution domain.  

   A standard representation of the solution is as an array of bits. Arrays of other types 

and structures can be used in essentially the same way. The main property that makes 

these genetic representations convenient is that their parts are easily aligned due to their 

fixed size, that facilitates simple crossover operation. Variable length representations may 

also be used, but crossover implementation is more complex in this case. Tree-like 
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representations are explored in genetic programming and graph-form representations are 

explored in evolutionary programming. 

   The fitness function is defined over the genetic representation and measures the 

quality of the represented solution. The fitness function is always problem dependent. For 

instance, in the knapsack problem we want to maximize the total value of objects that we 

can put in a knapsack of some fixed capacity. A representation of a solution might be an 

array of bits, where each bit represents a different object, and the value of the bit (0 or 1) 

represents whether or not the object is in the knapsack. Not every such representation is 

valid, as the size of objects may exceed the capacity of the knapsack. The fitness of the 

solution is the sum of values of all objects in the knapsack if the representation is valid, 

or 0 otherwise. In some problems, it is hard or even impossible to define the fitness 

expression; in these cases, interactive genetic algorithms are used. 

   Once we have the genetic representation and the fitness function defined, GA 

proceeds to initialize a population of solutions randomly, then improve it through 

repetitive application of mutation, crossover, inversion and selection operators. 

Initially many individual solutions are randomly generated to form an initial 

population. The population size depends on the nature of the problem, but typically 

contains several hundreds or thousands of possible solutions. Traditionally, the population 

is generated randomly, covering the entire range of possible solutions (the search space). 

Occasionally, the solutions may be "seeded" in areas where optimal solutions are likely to 

be found. During each successive generation, a proportion of the existing population is 

selected to breed a new generation. Individual solutions are selected through a 
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fitness-based process, where fitter solutions (as measured by a fitness function) are 

typically more likely to be selected. Certain selection methods rate the fitness of each 

solution and preferentially select the best solutions. Other methods rate only a random 

sample of the population, as this process may be very time-consuming. Most functions 

are stochastic and designed so that a small proportion of less fit solutions are selected. 

This helps keep the diversity of the population large, preventing premature convergence 

on poor solutions. Popular and well-studied selection methods include roulette wheel 

selection and tournament selection.The next step is to generate a second generation 

population of solutions from those selected through genetic operators: crossover, and (or) 

mutation. 

For each new solution to be produced, a pair of "parent" solutions is selected for 

breeding from the pool selected previously. By producing a "child" solution using the 

above methods of crossover and mutation, a new solution is created which typically 

shares many of the characteristics of its "parents". New parents are selected for each child, 

and the process continues until a new population of solutions of appropriate size is 

generated.These processes ultimately result in the next generation population of 

chromosomes that is different from the initial generation. Generally the average fitness 

will have increased by this procedure for the population, since only the best organisms 

from the first generation are selected for breeding, along with a small proportion of less 

fit solutions, for reasons already mentioned above. This generational process is repeated 

until a termination condition has been reached.  



33 

 

 

Standard Genetic Algorithm Procedure: 

1. Choose initial population  

2. Evaluate the fitness of each individual in the population  

3. Repeat:  

1) Select best-ranking individuals to reproduce  

2) Breed new generation through crossover and mutation (genetic 

operations) and give birth to offspring  

3) Evaluate the individual fitnesses of the offspring  

4) Replace worst ranked part of population with offspring  

4. Until termination  

Figure 3.1 illustrates the proposed GA acquisition. The received sequence is 

correlated to the sequences generated and revised in a genetic pool. The search converges 

when a generated sequence matches with the received sequence with no more than a 

specified number of chip errors m.  In practice, the matching is determined by selecting 

an appropriate value of threshold at the correlator output. 

 

Figure 3.2 shows the procedure of genetic algorithm in GA pool.  The main 

characteristics of the GA pool are described as follows. 
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Fig. 3.1 Receiver structure for SESS initial acquisition. 

 

 

 

 

 

 

 

 

 



35 

 

 

 
 

Fig. 3.2      Genetic Algorithm Procedures 
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1. Initial population: The initial chromosome population is randomly selected from the 

solution space. In our genetic algorithm, string chromosomes are candidate sequences 

generated in the GA pool. They are fed back to the correlator bank. 

 

2. Fitness evaluation: The cost function for fitness evaluation is the cross correlations 

between string chromosomes and received sequence. A higher cross correlation value 

means that the string chromosome is a better match to the received sequence. The GA 

pool will keep eugenic chromosomes by maximizing the cost function and eliminate 

dysgenic ones. 

 

3. Population size: In a GA pool, a larger population size will cover a larger region of 

solution and increase the reliability for converging to the global maximum. However, this 

leads to a low searching efficiency because there would be too many chromosomes in the 

pool. There is a trade off and the population size has typically been chosen to be in the 

range from 30 to 130 [19].  In our simulation, the population size S is chosen to be 100. 

 

4. Cross-over: Cross-over determines how candidate sequences are updated. Without loss 

of generality, we choose single point cross-over to simplify the calculation at first, and 

then increase the percentage in some range. Notice that 95% crossover and 5% mutation 

are typical [27].  

