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The task of gene prediction has been largely stagnant in algorithmic improvements 

compared to when algorithms were first developed for predicting genes thirty years ago. 

Rather than iteratively improving the underlying algorithms in gene prediction tools by 

utilizing better performing models, most current approaches update existing tools through 

incorporating increasing amounts of extrinsic data to improve gene prediction 

performance. The traditional method of predicting genes is done using Hidden Markov 

Models (HMMs). These HMMs are constrained by having strict assumptions made about 

the independence of genes that do not always hold true. To address this, a Convolutional 

Neural Network (CNN) based gene prediction tool was developed and named GeneCNN. 

Due to their nonlinearity, neural networks are adept at capturing complex relationships 

between data points when applied to sufficiently large datasets such as whole genomes. 

Convolutional neural networks further improve upon neural networks through the 

incorporation of spatial dependence into individual datapoints. GeneCNN was trained 

using a sequenced buffalograss (Bouteloua dactyloides) genome. Training performance 

of GeneCNN resulted in a 97% accuracy in correctly identifying genic sequences in test 

data. GeneCNN uniquely identified a greater number of genes than currently existing 

gene prediction tools BRAKER3, AUGUSTUS, and Fgenesh at 1,089, 1,535, and 478 



 
 

respectively, when using a 10 million nucleotide length genome sequence of buffalograss 

as input. Gene predictions made by combinations of the tools BRAKER3, AUGUSTUS, 

and Fgenesh, were compared to GeneCNN to assess the percentage of gene predictions 

made by GeneCNN that are supported by at least one other tool, where support ranged 

from 40.5% to 84.1% of all GeneCNN gene predictions for every combination of 

BRAKER3, AUGUSTUS, and Fgenesh. The findings in this study support the use of 

CNNs for gene prediction and serve as a valuable resource for the improvement of gene 

prediction algorithms in future research. 
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CHAPTER 1: INTRODUCTION 

Buffalograss [Bouteloua dactyloides (Nutt.) Columbus] is a warm-season prairie 

grass found natively in the United States Great Plains region. Buffalograss is highly 

tolerant to drought and heat; it also tolerates mowing and forms sod, making it a valuable 

turfgrass species (Steinke et al., 2010). As a non-model organism, buffalograss lacks 

many of the genomic resources available to model organisms, such as a reference 

genome. The use of a reference genome for guiding sequence analysis generates higher 

quality results, allowing for discoveries that would not likely be made with a de novo 

approach alone (Marchant et al., 2014). However, a reference genome alone is not 

enough, as with the explosion of genomic sequencing and annotation, gene prediction 

quality has suffered due to the propagation of errors within databases, lowering the 

quality of similarity-based gene prediction (Salzberg, 2019). In addition to the errors 

associated with similarity-based gene prediction, ab initio gene prediction also has lower 

accuracy than potentially achievable due to traditional methods incorrectly applying 

statistical models. The focus of this project has been on creating a robust reference 

genome for buffalograss by refining gene prediction through the use of deep learning 

models rather than relying on inappropriate traditional gene prediction methods.  

1.1 Gene prediction 

Gene prediction is a complex task in eukaryotes that has seen relatively few 

algorithmic improvements in recent years compared to the inception of computational 

tools fit for this task. The main difficulties of eukaryotic gene prediction are due to low 

genic content relative to the whole genome and the presence of introns, repetitive 

elements, and conserved domains within genes having different functions. This has led to 
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two major approaches for gene prediction, similarity-based gene prediction and ab initio 

gene prediction. 

1.1.1 Similarity-based gene prediction 

Similarity-based gene prediction is done through the use of extrinsic data, 

typically with known genomic DNA or cDNA aligned against the unknown sequences of 

interest. This alignment with known sequences has shown to be particularly adept at 

identifying exons if the aligned cDNA is from either the same or a closely related 

organism (Fukunishi et al., 1999). One of the advantages of using known extrinsic data is 

that sequence similarity can be used to identify homology of known sequences to the 

unknown sequences of interest, allowing for inference of the unknown sequence function. 

Sequence similarity suggests common ancestry, and therefore likely similar function. 

This identification of similarity allows for identification of potential function of 

previously uncharacterized genes (Pearson, 2013). As some gene functions are 

experimentally verified, especially in well-studied systems such as model organisms, this 

method gives some credibility to the newly informed gene function. However, a major 

downside of similarity-based gene prediction is that unless the genes in question are 

highly conserved, this method is limited by how similar two organisms are, as well as by 

the number and quality of gene sequences that are currently in databases. 

1.1.2 Ab initio gene prediction 

The other major gene prediction approach, ab initio gene prediction, is an intrinsic 

method which works by utilizing information from sequence motifs in conjunction with 

statistical-based models such as Hidden Markov Models (HMMs) and Neural Networks 
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(NNs) or other approaches such as Dynamic Programming (DP) (Wang et al., 2004). 

There are two broad categories of sequence information used for ab initio gene 

prediction, including signal sensors and content sensors. Signal sensors are composed of 

different types of sequence motifs such as start and stop codons, splice sites, transcription 

start sites, and polyadenylation. Content sensors instead utilize statistical properties of 

genomic regions, such as sequence composition or length, oligomer frequency, and 3-

base periodicity to identify a genomic region as coding or non-coding (Do & Choi, 2005). 

Coding measures, or the likelihood of a given sequence being protein coding, have been 

one of the foundations of gene prediction algorithms, which include the previously 

mentioned content sensors. Fickett and Tung (1992) found that of these coding measures, 

in-phase hexamer count was the most accurate for providing discrimination between 

coding and non-coding regions. They also found that it is a best practice to both perform 

coding measures and decisions on discrimination in the same algorithm, which is a 

method performed by neural networks. 

1.2 Algorithms and models commonly used in gene prediction 

Algorithms and models used for gene prediction started with programming 

techniques such as DP and then moved on to machine learning methods such as HMMs, 

which are statistical models used for the extraction of essential information (Seymore et 

al., 1999). The field of machine learning is characterized by information extraction and 

adaptation based on information gleaned from data. In the scope of gene prediction, the 

application of machine learning algorithms is in the classification of sequences as genes, 

where the focus is on the accuracy of correctly identifying genes given a specific 

algorithm and dataset size (Jordan & Mitchell, 2015).  
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Deep learning is a type of machine learning, which has been popularized recently due to 

its higher potential accuracy when compared against machine learning methods. Deep 

learning is notable for its use of models containing nonlinear transforming layers, which 

allow these models to better extract information from complex datasets such as from 

genomic data when compared to machine learning methods. Neural networks, of this area 

of deep learning, have seen use in gene prediction but have not achieved the same 

popularity as HMMs due to their higher degree of difficulty for implementation and 

interpretation of results.  