 

   The crossover processing time Tcr of the length N sequence in GA pool is taken to be 

equal to the bit period Tb. The average number of genetic generations L1 to achieve this 
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initial acquisition is generally a function of the sequence length N, acquisition chip errors 

m, and the signal to noise ratio SNR. Under high SNR, L1 would only depend on N, and 

m.  

 

With single point crossover and given that there are i chips already matched, 

subsequent GA search should yield incremental improvement in the number of matching 

chip, i+1, i+2……matches, until N - m chips are matched. Now assuming that there are 

already i matched chips between the received and GA-generated sequences, subsequent 

GA search then should yield incremental improvement in the number of matching chips, 

until N - m chips are matched.  Let Ti be the mean time to achieve i+1 matching chips 

from i matching chips, pi be the probability for a successful crossover, and k be the 

consecutive crossover failures before a successful one. Ti is then given by:  
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The mean acquisition time T is directly proportional to L1: 
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Equation (3.3) suggests that the mean acquisition time in terms of the number of bits 

is equal to 2L1. 

 

 Figure 3.3 plots the example calculations of 2L1 for N equal 8 and 64. The results 

show that the acquisition time decreases as m increases.  Notice that for the same 

fractional chip error of 0.125 (m equals to 1 and 8 for N equals to 8 and 64, respectively), 

the acquisition time increases significantly, from about 60 bits to about 170 bits as N 

increases from 8 to 64. 

 

3.2 Markov Chain Analysis 

At the receiver, a bit error would result in a chip error that not only will attenuate 

received signal strength at the output of the correlator, but will also propagate through the 

shift registers and affect the following bit decisions. The dynamic of the system 

performance during tracking can be investigated with Markov chain analysis. 

 

For m chip errors, the amplitude attenuation at the correlator output is: 
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      Thus, the conditional probability of error given m, meP | , is given as: 
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where Q(.) is the Q-function and ob NE / is the symbol SNR under AWGN. 
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Fig. 3.3 Initial acquisition time 2L1 (bits) for N = 8, 64. 
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Let the state of the Markov chain be the error content of the receiver feedback shift 

register, with Xi representing the i-th state of the registers. For a spreading sequence of 

length N, there are 2
N 
states. Without loss of generality, we assume that N is even. The 

NN 22 ×  state transition matrix P of the Markov chain can be written as [20]: 
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This is an irreducible, positive-recurrent and aperiodic Markov matrix that describes 

an ergodic Markov chain, whose states are all positive-recurrent. The probability 

distribution of Xi converges to a steady state distribution as the number of the transmitted 

symbols increases. 

 

      The first entrance probability of a Markov chain is defined as: 

)(n

ijf = Pr{starting from state i, the first passage to state j in exactly n steps}          
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where X
n
 is the state at step n. 

 

For the above ergodic Markov chain, the mean first passage time (MPT) from i chip 
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errors to j chip errors,  denoted Mij , is defined to be expected value of the number of 

steps n = 1,2,… Thus, Mij can be computed as [20,36,37]: 

                 ∑
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Notice that for i = j, Mii is called the mean recurrence time. 

 

Let M  be the matrix of the MPT. Then M  can be computed iteratively, according 

to [20]:  

)]([ )()()1( nnn diag MMPEM −+=+                     (3.9)   

where EM =)0( ; Tee=E with T
e )1,...,1,1,1(=  and diag(.) is the matrix diagonal 

operation.  

 

Equation (3.9) can be used to calculate the MPT once the transition matrix P is 

known. Table I shows the example MPT calculations for N = 8 with different SNR and 

initial chip errors m. The results show that MPT increases with SNR and m. 

 

 

 

Table I.  Mean First Passage Time for N = 8. 

 

 SNR=3 dB SNR=4 dB SNR=5 dB SNR=6 dB SNR=7dB 

M10 29.765 32.602 35.23 35.863 34.5 

M20 84.628 131.77 223.5 397.68 748 
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M30 189.01 380.01 859.9 2114.6 5747 

M40 334.65 771.95 2005.3 5687 18002 

 

In the tracking phase, the content of the receiver registers transits from m initial 

errors to the error-free condition (m = 0). Thus, the average transmission length during 

tracking, L2 (bits), is determined by the MPT of the Markov chain and corresponds to 

element Mm0 in matrix M.  The mean tracking time is then equal to L2Tb .  

 

The overall synchronization time, Tsyn, is the summation of the mean initial 

acquisition time and tracking time: 

bbbsyn TLLTLTLT )2(2 2121 +=+=              (3.10) 

So the average number of transmitted bits during the synchronization process, i.e., 

from the initial random errors until the error-free state, is L = 2L1 + L2. 

 

The genetic algorithm acquisition phase depends on the initial chip errors m:  a 

larger value of m would lead to a faster acquisition time.  However, during the tracking 

phase, the tracking time would increase as m increases. Thus, for the overall 

synchronization that considers both phases together, there is an optimum performance, 

i.e., fastest synchronization time from the initial random chip errors to zero chip error, 

which can be achieved with an optimum value of m. 

 

3.3 Synchronization 

Figure 3.4 compares the theoretical acquisition time 2L1 under large SNR, based on 
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equation (3), to the simulation results under increasing SNR (the GA pool consists of 100 

sequences in the simulation). As would be expected, the results show that the acquisition 

time decreases as m increases. Also, as the SNR increases from 4dB to 8dB, the 

simulation results approach the theoretical calculation which represents a lower bound. 