1.2.1 Dynamic programming 

Dynamic programming has been one of the most prolific programming methods 

in bioinformatics and has been used for approaches such as sequence alignment, gene 

prediction, and predicting the secondary structure of functional RNA (Giegerich, 2000). 

This programming method is used when a problem has an optimal substructure, where 

the problem can be split into optimal subproblems that are able to be solved recursively, 

allowing a given solution to be found by iteratively solving the simpler subproblems. The 

defining factor of having optimal solutions to subproblems allows for the overall solution 

to be solved optimally, making DP methods efficient by running in polynomial time (Xu 

& Wu, 2021).  

As DP is solely an optimization method for solving programming problems and 

not a type of statistical model, DP fits into similarity-based or a combination-based 

approach by adding extrinsic data for support to ab initio gene prediction approaches. As 

such, DP is not directly used for predicting genes but rather for methods such as sequence 

alignment and gene structure assembly. These methods are often used alongside 
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statistical models with their signal and content sensors to predict genes optimally and 

accurately (Howe et al., 2002).  

Similarity-based gene prediction with a DP approach was largely unexplored 

when algorithmic gene prediction methods were first being developed due to the 

combinatorial magnitude of search space, as a native implementation of DP needs to 

examine all potential exon assemblies given a genomic sequence and a known target 

protein. This initial problem of a combinatorial search space was addressed by creating a 

spliced alignment algorithm where instead of examining all potential exon assemblies, 

only the exon assembly most related to a known target protein was retained, thereby 

reducing the search space and making this a sparse DP problem (Gelfand et al., 1996). 

Sparse DP is a method by which rather than considering every potential entry in a DP 

matrix, only a subset is considered that has the largest degree of importance for a given 

problem (Baker & Giancarlo, 1999). This use of sparse DP made the combinatorial 

problem encountered by Gelfand et al. (1996) run in polynomial time, making the 

previously infeasible problem with DP optimized. Another method for similarity-based 

gene prediction using DP was developed by narrowing the search space with strict 

requirements of containing start/stop codons, consensus sequences, and consistent 

assigned exon frames (Pachter et al., 1999). This narrowing of search space allowed the 

algorithm to utilize ever growing databases of proteins and annotated genes for a 

similarity-based gene prediction approach. With these two different methods developed, 

it has been shown that while DP is not a popular approach for gene prediction on its own, 

it is feasible. 
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The more commonly used method of incorporating DP into gene prediction is by 

using it in conjunction with statistical models. One such approach was taken by VEIL, an 

HMM-based system that was first trained on a given set of eukaryotic DNA sequences to 

find coding exons, then a DP algorithm was used to parse a new sequence found from the 

HMM results into its corresponding exons and introns (Henderson, 1997). This addition 

of DP to an HMM-based gene predictor allowed for finding the optimal gene models 

rather than solely using output from the HMM. 

1.2.2 Hidden Markov Models 

Like DP, HMMs have seen much use in the field of bioinformatics, where they 

have been the most widely used models for ab initio gene prediction. These HMMs are 

statistical models where unobservable states exist with distinct probabilities of 

transitioning between states, as well as observable sequences which are emitted from this 

set of state transitions (Eddy, 2004). In gene prediction these observable outputs are 

sequences of nucleotides, which give statistical significance towards identifying genes. 

Hidden Markov Models are defined by a set number of states contained within the model, 

a set number of distinct observations output per state, the probability of transitioning 

between states, the probability of a distinct observation at any given state, and the initial 

distribution of states (Rabiner, 1989). Given these parameters it is possible to create a 

robust stochastic model which provides an output of sequences determined from the 

probability of state transitions.  

One commonly used approach for eukaryotic genome annotation is BRAKER2, 

which utilizes GeneMark-ET and AUGUSTUS, both of which use HMMs for gene 

prediction (Brůna et al., 2021; Lomsadze et al., 2014; Stanke et al., 2008). Both of these 
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tools have had updates since their original creation in order to utilize extrinsic data, 

namely unassembled transcriptomic reads. Utilization of this extrinsic evidence supports 

the ab initio gene prediction algorithms by changing the training from unsupervised to 

semi-supervised, meaning that some of the data are now labeled as being genic. This 

addition of external support to predictions made by the HMM-based algorithms has 

greatly improved accuracy, with testing for GeneMark-ET showing that sensitivity and 

specificity were increased by 24.5% in Aedes aegypti (Lomsadze et al., 2014).   

The path of states within HMMs is a Markov chain, which assumes that any given 

observation is solely dependent on its immediately prior state while independent of all 

other prior states (Henderson et al., 1997). However within biology, gene order and 

chromosomal location are highly conserved through natural selection in evolutionarily 

related organisms which is referred to as synteny, therefore this primary Markovian 

assumption of independence is flawed when applied to gene prediction (Renwick, 1971). 

It has been shown previously in the field of natural language processing that HMMs 

implemented with these flawed assumptions can still yield satisfactory results, though 

nonoptimal (Blunsom, 2004). The satisfactory results combined with the relative ease of 

implementation and computational simplicity compared to other statistical models has led 

to HMMs being readily used despite scenarios where the foundational assumption of 

Markovian independence is flawed. This relative ease of modeling with HMMs has led to 

their acceptance as the most common gene prediction models despite their nonoptimal 

results, as extrinsic data has been increasingly used to improve results, similar to DP. 

Accuracy in ab initio gene prediction would improve by utilizing other types of statistical 



8 
 

models that do not break foundational assumptions, one such category of model is that of 

neural networks. 

1.2.3 Neural networks 

While deep learning is a branch of machine learning, it is in many ways also an 

extension of the foundational ideas in machine learning. Rather than requiring careful 

data preprocessing or feature extraction traditionally found in machine learning, deep 

learning can be applied to raw or minimally preprocessed data and automatically discover 

the representation needed to classify any given data point (LeCun et al., 2015). 