The example plots for N = 8 demonstrate that the theoretical calculations of acquisition 

time agree very well with the simulation results under high SNR. 
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Fig. 3.4   Acquisition time 2L1 (bits) with SNR for N = 8.               
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Figures 3.5 and 3.6 plot the example tracking time for N = 8 based on Markov chain 

analysis and simulation, respectively, under increasing SNR.  A direct comparison of the 

plots also demonstrates an excellent agreement between the analysis and the simulation. 

The results suggest that Markov chain analysis can accurately predict the mean tracking 

time. 

Figure 3.7 compares theoretical calculation of the overall synchronization time, 

2L1+L2, to the simulation. The plots show that the theoretical and simulation results agree 

very well under high SNR. The plots in Fig. 3.7 demonstrate the validity of 

synchronization analysis by mean of genetic algorithm and Markov chain. 

 

Figures 3.8 and 3.9 show the simulation results of initial acquisition time and tracking 

time, respectively, versus acquisition threshold for N = 64, as the SNR varies from 3dB to 

8dB. Unlike the results in Fig. 3.4 for N = 8, the acquisition time for N = 64 in Fig. 3.8 

does not change with the range of SNR. This suggests for a sufficiently large spreading 

length, the acquisition time is rather insensitive to SNR. On the other hand, the results in 

Fig. 3.9 show that the tracking time improves considerably with SNR. 

 

Since the initial chip errors m decreases as the acquisition threshold increases, as 

expected the acquisition time 2L1 increases with the threshold as shown in Fig.3.8, while 

the tracking time L2 decreases as the threshold increases as shown in Fig. 3.9.  
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Fig. 3.5 Theoretical tracking time L2 (bits) SNR for N = 8. 
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Fig. 3.6 Simulation of tracking time L2 (bits) for N = 8. 
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   Fig. 3.7 Theoretical and simulation results of synchronization time, 2L1 + L2 (bits), 

for N = 8 under high SNR. 
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Fig. 3.8 Initial acquisition time 2L1 (bits) for N = 64. 
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Fig. 3.9   Tracking time L2 (bits) for N = 64.       
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Figure 3.10 plots the synchronization performance for N = 64 with the SNR varying 

from 3dB to 8dB.  The plots show that the overall synchronization time, L = 2L1+L2, 

decreases as SNR increases. The results show that the synchronization process is clearly 

dominated by the initial acquisition phase (2L1) when the correlation threshold is high 

(smaller m), while it is dominated by the tracking phase (L2) when the threshold is low 

(larger m).  Therefore, an optimum, fastest synchronization time can be achieved by 

setting an appropriate acquisition threshold. 

 

As an example, Fig. 3.10 shows that for N = 64, an optimum threshold value of 0.65 

would yield the minimum synchronization time of L = 176 bits at 8dB SNR. 

 

The previous results have been obtained with a single correlator and a GA pool of 

100 sequences. Intuitively, with additional (parallel) correlators and a larger sequence 

pool, the mean acquisition time would decrease and the minimum synchronization time 

therefore should improve [38].   

 

Figure 3.11 shows that the example improvement in acquisition time (at 8dB SNR) is 

more significant for a larger threshold values as the number of correlators C increases 

from 1 to 32, with the sequence pool, S, fixed at 100. The acquisition time improvement 

with S increasing from 100 to 800, however, is marginal as shown in Fig. 3.12 for single 

correlator. Here we have fixed the good chromosome number with different pool size and 

mutation was not considered in the simulation. In Fig. 3.13, we use typical 90% 

cross-over and 5% mutation. The results show that:  
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Fig. 3.10  Synchronization time 2L1+L2 (bits) under different SNR for N = 64. 
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Fig. 3.11 Initial acquisition time 2L1 (bits) with parallel correlators for N = 64. 
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Fig. 3.12 Initial acquisition time 2L1 (bits) with larger sequence pool for N = 64. 
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Fig. 3.13  Initial acquisition time 2L1 (bits) with larger sequence pools for 

cross-over=90% and mutation=5% 
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The smaller pool size of 100 is preferable.   

 

   Figure 3.14 demonstrates the overall synchronization performance improvement at 

8dB SNR with additional correlators and a larger sequence pool.  The example plots 

show that the minimum synchronization time has been reduced from 176 bits to 150 bits. 

 

3.5 Summary 

In this chapter, we considered SESS synchronization as the acquisition phase - from 

the initial random errors to m errors in the receiver registers, together with the tracking 

phase - from m errors to the error-free state. The mean initial acquisition time was 

computed by a genetic model and the mean tracking time was examined by Markov chain 

analysis. We explored the genetic model and Markov chain analysis theoretically and via 

simulation under different spreading length and SNR values. The results demonstrate the 

veracity of the theoretical modeling and analysis. We have shown that the acquisition 

time decreases as m increases, while the tracking time increases with m. Thus, for a given 

SNR, there is a minimum overall synchronization time that can be obtained by selecting 

an optimum acquisition threshold.  The synchronization time can be improved further 

with parallel correlators and, to certain extend, a larger genetic sequence pool. The 

optimum SESS synchronization performance has been demonstrated with simulation 

results for an example spreading length of 64.  
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Fig. 3.14 Synchronization time 2L1+L2 (bits) improvement with parallel correlators and a 

larger sequence pool for N = 64. 
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CHAPTER 4 

 

Coded Cooperative Diversity with Spread Spectrum 

 

4.1 Introduction 

Multiple-input multiple-output (MIMO) techniques can be impractical in a wireless 

cellular system due to the small size and hardware complexity of the mobile terminals. 

Cooperative diversity (CD) has been proposed to overcome such limitation. In CD, 

several partner terminals around a given mobile terminal form a distributed cooperative 

network and transmit information collaboratively [21]. In this sense, CD offers similar 

advantages to existing diversity technique such as MIMO to combat the detrimental 

effects of multipath fading. CD technique is applicable for cellular, wireless LAN or 

ad-hoc network, where individual mobiles, PDAs or sensors communicate with a 

common base station or access point [21].  Sendonaris [6-7] has proposed a user 

cooperation model that achieved an increase in capacity. For further performance 

improvement, Laneman [25,39] has proposed a repetition-based and space-time-coded 

cooperation by mimicking MIMO system, but the repetition scheme reduces achievable 

rates.  To avoid repeating symbols, Hunter has proposed a simple two users coded 

cooperation scheme [8].  The technology exploits the fact that around a given terminal, 

there can be other single-antenna terminals which can be used to enhance diversity by 

forming a distributed (or virtual) multi-antenna system. As demonstrated in [21] 

cooperative diversity can achieve a diversity order equal to the number of paths between 
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the source and the destination, and in this sense, they offer similar advantages to any 

existing diversity technique. Cooperative diversity has been attracting increasing 

attention as a novel and promising diversity technique. 

 

In this chapter, we propose a cooperative convolutional coding (CCC) scheme with 

spread spectrum and present its performance in fading channels. CCC combines channel 

coding and cooperative diversity to simultaneously achieve both time diversity and space 

diversity, while maximum ratio combiner (MRC) only exploits space diversity gain [41]. 

The coded bits are spread using orthogonal spreading sequences. The spread code bits are 

added and transmitted simultaneously. We also applies the power scaling factor to the 

transmit signal to maintain the same average power and show that CCC outperforms 

MRC without an average power increase. We compare simulation result to the repetition 

scheme with MRC and show how bit-loss in hostile channels influences the performance 

of CCC.  

 

4.2  Coded Cooperative Diversity System Model 

User cooperative diversity was introduced as a way to obtain multiple antenna gains even 

when each user has only one antenna. It is applicable to sensor or mobile communication 

networks, where, individual sensors, mobiles, or PDAs communicate with a common 

base station (BS) or access point (AP). 

 

Figure 4.1 shows the block diagram of the cooperative network where information is 

communicated between a source (S=R1) and a destination (D=R0) over a complex channel 
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with fading parameter f10. Two relay nodes, R2 and R3 , are willing to cooperate to provide 

repeated signals through the complex channels with flat fading channel parameters (f12, 

f13) from (S) to (R2, R3), and (f20, f30) from (R2, R3) to (D), respectively. Without loss of 

generality, we assume the relays and destination have the same additive white Gaussian 

noise (AWGN) power. We also assume that the values of random variables, f10, f12, f13, f20 

and f30 have been determined at the receiver ends by training. We consider the Amplify 

and Forward (AF) model with a constant average power.  

  

The basic idea in our proposed CCC is to implement convolutional coding across a 

cooperative relay network, as shown in Figure 4.2.  In this chapter, to exploit time 

diversity for the CCC system against fading, we employ an example convolutional code 

with a constraint length (K) of 3, a code rate (R) of 1/3, and the corresponding free 

distance (dfree) equals to 6 [40,54]. The code generator is (5,7,4) in octal representation 

[24,60].  Let the convolutional code sequence be: 
32131 , ddddd ⊕⊕⊕  and

3d where ⊕  

denotes the exclusive OR operation. The three code words will be orthogonally spread, 

added and transmitted through the direct and relay paths simultaneously with different 

channel fading coefficients.  

 

  The receiver despreads the three convolutional code bits and combines using MRC 

scheme, followed by Viterbi decoding with soft decision [42-43].  The receiver thus 

exploits the additional time diversity as well as the spatial diversity inherent in relay 

systems.       
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 Fig. 4.1. Cooperative Diversity structure. 
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4.3 Coded Cooperative Diversity System Analysis 

4.3.1    BER for Relay Channel (MRC)  

Let the mean and the second moment (power) of the fading coefficents, fij are equal to Kij 

and ijξ , respectively. As shown in Fig. 4.1, 
10K 12K 13K 20K  and

30K  are the mean of the 

fading coefficients on the relay paths, and so the instantaneous signal-to-noise ratio (SNR) 

at the different branches can be calculated as: 

)3,2,03,2,1( === ji
N

P

o

x
ijij ξγ                     (4.1) 

The instantaneous SNR at receiver with diversity can be derived as [21]: 
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 At high SNR, (4.2) simplifies to 
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In MRC cooperative scheme, information bits are repeated in relay paths. We assume 

binary phase-shift keying modulation (BPSK) over Rayleigh fading channels. Therefore, 

the bit error rate is: 

                ∏
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Here, the relay nodes number M=2, then 

1030132012
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++=
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e
NE

P     (4.5)  

The error probability eP is the function of )1()/( +− M

ob NE  [8]. Therefore, the cooperative 
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network can achieve the full diversity order M +1. 