Additionally, deep learning models are characterized by the extraction of high-level 

features through successive layers of learning on input data (Najafabadi et al., 2015). 

Given these aspects of deep learning models, they appear to be well-fit to replace HMMs 

in gene prediction. 

Deep learning generally outperforms machine learning methods with proper 

model building and parameter tuning given its nonlinear nature and strength of learning 

on large datasets (Korotcov et al., 2017). For example, in a study done by Ni et al. 

(2019), it was shown that a deep learning approach outperforms an HMM approach for 

detecting DNA methylation by 7-30% for accuracy when measured on human data. 

Cheng et al. (2016) found that their deep learning approach for predicting miRNA targets 

outperformed machine learning methods by 15-40%. These two examples suggest that 

there is value in moving from the traditional HMM approach to deep learning for gene 

prediction.  
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Deep learning revolves around neural networks which simulate the human brain 

by allowing for information transfer between nodes called neurons. To do this, basic 

neural networks are composed of several layers of nodes, specifically an input layer, at 

minimum one hidden layer, and an output layer. Depending on defined thresholds, data 

above these thresholds are transferred between layers until reaching the output layer, 

which in the case of this project is classification of any particular data point as genic or 

nongenic. This basic form of deep learning, otherwise known as a feedforward neural 

network, is the foundation for deep learning as a whole. The term feedforward arose from 

the flow of information from input to output, while the term deep learning is related to 

the depth of the model, otherwise known as having multiple hidden layers found within a 

neural network. 

The hidden layers of a neural network are where approximations of the prior input 

happen to closely mimic the output in a way that is obscured to the viewer, thus the 

“hidden layer” name. In order to mimic the output, nonlinear functions are applied to the 

input to transform it into a close approximation (Goodfellow et al., 2016). This 

nonlinearity allows for neural networks to outperform machine learning models, as neural 

networks can more readily capture essential features from complex patterns (Mohseni-

Dargah et al., 2022). 

A large part of creating a good approximation of the expected output in deep 

learning is in parameterization, where the optimizer and cost functions are chosen. The 

optimizer of a neural network is an algorithm or function that is used for changing the 

weights associated with data as well as the learning rate in order to reduce loss, which is 

the difference between the expected output and the current output. Cost functions are an 
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extension of this metric of loss by then measuring the loss over the entirety of the dataset, 

giving a value to the performance of the neural network when applied to a dataset. 

Another important consideration when applying neural networks is the choice of an 

activation function, which is used for computation in hidden layers to apply nonlinearity 

and transform the data.  

1.3 Improving ab initio gene prediction with neural networks 

As shown previously, there are opportunities for improvement in sequence 

analysis models through the use of NNs as opposed to the commonly used HMMs. While 

NNs are not as popular in traditional gene prediction when compared to HMMs, NNs are 

not a new area of study. Uberbacher and Mural (1991) first described GRAIL, a NN-

based gene predictor, more than twenty years ago. GRAIL was trained on output from 

seven different sensor algorithms, each of which providing information on the coding 

potential of a given sequence, allowing for final predictions to be made on the test data 

for coding DNA locations. Similar to GRAIL, GeneParser was another early tool that 

used NNs for gene prediction (Snyder & Stormo, 1992). GeneParser trained their NN 

using weights developed from five different exon content classifications. Snyder and 

Stormo (1992) demonstrated that both GRAIL and GeneParser outperformed GeneID, 

another prominent gene predictor at the time that avoided statistical models and instead 

utilized a hierarchical rule system for filtering and predicting genes (Guigó et al., 1992). 

Though NNs themselves are not new to gene prediction, Convolutional Neural 

Networks (CNNs) have yet to be explored for this purpose. Convolutional neural 

networks are one form of NNs that are useful in working with spatially dependent data. 

As genomes not only have interactions among coding and noncoding regions, but also 
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have dependence of genic regions on other regions such as promoters, CNNs appear to be 

a suitable method for predicting genes. To resolve the spatial nature of data, CNNs first 

produce output from their neurons by taking a weighted sum across the length of the data 

using a kernel that scans the entire input in a convolutional layer. This output is then used 

as input for pooling layers which summarize the input data after nonlinear functions are 

applied, allowing for a dimensionality reduction while also keeping the important aspects 

of the data (Krizhevsky et al., 2017). This successive process of convolution and pooling 

can also be repeated to find motifs in the data, making CNNs adept at finding patterns, 

which would be useful for ab initio gene prediction (Umarov & Solovyev, 2017).  

1.4 The necessity for improvement in gene prediction 

The majority of current gene predictors are no longer solely similarity-based or ab 

initio, but rather some combination of the two. By combining extrinsic evidence with 

statistical models, the accuracy of gene predictions has greatly improved. However, ab 

initio prediction methods still struggle on their own with atypical cases, such as with 

small proteins or organism-specific genes (Scalzitti et al., 2020). Rather than constantly 

striving to improve prediction algorithms like studies in the past, the current trend has 

been stagnant on HMMs and the incorporation of extrinsic evidence. Whether it be solely 

to detach from HMMs to avoid the broken Markovian assumption of independence, or for 

general improvements seen with NNs especially when leveraging large datasets, it 

appears to be in the field’s best interest to refocus on improving ab initio gene prediction 

algorithms. The use of CNNs to strive towards this is recommended here due to their 

promise in reducing complex spatially dependent datasets to their essential features.  
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CHAPTER 2: DEVELOPMENT OF GENECNN 

 The task of gene prediction has been largely stagnant in algorithmic 

improvements compared to when algorithms were first developed for predicting genes 

thirty years ago. Rather than iteratively improving the underlying algorithms in gene 

prediction tools by utilizing better performing models, most current approaches improve 

existing tools through incorporating increasing amounts of extrinsic data to improve gene 

prediction performance. The most common modeling algorithms in use for gene 

prediction are Hidden Markov Models (HMMs). Hidden Markov Models are problematic 

for gene prediction due to the Markovian assumption of independence. This assumption 

states that a given observation is solely dependent on the immediately prior state, but 

independent of all other states. This is not a viable assumption for genomes as both gene 

order and chromosomal location are often conserved, which is referred to as synteny 

(Renwick, 1971). This synteny among genes has been shown to exist for as long as 1.5 

billion years in the case of genes found in the genomes of Synechococcus and 

Arabidopsis chloroplasts, which creates a large degree of spatial dependence among 

genes in evolutionarily related organisms (Zakharov, 2010). Given this genic spatial 

dependence, HMM-based gene prediction methods are flawed, which led to the 

development of a convolutional neural network (CNN) based approach named 

GeneCNN.  