 

4.3.2    BER for Cooperative Convolutional Coding (CCC) 

In CCC cooperative scheme, three code words will be spread with orthogonal sequences 

and added. After applying the power scaling factor, the signal is transmitted through the 

direct path and relay paths simultaneously as shown in Figure 4.2. 

The transmitted signal x can be expressed as: 

}SdS)ddd(S)dd{(Cx 332321131 +⊕⊕+⊕=           (4.6) 

where 
1S ,

2S ,
3S  are orthogonal spreading sequences and C  is the power scaling factor.   

The received signals can be expressed as: 

1101 nxfy +=  

                  2202122 nxfAfy +=  

                  3303133 nxfAfy +=                             (4.7) 

where
2A and 

3A  are amplification factors to maintain constant average power output of 

the relays: 

                  )1+)/(/()/(=
2

122 obob NEfNEA        

             )1+)/(/()/(=
2

133 obob NEfNEA                     (4.8) 

321 ,, nnn are statistically independent and  Gaussian distributed as ),0( 2

0σN . We obtain the 

code words for Viterbi decoding as follows:  

1331221111 ++= SyψSyψSyψC  

2332222112 ++= SyψSyψSyψC   



64 

 

 

333223113 ++= SyψSyψSyψC                     (4.9)  

 

       

 

Fig. 4.2 Cooperative diversity structure with convolutional coding.   
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Here
1ψ , 

2ψ  and 
3ψ  are the normalization factors for fading, relay and destination 

noise power. The normalization factors are obtained as: 

2

0101 /= σfψ  

))1+/((=
2

0

2

2

2

20122202 σAffAfψ  

))1+/((=
2

0

2

3

2

30133303 σAffAfψ                    (4.10) 

We assumed the same noise power 
2

0σ  at relays and the destination. 

 

4.4 Simulation results 

We simulate cooperative performance of CCC and MRC with BPSK modulation in 

Rayleigh fading channels. The relay nodes number M=2, or three branches. 

 

Figure 4.3 presents the BER of CCC with a soft-decision Viterbi decoding in 

independent channels. The BER of MRC is also plotted for comparison [21]. In 

Figure. 4.3, we assumed the expected fading coefficients are identical for the relay 

channels. The simulation result shows that CCC improves the system performance 

significantly over MRC-based cooperative systems. 

 

  In the following, we specifically simulate MRC and CCC schemes with the 

following two groups of fading coefficients:  

Case 1:  

10K =
20K =

30K = 0.5, 
12K =

13K = 0.5 

Case 2:  

10K =
20K =

30K = 0.2, 
12K =

13K = 0.9 
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Fig. 4.3 Simulation BER, CCC and MRC, 
10K =

20K =
30K =1,  

12K =
13K = 1. 
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The relays in Case 1 are between the source and destination. Figure 4.4 shows the 

analytical and simulation BER of MRC for both cases.  The analytical BER based on 

equation (4.5) agree well with the simulation results under high SNR as expected.  

The results show that having the relays between the source and the destination 

exhibits a better performance as estimated in [21]. We have also obtained similar 

results for Case 2 with a slightly degraded performance. 

Figures 4.5 and 4.6 plot the BER of MRC and CCC in correlated channels. The 

performance degrades as the correlation value increases. We observed a similar 

degradation with CCC as shown in Figure 4.6. Notice that the BER performance 

degrades greatly if channels are fully correlated (R=1) in both schemes. 

  Figures 4.7 and 4.8 show the BER of MRC and CCC when the bits are lost, for 

example, in hostile channels. The results show that with CCC, the BER degradation is 

more gradual than MRC.  The time diversity achieved by convolutional coding and 

the soft-decision Viterbi decoding in CCC allows the receiver to mitigate system 

degradation due to the bit loss.  
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Fig. 4.4   Analytical and simulation BER of MRC. 
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Fig. 4.5 Simulation BER of MRC with 
10K =

20K =
30K =0.5,   

12K =
13K = 0.5, for 

various correlation values of correlated channel. 
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Fig. 4.6 Simulation BER of  CCC with  
10K =

20K =
30K =0.5, 

12K =
13K = 0.5, in 

correlated channel. 
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Fig. 4.7 Simulation BER of MRC with   
10K =

20K =
30K = 0.5, 

12K =
13K = 0.5, for 

various bit loss percentages. 
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Fig. 4.8 Simulation BER of CCC with 
10K =

20K =
30K =0.5, 

12K =
13K = 0.5, for various 

bit loss percentages. 
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4.5. Summary 

In this chapter, we proposed a CCC cooperative scheme that simultaneously 

exploits time diversity as well as spatial diversity without an average power increase.  

We presented the performance of CD links with convolutional coding and spread 

spectrum. The relays amplify and forward their received signals from the source to the 

destination.   Using Viterbi decoding with soft decision, the proposed CCC scheme 

achieves diversity gain with the number of cooperating relays in correlated channels 

and under bit loss environments.  CCC imposes additional burden of encoding and 

decoding complexity in the mobile and base stations, respectively.   The simulation 

results show that the proposed CCC exhibits significant gain over MRC relay 

systems.   
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CHAPTER 5 

Self-encoded Spread Spectrum with Cooperative 

Diversity 

 

5.1 Introduction 

 

This chapter analyzes the cooperative SESS for Amplify and Forward CD links in 

rayleigh channels. The results show that our cooperative SESS improves the system 

performance significantly over MRC-based cooperative systems.  

 

In section 5.2, we describe the system model. Section 5.3 analyzes the performance 

of Cooperative SESS and MRC. The analytical and simulation results based on 

cooperative convolutional coding schemes are presented in section 5.4. The 

conclusion follows in section 5.5. 

 

5.2 Cooperative SESS System Model 

The basic idea in our proposed spatially cooperative spread spectrum is to implement 

SESS across a cooperative relay network. At the transmitter, the delay registers are 

constantly updated from N-tap serial delay of the data to generate the spreading 

sequence of length N. The current bit is spread by the time varying N chip sequence 

that has been obtained from the previous N data bits [22]. 

 

The SESS data bit will be transmitted through the direct and relay paths 
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simultaneously with different fading coefficients as shown in Fig. 5.1. The 

self-encoding operation at the transmitter is reversed at the receiver. The recovered 

data are fed back to the N-tap delay registers that provide an estimate of the 

transmitter spreading code required for signal de-spreading [44]. The SESS-CD 

receiver employs iterative detection. 

 

    The receiver thus exploits the additional time diversity as well as the spatial 

diversity inherent in relay systems. The transmitted signal can be expressed as: 

x = diSi                                        (5.1) 

where di and Si are the data bit and the SESS spreading sequence, respectively, during 

i-th bit duration. Then, the output of the decorrelator at the receiver is given by 

      *

33

*

22

*

11 ++= iiii SyψSyψSyψr                  (5.2) 

where *

iS  is the recovered spreading sequences at the receiver, which may be 

different from Si due to the detection errors. y1, y2, y3 are received signals as in (4.7) 

1ψ , 2ψ and 3ψ are the normalization factors for fading and noise power: 
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    We can write SESS signals as 
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   (5.4) 

where di are the data bits delayed to form the SESS spreading sequences. Since the 

current bit is spread by N previous bits, we can observe that current detecting bit d1 is 

also related to previous N information bits, which are stored in the delay shift register 

d-N+1… d0. By incorporating previous detected bits, we expect to improve the 

performance [45]. Therefore signal energy can be retrieved from previous estimated 

bits as: 

∑
=

−−=
N

i

ikiki cr
1

ξ                (5.5) 

and, the bit decision can be made based on 

iii rY ξ+=                   (5.6) 

For MRC scheme, we obtain 

332211 ++= yψyψyψYi          (5.7) 

 

at the receiver for bit detection. We assume that each relay path and direct path is 

isolated. The isolation can be achieved by time division multiplexing. 

 

 

 

 5.3  Cooperative SESS System Analysis 

a) BER for Relay Channel (MRC): As shown in Fig 5.1, f10, f12, f13, f20 and f30 are the 
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fadings on the relay and direct paths. With the mean and the second moment (power) 

of the fading, fij are equal to Kij and ijξ , respectively, the signal-to-noise ratio (SNR) 

at different nodes can be calculated as: 

o

x

ijij N

P
ξγ =                      (5.8) 

where Px / No is the received SNR in AWGN channels without fading. The SNR at 

receiver with diversity can be derived from [21] as 
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which is reduced to 
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At high SNR. In MRC cooperative scheme, information bits are repeated in relay 

paths. We assume binary phase-shift keying modulation (BPSK) over Rayleigh fading 

channels. Therefore, the bit error rate with M relay branches is [21]: 

∏
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P            (5.11) 

where K denotes the specular factor in non-central Chi-squared distribution, and K = 0 

for exponential distribution. The constant k depends on the type of modulation, and k 

= 2 for binary phase shift keying [46].  C(M) can be obtained as 
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If the relay nodes number M=2, then 
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Fig. 5.1. Cooperative Self-encoded Spread Spectrum structure. 
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We observe that the error probability Pe is the function of (Eb/No)
- (M+1)

 where M 

is the number of relay nodes. Therefore, the cooperative network can achieve the full 

diversity order of M+1 [47]. 

 

b) BER for Self-encoded Spread Spectrum Cooperative Diversity (SESS-CD): The 

performance of SESS-CD with iterative detection can be considered as 

zzγze γdγpγkQP
z

)()(=∫
∞

0
               (5.14) 

where )( zγ γp
z

 is the probability density function of zγ . In this cooperative 

SESS-CD performance analysis, we do not consider the self-interference that comes 

from the erroneous dispreading sequences due to the incorrect bit decision at the 

receiver. (self-interference has been shown to be dominant only at low SNR or with 

small spreading factors [26]). The received energy in each path can be considered as 

                         ∑
1=

0 ,+=

N

i

iααy                  (5.15) 

where iα  for i = 1,…,N is an exponential random variable (r.v) with parameter cγ/1 , 

i.e., 

}/exp{
1

=)( c

c

α γγ
γ

γp
i            (5.16) 

 where cγ  is the chip energy-to-noise ratio with fading, and 0α  is an exponential 

r.v. with parameter N cγ . The first term in Eq. (5.15) is the output of the current 

despreading bit and the second term is the iterative detection output. We apply the 

central limit theorem to find the approximate probability density function (pdf) of y as 
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follows. Since the mean and variance of 
iα , for i > 1 are 

cγ and 2

cγ , respectively, we 

can approximate the mean and variance of y in Eq. (5.15) as: 

                  cccy γNγNγNm 2=+=                  (5.17) 