2.1 Convolutional neural networks 

 Convolutional neural networks are a type of neural network that are adept at 

generalizing spatial data. This spatial awareness allows convolutional neural networks to 

learn complex patterns and make predictions when faced with new data. The 
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approximation of data and classification of data points, in this case the classification of 

whether a sequence is genic or nongenic, is done by neural networks through nonlinear 

transformations (Goodfellow et al., 2016). These nonlinear functions often allow for 

neural networks to outperform other models, such as HMMs, by creating generalizations 

from complex datasets that linear functions alone cannot capture (Mohseni-Dargah et al., 

2022). 

As mentioned previously, CNNs are particularly useful when working with spatial 

data as they initially create generalizations of the input through scanning input data using 

a convolutional layer. Kernels, or matrices of a specific size, are used in these 

convolutional layers as sliding windows where a number of kernels with a specific depth 

known as a filter, are used to scan the entire input to summarize a given data point and its 

kernel-sized surroundings into a new data point. The output from these convolutional 

layers is used as input for pooling layers which summarize data with nonlinear functions, 

allowing for a dimensionality reduction while maintaining the defining aspects of the 

input data (Krizhevsky et al., 2017). This combination of convolutional layers and 

pooling layers allow for CNNs to learn complex patterns from spatial data, making them 

useful for ab initio gene prediction (Umarov & Solovyev, 2017). 

A generalized version of GeneCNN relies first on an input sequence that is 

converted into a one-hot encoding format, changing the categorical representation of 

nucleotides into a numeric representation that can be used as input for GeneCNN (Figure 

2-1). These one-hot encoded samples are then passed into a convolutional layer to 

generalize the sequences, the regularization technique batch normalization is applied, 

then the dimensionality reduction is performed by a pooling layer. For this project, this 
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combination of convolution, batch normalization, and pooling, was done three times in 

total. Once the data is sufficiently generalized, the output of the final pooling layer is 

passed to a flatten layer. This flatten layer converts the convolved output into a one-

dimensional array which is able to be used as input for the dense layer. A dense layer, 

otherwise known as a fully connected layer, is a neural network implementation where 

neurons apply transformations to all input data points and are commonly used in CNNs 

after feature extraction with convolutional layers. Finally, output from this dense layer is 

passed through a softmax function which assigns probabilities for the given input to both 

the genic and nongenic classes. 

 

Figure 2-1. A generalized visual representation of GeneCNN. The input sequence is 

converted into a binary format through one-hot encoding. Convolutions are applied to the 

binary sequence through a Conv1D layer to add spatial information to each data point, 

batch normalization is used to standardize data before input into the max pooling layer 

which reduces data dimensionality by outputting only the max value per specified pool 

size. After repeating this combination of convolution, batch normalization, and max 

pooling twice more, results were input into a flatten layer to convert data into a one-

dimensional format to input into a dense layer for linear transformations on all data 

points. The softmax function normalizes the output of the fully connected layer into a 

probability distribution for the two classes of genic and nongenic. 
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2.1.1 Data processing for CNNs 

 The overview of GeneCNN (Figure 2-1) does not capture the details of 

implementation. One of these implementation details is the common machine learning 

task of splitting input data into training, validation, and testing datasets. The training and 

validation datasets are both used during the model training process, where generalization 

of input occurs. The validation dataset exists to improve model performance during this 

training phase. The testing dataset is not shared with the model until after training is done 

to measure the performance of a model once input generalizations are defined for a given 

type of data. For a classification neural network such as this, predictions are made after 

the test data is input and performance is measured by comparing these predictions to the 

test dataset labels, which are the true values for the data, namely genic and nongenic for 

this project. 

 Balanced data is an important consideration for training a machine learning 

model. In a binary classification problem such as this CNN-based gene prediction 

approach, imbalanced data is the occurrence of a relatively large bias of data occurrences 

towards one class over the other. For binary data, a class ratio of 1.5:1 to 4:1 is 

considered a mildly imbalanced dataset, while a class ratio of 4:1 to 99:1 is considered a 

moderately imbalanced dataset (Google Developers, 2023). Imbalanced data becomes 

more of a performance detriment as the class imbalance gets larger due to the assumption 

made by machine learning algorithms that classes are balanced (Krawczyk, 2016). Due to 

this assumption of balance, a common result of training models on imbalanced data is 

that new data points will be predicted as the majority class, simply because this 

prediction was correct for the majority of the training period. One common data 
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processing approach used to regain class balance and improve model performance is data 

sampling. Data sampling can be done either by oversampling, where the minority class is 

randomly resampled by a complementary amount to the majority class, or undersampling, 

where the majority class is randomly sampled at an amount equal to the minority class 

rather than using the entire majority class of data.  

2.1.2 Activation functions and optimization algorithms 

 Other major considerations to make when constructing a neural network include 

the activation function and optimization algorithms. Activation functions are functions 

designed to transform information into an input for the next layer (Sharma et al., 2020). 

Often these activation functions are used to create nonlinear transformations to allow a 

neural network to make robust generalizations of input data. The most commonly used 

activation function is currently the rectified linear unit (ReLU) (Bridle, 1990). ReLU is a 

popular activation function due to its simplicity, nonlinearity, and its general high 

performance across different types of models and datasets (Ramachandran et al., 2017). 

 Optimization algorithms are used in neural networks to iteratively change model 

parameters during the training period in accordance with how much a model deviates 

from the expected value in predictions. These algorithms are adjustable in the speed, or 

learning rate, at which they adjust model parameters to minimize model error. One 

commonly used optimization algorithm is Adaptive Movement Estimation (Adam) which 

was novel in its ability to dynamically update learning rates (Kingma & Ba, 2014). 

Kingma and Ba (2014) found that the Adam optimizer tends to outperform other similar 

optimization algorithms with its built-in bias correction. Due to this improvement and its 



20 
 

ease in implementation, Adam is often suggested for implementation in deep learning 

models as the best overall optimization algorithm (Ruder, 2017). 

2.1.3 CNN overfitting and regularization 

 One general concern when working with any machine learning model is model 

overfitting. Overfitting occurs when a model creates poor data generalizations by instead 

creating generalizations that are too specific to the training data. This means that the 

model performance is artificially good for the training dataset, but poor for data that has 

not been encountered by the model before such as with the test dataset. To alleviate the 

occurrence of overfitting and reduce error, regularization methods are often applied. The 

two most common regularization methods are dropout and batch normalization.  

 Dropout is a regularization method that addresses model overfitting by randomly 

dropping entire neurons and their connections from a neural network during training 

(Srivastava et al., 2014). The proportion of these neurons that are randomly dropped 

during training can be adjusted to increase performance or reduce overfitting. When 

applying the neural network to the test dataset for assessing prediction performance, these 

dropped neurons are then reactivated with weights learned by the model to create better 

predictions with a lower error of data generalization. Srivastava et al. (2014) 

demonstrated that the implementation of dropout generally improved performance in 

neural networks but had the major drawback where inclusion of dropout leads to a 

doubling or tripling in computation time required to train a neural network, which is a 

substantial tradeoff to be considered. 
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Batch normalization is a regularization method that addresses the concern of 

model overfitting by performing normalization on the training data for each batch, which 

is the number of samples used for a single training period before the neural network 

performs a new iteration and updates weights (Ioffe & Szegedy, 2015). Batch 

normalization is advantageous as model performance can be improved with lower 

required computation time as well as reducing overfitting, potentially to the extent that 

implementing dropout is no longer necessary.  

2.1.4 Hyperparameter optimization 

 The hyperparameters of a neural network are the set of all variables that 

determine how a model is trained, as well as its overall structure. These include the 

aforementioned number of convolutional layers, regularization techniques, activation 

functions, and learning rate. For convolutional neural networks, hyperparameters also 

include the exact size of kernels and filters used in convolutional layers. As there are 

many individual methods to tune, all of which can have a substantial impact on model 

performance, it is generally infeasible to achieve an optimally performing neural network 

through manual adjustment of hyperparameters alone. Instead, algorithms are used that 

iteratively adjust hyperparameters during a tuning process that selects for optimal 

performance of the neural network on the training and validation data by using different 

combinations of hyperparameter values. There are several different algorithms commonly 

used for tuning hyperparameters. The random search, Bayesian optimization, and 

Hyperband algorithms were all tested in this project. 

 Random search was among the first optimization algorithms to create a high 

throughput method of searching for optimal hyperparameters (Bergstra & Bengio, 2012). 
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The idea of this algorithm was to allow a random search space within a much larger range 

of values for each hyperparameter than typically done with grid search or manual 

methods. This increase in range allowed the random search algorithm to achieve similar 

or better results than previous methods in a lower amount of computation time. 

 Bayesian optimization is an optimization algorithm that initializes 

hyperparameters at random similar to random search but improves upon this randomness 

by searching for hyperparameter optima according to previous trial performance values 

(Močkus, 1974). Bayesian optimization has been shown to yield higher performing 

hyperparameters in a lower amount of computation time than a human expert using 

manual selection by 3% when tested on a sample dataset (Snoek et al., 2012). 

 Hyperband is the newest optimization algorithm of these three, which uses the 

random search algorithm as a foundation but speeds up the computation process through 

better resource allocation and early stopping of trials depending on how well the model 

with the selected hyperparameters is performing (Li et al., 2018). By improving the speed 

at which hyperparameter selection trials are computed, Hyperband indirectly improved 

model performance over random search by reaching optimal hyperparameters sooner. 

This performance improvement is particularly noticeable given a large hyperparameter 

search space, as native random search optimization becomes slow.  

2.2 Measuring the performance of CNNs 

 There are various methods to evaluate the performance of a neural network 

through and after training. Loss, for example, is used during training to guide the model 

in creating fewer errors in its generalization of data. The measure of loss is an 
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optimization problem where the model distills the error between learned values and the 

expected values into a singular value with a specified loss function. To create a single 

value, a loss function is specified to be used by the model where it is often referred to as 

an objective function where the objective for the model is to reduce this loss value as 

much as possible given a set of hyperparameters. The loss function used in this project is 

binary cross-entropy, which measures the difference between predicted and expected 

values using a probability distribution created from the predicted values.  

 Accuracy, like loss, is another general performance metric used in machine 

learning. Accuracy as a performance metric is defined by the number of correct 

predictions divided by the total number of predictions made by the model. This simple 

percentage is popular for comparing models as a general overview of model performance 

but does not share the entire prediction set made by a model. Often a confusion matrix is 

used to visualize the number or percentage of classifications for any given type which 

gives a better indicator of performance than accuracy alone. 

 Classifications are distributed into four different types for a binary classification 

problem. True positive where the model correctly classified a sample as positive when 

the true value is positive. True negative where the model correctly classified a sample as 

negative when the true value is negative. False positive, otherwise known as type I error, 

where the model incorrectly classified a sample as positive when the true value is 

negative. False negative, or type II error, when the model incorrectly classified a sample 

as negative when the true value is positive. These different classification sets show the 

full performance of a given model by sharing not only when the model incorrectly 

classifies a sample, but how it misclassified a sample relative to the true value.  
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 Another commonly used performance metric is the F1 score, which is a measure 

of how well the model classified positive and negative samples relative to each other. To 

calculate the F1 score, precision and recall are used. Precision is the set of true positive 

results divided by the total set of positive results including misclassifications. Recall is 

the set of positive results divided by the number of misclassified negative samples, which 

can also be computed by taking the complement of the type II error rate. The harmonic 

mean of the precision and recall is the F1 score.   

2.3 Developing GeneCNN for gene prediction  

 The development of GeneCNN was designed for gene prediction using 

buffalograss as a model system. In collaboration with Dr. David Huff, we sequenced the 

buffalograss genome. With the newly sequenced buffalograss genome, the overarching 

project goal was to create a gene prediction method that does not rely on HMMs and 

instead utilize a CNN. A supervised learning approach was used for GeneCNN which is 

the use of known output data to train the neural network to classify unknown data into the 

same individual classes used in the known output data for training. To create a supervised 

CNN for gene prediction, labels, or true values for each nucleotide in the genome were 

generated using transcriptomic data found in the BioProject database provided by the 

National Center for Biotechnology Information (NCBI). This database provides multiple 

types of information gathered about an organism for a given project.  