                  22222 )1+(=+= cccy γNNγNγNσ            (5.18) 

Therefore, the Gaussian pdf approximation pdf of y is 

                 )}2/()(exp{
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yp      (5.19) 

Since the first term in Eq. (5.15) is a dominant term, Eq. (5.19) may not be the best 

approximation. However, we will find that the result can provide a useful insight 

regarding the SESS-CD diversity gain. For high SNR, py(0) tends to be zero. 

Therefore, we will find the yp ∂/)0(∂  to be applied to the initial value theorem of 

Laplace Transforms [21] as 
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 for large N       (5.21) 

where bγ  is the bit energy to noise ratio with fading. The SNR at different nodes can 

be represented as ijγ . With M cooperating branches, the probability of bit error with 

BPSK can be obtained as 
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where 
1

))2exp(/2(= πa  from Eq. (5.22). C(M) can be obtained as 
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Comparing Eqs. (5.11) and (5.22), we find that the effective SNR in SESS-CD with 

iterative detection is the square of the actual SNR. 

 

 5.4 Simulation Result 

In Fig. 5.2, we can see that the performance of SESS-CD is superior to MRC. The 

result can be predicted from Eqs. (5.11) and (5.22). The BER difference between 

SESS-CD simulation and analysis comes from the Gaussian approximation of the 

received signal power. The exact pdf and its Gaussian approximation of the received 

signal power over random fading channels are shown in Fig. 5.3. We can observe that 

the Gaussian approximation shifts the distribution toward higher received signal 

power at both Eb / No equal to 5 dB and 10 dB, while maintaining the same mean 

and variance as the exact pdf. However the slope of SESS-CD simulation BER and 

analytical BER agrees well. The diversity gain determines the slope of the BER 

versus average SNR curve, at high SNR, in a log-log scale. On the other hand, coding 

gain (in decibels) determines the shift of BER curve in SNR relative to the benchmark  

curve in uncoded communication over a random fading channel [23]. We see that the 

Gaussian approximation exhibits a rather accurate diversity gain but not coding gain. 

The diversity gain in Fig. 5.2 portrays well the square term of the SNR enhancement 

in SESS-CD in Eq. (5.22). Fig. 5.4 shows the performance of SESS-CD with different 

relay locations. The relay location  
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Fig. 5.2. Simulation BER, SESS-CD (64 chips/bit) and MRC, K10 = K20 = K30 = 1;K12 

= K13 = 1. 
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in the middle of the source and destination (K12 = 0.5, K20 = 0.5) exhibits a better BER 

than the relay location near to the source (K12 = 0.9, K20 = 0.2). We can also see in Fig. 

5.5 that SESS-CD is stable in correlated channels but MRC degrades rapidly as the 

channel correlation increases. A similar effect can be observed with bit loss in hostile 

channels as shown in Fig. 5.6 where SESS-CD displays much stable BER 

performance compared to the MRC. 
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Fig. 5.3. Probability density function of exact pdf and Gaussian approximation, 64 

chips/bit, Eb/No = 5 and 10 dB 
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Fig. 5.4. Simulation BER of SESS-CD, 64 chips/bit. 

 

 

 

 

 



 

 

86

 

Fig. 5.5. Simulation BER of MRC and SESS-CD (64 chips/bit) with K10 = K20 = K30 = 

0.5;K12 = K13 = 0.5, for various correlation values of correlated channel. 
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Fig. 5.6. Simulation BER of MRC and SESS-CD (64 chips/bit) with K10 = K20 = K30 = 

0.5,K12 = K13 = 0.5, with various bit loss percentages. 

           

 

 

 

 

 

 

 

 

 

 

 



 

 

88

 

5.5 Summary 

In this chapter, we have incorporated SESS with CD and showed that SESS-CD 

diversity gain is related to the square of the received SNR: The BER of SESS-CD is 

inversely proportional to the square term of the SNR while the MRC BER is inversely 

proportional to the SNR only. The simulation results showed that SESS-CD is very 

stable in highly correlated channels as well as in severely fading channels. Thus SESS 

combined with CD can be a promising CD technique for the future generation of 

wireless communications. 
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CHAPTER 6 

Concluding Remarks and Future Work 

 

SESS and SEMA can be considered as low rate convolutional code or direct 

sequence random spread spectrum communications [16,48,49], they have some of the 

characteristic of channel coding as well as spread spectrum capability. SESS can 

achieve 3dB performance gain comparing to the conventional uncoded direct 

sequence spread spectrum system. As the spreading sequence is time variant and 

randomly generated, it has the potential to provide the system with low probability of 

interception. SESS is similar to a channel coding scheme in that it can also provide 

time diversity to combat against fading in wireless communication channel. Because 

of the large memory in SESS modulation, robust resistance of to time selective fading 

can be achieved without the explicit need of interleavers. 