 A major consideration when creating GeneCNN is the minimization of the false 

positive rate, or type I error. As gene prediction is often one of the first major steps in a 

workflow dedicated to understanding the genome of an organism, gene prediction models 
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must not be prone to polluting downstream aspects of the workflow with sequences that 

were predicted to be genic when these sequences are truly nongenic. 

Methods 

2.4 Preparation of buffalograss genome by Dovetail Genomics 

Genomic DNA was extracted from a male diploid buffalograss [Bouteloua 

dactyloides (Nutt.) Columbus] genotype PI 578219 that originated from central Mexico 

and used for subsequent experimentation (Wu and Lin, 1994). The genomic DNA was 

sent to Dovetail Genomics for sequencing and de novo genome assembly. Dovetail 

Genomics performed genome sequencing using the PacBio HiFi platform (Wenger et al., 

2019). Scaffolding was done using Omni-C proximity ligation with HiRise scaffolding 

software (Putnam et al, 2016). Genomic data was returned from Dovetail Genomics as a 

FASTA file with 2,498 scaffolds, the first 10 of which were described as 

pseudochromosomes due to their length. The 2,498 scaffolds were globally aligned 

against the pseudo-chromosomes with BBMap to verify completion of the genome 

(Marić, 2015).  

2.5 Initial annotation with BRAKER2 

 A traditional genome annotation approach was taken using BRAKER2 on the 

unmodified genome file provided by Dovetail Genomics. This process started with 

RepeatModeler2 to identify transposable elements and long terminal repeats (Flynn et al., 

2020). RepeatModeler2 was first used to build a database on the genome using RMBlast, 

a modified version of NCBI blastn. Using the newly built genome-specific database, 

RepeatModeler2 was run separately, either with long terminal repeats classified or 
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without. Repeats identified in the genome from the model libraries were then soft masked 

with RepeatMasker (Flynn et al., 2020; Smit et al., 2013-2015). 

 Transcriptomic data that was provided to Dovetail Genomics include RNAs found 

in BioProjects PRJNA237791, PRJNA297834, PRJNA578934, and PRJNA231727. 

Bioproject PRJNA237791 was used for transcriptomic datasets SRR1166811 and 

SRR1166718, which contained 3.4 and 3.8 billion nucleotides respectively. Bioproject 

PRJNA297834 was used for the transcriptomic dataset SRR3188108, which contained 

2.7 billion nucleotides. Bioproject PRJNA578934 was used for transcriptomic datasets 

SRR10326369 and SRR10326347, which contained 2.9 and 2.8 billion nucleotides 

respectively. Bioproject PRJNA231727 was used for the transcriptomic dataset 

SRR1051213, which contained 5.6 billion nucleotides. These datasets were used for 

subsequent gene prediction approaches as genic evidence. RNAs were trimmed using 

Trim Galore to remove sequence adapters and low-quality reads (Krueger, 2019). 

Cleaned reads were mapped against the buffalograss genome using BBMap with default 

parameters (Marić, 2015). Mapped reads were converted to binary format and sorted 

using Samtools (Li et al., 2009). Gene prediction and annotation were done with 

BRAKER2 using the soft masked buffalograss genome and the mapped RNA reads as 

evidence (Brůna et al., 2021). Initial prediction led to more genes predicted than 

anticipated, therefore the genome was reduced by removing contaminants and repeat 

elements from the additional scaffolds. 

2.6 Removal of contaminants and repeat elements from the buffalograss genome 

The 2,498 additional scaffolds were compared against the 10 pseudochromosomes 

with CD-HIT-2D, where scaffolds that exceeded 70% identity of scaffold length to 
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pseudochromosomes were removed (Fu et al., 2012). The remaining scaffolds were 

subject to BLAST, specifically discontiguous MegaBLAST, to identify sequences 

taxonomically and allow for removal of potential contaminants, namely non-plant related 

sequences (Altschul et al., 1990; Camacho et al., 2009). The pseudochromosomes were 

mapped against the remaining scaffolds with BBMap for discovering scaffold coverage 

relative to the pseudochromosomes. BLAST results, the mapping results, and remaining 

scaffolds were input to BlobToolKit to determine scaffolds to remove based on taxonomy 

associated to a different phylum, coverage, and GC content (Challis et al., 2019). All 

scaffolds that had BLAST hits to any phylum other than no-hit or Streptophyta were 

removed. Remaining scaffolds were then subject to removal based on coverage to remove 

redundancy, where all scaffolds that had a coverage of greater than 2 were removed. 

Scaffolds that had a coverage of less than 1 were checked by mapping against 

transcriptomic data from the aforementioned BioProjects with BBMap to ensure there 

were no missing genic elements from the pseudochromosomes, but all scaffolds with a 

coverage of less than 1 were ultimately discarded due to low mapping rates of under 4% 

of these low coverage scaffolds mapping to the transcriptomic data. Lastly, scaffolds that 

had GC content lower than 30.6% or higher than 60% were removed, producing the 

newly reduced genome. 

 Using the newly reduced genome, a workflow was developed for utilizing a 

CNN-based approach for gene prediction, GeneCNN, rather than traditional HMM-based 

gene prediction approaches used in tools such as BRAKER2. To begin data preparation 

input for GeneCNN, the cleaned genome was first flattened to allow for use of all 

pseudochromosomes and cleaned scaffolds. Flattening of the genome was done by 
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reducing the 308 sequence entries, the 10 pseudochromosomes and 298 additional 

scaffolds, into a singular sequence in rank size order. A check was performed by mapping 

the reduced genome to this flattened genome to ensure there were no chimeric genes 

formed through the connection of scaffolds in rank size order. This newly refined genome 

was used for subsequent analysis which included labeling with transcriptomic data and 

classification with GeneCNN. 

2.7 GeneCNN development 

 The genome was labeled for supervised classification which used transcriptomic 

data from the previously used four BioProjects as a foundation. Samtools with the option 

‘depth -aa’ was used to generate mapping depth across all transcriptomic data per 

nucleotide of the genome. This result was aggregated for use in creating a binary set of 

labels by taking a sum of mapped nucleotides per nucleotide position in genomic data. If 

the sum of depth was nonzero at a given position, it was given a label of 1 where this 

label represents a genic nucleotide. Conversely, if the mapping depth at the given 

nucleotide was zero, then the nucleotide position was given a label of 0 which represents 

a nongenic nucleotide. 

 Due to the genome being flattened, using each pseudochromosome or additional 

scaffold as an individual sample for input to GeneCNN was not an option. Instead, 

samples were created by taking all contiguously labeled sequences, both genic and 

nongenic, of a specific length. Genic labeled samples were representative of exons, while 

nongenic labeled samples were representative of noncoding sequences. The original 

length for these samples was 200 nucleotides but has since been updated to 500 

nucleotides for improved performance at a cost of creating a larger imbalance between 
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the number of genic and nongenic samples. This iterative process of testing GeneCNN 

performance with different sample lengths was done with values of 200 nucleotides to 

800 nucleotides in increments of 100 nucleotides, where performance increased until 500 

nucleotide length samples but stagnated or worsened after. 

These longer contiguously labeled sequences lowered the nongenic to genic class 

ratio from its original 3.1:1 to 4.9:1. To combat this problem and improve classification 

performance, undersampling the nongenic class and oversampling the genic class were 

tested. Ultimately, oversampling resulted in higher classification performance and 

therefore was used for subsequent analysis. Oversampling was done through the use of 

the entire genic class with the addition of random sampling of the genic class in a 

complementary amount to the nongenic class, making the new class ratio a balanced 1:1.  

As the two classes were held in separate data structures, they were now merged 

into the same data structure where the labels were modified from a per nucleotide format 

to a per sample format. To prepare the samples for conversion to one-hot encoding for 

binary classification, the alphabetic representation of nucleotide bases was converted into 

a numeric representation. This alphabetic representation of nucleotides was changed into 

a one-hot encoding format as follows: ‘A’ to (1, 0, 0, 0), ‘C’ to (0, 1, 0, 0), ‘G’ to (0, 0, 1, 

0), and ‘T’ to (0, 0, 0, 1).  

The data was split using scikit-learn into training, validation, and testing datasets 

at a ratio of 75%, 15%, and 10% respectively (Pedregosa et al., 2011). After the data 

split, each dataset was converted to a one-hot encoding format using TensorFlow (Abadi 

et al., 2016). These split datasets were subsequently used in a CNN built using 

TensorFlow. GeneCNN is composed of three Conv1D layers, each of which use the 
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ReLU activation function to introduce non-linearity in training (Fukushima, 1969). Filter 

and kernel sizes for these Conv1D layers were determined by RandomSearch from 

KerasTuner (O’Malley et al., 2019). Each of these Conv1D layers were followed by a 

MaxPooling1D layer to reduce dimensionality. These MaxPooling1D layers used a pool 

size of 4, which only outputs the maximum value found per 4 data points. Following this 

triplicate of Conv1D and MaxPooling1D layers are the fully connected layer with ReLU 

activation and the output softmax layer which outputs probabilities for the given samples 

for both classes, genic and nongenic. GeneCNN uses a binary cross-entropy loss function 

and Adam optimizer (Shannon, 1948). 

2.8 GeneCNN performance improvements 

 To make gene predictions with GeneCNN in a manner similar to other gene 

prediction methods, repeat masking was performed on the genome. Repeat masking was 

done using the same method for the original BRAKER2 approach by using 

RepeatModeler2 followed by RepeatMasker. This change in masking the genome 

improved loss and accuracy but reduced predictive power. As it did not have a major 

impact on GeneCNN performance, the masked genome was used as the final dataset for 

all results unless otherwise specified. 

The initial iteration of GeneCNN was composed of a single Conv1D layer but 

was updated to three layers in sequence as this update improved classification accuracy. 

Each of these Conv1D layers were originally parameterized by randomly chosen values 

using RandomSearch from KerasTuner with manual adjustment afterwards. This 

hyperparameter optimization has since been updated to using BayesianOptimization from 

KerasTuner. The Hyberband optimization method from KerasTuner was also attempted 
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but achieved marginally worse results than BayesianOptimization. Using 

BayesianOptimization for tuning GeneCNN parameters increased performance but led to 

a large increase in model overfitting, so batch normalization was introduced as a 

regularization method to reduce this model overfitting. 

Results 

2.9 Initial annotation with BRAKER2 

 As an exploratory approach with a prominent existing traditional gene prediction 

tool, BRAKER2 was used on the original genome file provided by Dovetail Genomics. 

The number of coding genes predicted by BRAKER2 was 40,169. When only the 10 

pseudochromosomes were used for gene prediction, the total predicted gene count was 

31,941. As the only difference between the two approaches was the inclusion of the 

additional scaffolds, these scaffolds were investigated for potential genic content. The 

investigation discovered that there was a large degree of redundancy in the additional 

scaffolds relative to the 10 pseudochromosomes, as well as a low level of contamination. 

This information led to the development of a reduced genome file, where an approach 

was taken that rather than removing all other scaffolds completely, scaffolds that 

contained potential genic sequences not found in the pseudochromosomes were retained; 

these retained additional scaffolds had relatively low levels of redundant information 

compared with the 10 pseudochromosomes.  

2.10 Removal of contaminants and repeat elements from the buffalograss genome 

The initial removal of 70% sequence identity of scaffold length to 

pseudochromosomes removed 518 redundant scaffolds out of the 2,488 non-
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pseudochromosome scaffolds provided by Dovetail Genomics. Contamination was also a 

concern, and 10 scaffolds were removed on the basis of taxa, where the scaffolds were 

removed if they were assigned a taxon by BLAST of anything other than Streptophyta or 

no-hit. Removal of outliers on the basis of GC content led to the reduction in the scaffold 

dataset by 15 scaffolds. Based on redundancy through global alignment, 1,647 scaffolds 

were removed, leaving the final dataset with 10 pseudochromosomes and 298 additional 

scaffolds. These removals were done on the basis of coverage of the pseudochromosomes 

onto the scaffolds, where scaffolds that had a coverage value of 1 to 2 were retained and 

all other scaffolds were removed. Scaffolds with a coverage value of 2 or greater were 

deemed redundant with the pseudochromosomes, and low coverage scaffolds were shown 

to not have much sequence similarity with the pseudochromosomes due to a 4% global 

alignment rate. This newly modified genome was then flattened for GeneCNN 

development. The flattened genome was checked against the genome with BBMap where 

the difference between the two was in the range of 0.0001 to 0.005 in mapping 

percentage, showing that there was likely no loss in biological information from 

flattening the genome.  