 

 However, in SESS, the random and time-varying nature of self-encoded sequence 

presents a challenge to synchronization as no reference of the spreading sequence is 

available at the receiver. Thereby, a reliable acquisition and tracking system is 

critically important to SESS receiver. We consider the acquisition as a global 

optimization problem and propose to employ genetic search algorithm in the sequence 

generation and revision for converging to the global optimization efficiently. 
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(1) Synchronization time of SESS is necessary to be improved for the 

real application of SESS system. For example, for N=64, it will need 

around 150 bit periods on average to achieve the synchronization for 

SESS.  

         (2)  The synchronization system we present assuming that system works    

under high SNR which can not always be promised in practical. 

Under low SNR, more noise will influence the quality of the 

estimation of transmitted signal in the receiver part.  

         (3)  More parameters are necessary to evaluate the quality of SESS 

synchronization. For example, the acquisition probability in a fix 

time period, probability of false alarm, etc.  

   

Some Improvements may have on Cooperative diversity:  

(1) Synchronization 

Cooperation diversity is assuming the whole system is well 

synchronized which is actually very hard in real application.               

(2) Because the complexity in receiver is obviously increased by 

introducing cooperation diversity, Channel estimation and signal 

detection for cooperative diversity are necessary to be improved. 

(3) Even multi-antennas are not applicable in transmitter users, but still 

suitable for base station. So a scheme of transmitting by cooperative  

diversity and receiving by multi-antennas diversity will be beneficial.  



 

 

91

(4) Cooperation diversity in frequency selective fading channels. Untill 

now, most works on cooperation diversity are assuming system in flat 

fading channel. For high bit rate and high mobility communication 

system, the cooperation diversity research on frequency selective 

fading channels is necessary.  Questions can be raised as: Can we 

transplant same results into frequency selective fading channels? What 

factors must be taken care in frequency selective fading channels? 

Barbarossa has been starting such work to combine cooperation 

diversity with OFDM, thereby, OFDM can be used to defeat frequency 

selective fading. 

 

A novel scheme: SESS together with cooperative convolutional coding scheme 

and iterative detection can achieve both spatial and time diversity gain simultaneously 

without the average power increase. But the system will have much higher delay and 

computational complexity which need to be considered in the future. And the 

synchronization problem is critical for both SESS and CCC scheme, it’s necessary to 

figure out a synchronization method for this novel SESS and CCC combination 

scheme.  
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Appendix A: 

 

Examples of Simulink structures of SESS 

 

 

 

1. Self-Encoding Feedback Detection (N=4,16,128,256,512,1024) 

 

 

 

 

 

 

 

Fig A.1 Feedback Detection N=1024 
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FigA.2 Iteration detection (N= 4,16,128,256,512)  
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Fig.A.3  Self-Encoded Multiple Access for Iteration Detection (2 users) 
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Appendix B: 

 

MPT Matrix M calculation codes (matlab) 

N=16; 

L=pow2(N); 

Mo=zeros(L,L); 

M_1=zeros(L,L); 

Po=ones(1,L); 

i=0; 

I=eye(L); 

 

P=zeros(L,L);   

Perr=zeros(1,N+1); 

for i=1:N+1 

Perr(i)=normcdf((2*(i-1)/N-1)*sqrt(2)); 

end 

%Perr=[0.08  0.1446  0.242  0.3632  0.5  0.6368  0.758  0.8554  0.92];       % N=8 

%Perr=[0.08 0.242 0.5 0.758 0.92];                                          % N=4 

 

 

for i=1:L 

    for j=1:L 

       if i<=pow2(N-1) 

           if i==ceil(j/2) 

                

                   ii=dec2binvec(i-1,N); 

                    

                   tt=0; 

                   for k=1:N 

                       if ii(k)==1 

                           tt=tt+1; 

                       end 

                   end 

                    

                if mod(j,2)==0  

                   P(i,j)=Perr(tt+1); 

               else 

                   P(i,j)=1-Perr(tt+1);  

               end 

                

           end 
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       else 

           if (i-pow2(N-1))==ceil(j/2) 

                                  ii=dec2binvec(i-1,N); 

                    

                   tt=0; 

                   for k=1:N 

                       if ii(k)==1 

                           tt=tt+1; 

                       end 

                   end 

                    

                if mod(j,2)==0  

                   P(i,j)=Perr(tt+1); 

               else 

                   P(i,j)=1-Perr(tt+1);  

               end 

                

           end 

       end        

    end 

end 

 

E=ones(L,L); 

i=0; 

M=E; 

while (Mo~=M) 

Mo=M; 

M=E+P*(M-diag(diag(M))); 

i=i+1; 

disp(i); 

end 

 

Mmean=zeros(1,N+1); 

Mnum=zeros(1,N+1); 

for j=1:L 

    jj=dec2binvec(j-1,N); 

     tt=0; 

     for k=1:N 

       if jj(k)==1 

          tt=tt+1; 

       end 

    end 

      Mmean(tt+1)=Mmean(tt+1)+M(j,1); 

      Mnum(tt+1)=Mnum(tt+1)+1; 
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end 

Mm =Mmean./Mnum; 
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Appendix C: 
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Fig. 4    Variance coefficient r with ρ  for Chapter 4 

 

Figure C.4 shows the relationship of r with ρ  is nonlinear for correlated channels 

simulations in chapter 5.  See detail deductions in next page. 
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