2.11 GeneCNN development 

 Labeling of every nucleotide in the genome was done using Samtools with option 

‘depth -aa’, which resulted in 269,460,553 nucleotides being labeled nongenic, and 

86,962,341 nucleotides being labeled as genic, making for a class ratio of 3.1:1 

respectively. To test the effect of sequence length on the performance of GeneCNN, 

sample sequences were tested from 200 nucleotide length to 800 nucleotide length in 

increments of 100 nucleotides, where the 500 nucleotide length sequences resulted in the 
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highest performance for GeneCNN, so these 500 nucleotide length sequences were used 

as samples for GeneCNN going forward. The number of labeled sequences at 500 

nucleotide lengths were 475,509 nongenic sequences and 97,164 genic sequences. This 

use of longer sample sequences to increase GeneCNN performance did have an adverse 

effect on the balance of the two classes, where the new class ratio was 4.9:1. While the 

500 nucleotide length sequences had the best performance of sequence lengths tested, this 

relatively large class imbalance led to poor predictive performance by GeneCNN long-

term and so oversampling of the genic class was performed to regain class balance. The 

entire 97,164 genic labeled sequences were used along with a complementary random 

sampling of 378,345 sequences from the set of genic sequences with replacement, 

making the class ratio now balanced 1:1.  

 GeneCNN parameterization was defined for the majority of the project by 

RandomSearch from KerasTuner, with manual tuning of all hyperparameters other than 

the learning rate to improve both performance through the reduction in overfitting as well 

as improve classification accuracy. Replacing RandomSearch with BayesianOptimization 

from KerasTuner improved performance but largely increased the model overfitting 

which led to batch normalization being used. Batch normalization was implemented from 

Keras after every convolutional layer which led to a reduction in overfitting and a boost 

to GeneCNN performance on the genome. The final hyperparameter values, including 

those selected by the BayesianOptimization tuner trials, are described in Table 2-1. The 

impact of these final hyperparameter values on the input and output sizes of GeneCNN 

on a per-layer basis of the model is shown in Figure 2-2.  
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Table 2-1. Final GeneCNN hyperparameters for the first major version of the gene 

prediction tool. The hyperparameters chosen by BayesianOptimization of Keras Tuner 

include all kernel sizes, filters, fully connected layer units, and Adam optimizer learning 

rate. No suffix indicates the first layer used in sequential order of the model, while the 

suffixes ‘_1’ and ‘_2’ indicate the second and third layers used respectively.  

Layer Hyperparameter values 

Conv1D Kernel size = 3, filters = 116 

BatchNormalization — 

MaxPooling1D Pool size = 4 

Conv1D_1 Kernel size = 5, filters = 120 

BatchNormalization_1 — 

MaxPooling1D_1 Pool size = 4 

Conv1D_2 Kernel size = 5, filters = 80 

BatchNormalization_2 — 

MaxPooling1D_2 Pool size = 4 

Fully Connected Layer Units = 124 

Softmax Units = 2 

Adam Optimizer Learning rate = 0.001 
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Figure 2-2. GeneCNN layout in sequential order of layers and operations as output from 

Tensorflow plot_model. All layer input and output sizes are shown with numeric values, 

where a singular value represents a one-dimensional array, and two values represent a 
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two-dimensional matrix. The ‘None’ values found in all input and output sizes are in the 

tuple location to define batch size, but due to TensorFlow utilizing the default batch size 

of 32, ‘None’ is shown as a value instead. No suffix found in the top left cell per table 

indicates the first layer used in the sequential order of the model, while the suffixes ‘_1’ 

and ‘_2’ indicate the second and third layers used respectively. Conv1D layers apply 1-

dimensional convolutions, batch normalization layers apply regularization to the data, 

max pooling layers perform dimensionality reduction, and the flatten layer transforms the 

data into a 1-dimensional array to deliver input to the first dense layer which is a fully 

connected neural layer. The second dense layer applies the softmax function, assigning a 

probability to genic and nongenic class predictions.  

 

2.12 GeneCNN performance 

 GeneCNN has undergone several iterations to improve performance, all of the 

major iterations are listed in Table 2-2. The major iterations were all either a major 

branching point in the data preprocessing or led to model changes that improved 

GeneCNN performance. Rather than using historical GeneCNN results which differ 

completely in hyperparameters and training length, all major model iterations were 

recreated where they differ from the current model in only the manner listed to allow for 

best case comparisons between iterations. Results from historical values where the model 

types shown in Table 2-2 were initially ran can be found in Supplemental Figures A-1 

through A-15. The metric ‘Overfit’ was created for Table 2-2 to give a tabular 

representation of loss and accuracy between the training and validation datasets but is not 

a replacement for a representation of change over time. 

The model types for Table 2-2 consist of the ‘200 nt’ model which uses 200 

nucleotide (nt) length sample sequences rather than the current 500 nucleotide length 

samples, ‘1 Conv Layer’ model which only uses a singular convolutional layer as 

opposed to the current three convolutional layers, ‘4.9:1 Class Ratio’ model that forgoes 
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the use of random oversampling where it instead uses the imbalanced genome as is, 

‘Manual Adjust’ model that uses RandomSearch from KerasTuner with the final 

parameter values decided by manual adjustment, ‘No BN’ model which is a removal of 

the batch normalization regularization from the current CNN model, and ‘Current’ which 

is the current iteration of GeneCNN. 

 

Table 2-2. GeneCNN performance across different methods during development. Yellow 

highlighted cells are the highest performing for a given column. Overfit is defined as 

|training – validation| where the first overfit column is relevant for loss, and the second 

overfit column is relevant for accuracy. The confusion matrix section of Table 2-2 

contains the columns ‘TP’ true positive, ‘TN’ true negative, ‘FP’ false positive, and ‘FN’ 

false negative. These columns are the prediction accuracy on a specific class using the 

test data. 
 Loss 

Overfit 
Accuracy 

Overfit 
Confusion matrix F1 

score Model Training Validation Test Training Validation Test TP TN FP FN 

200 nt 0.412 0.461 0.463 0.049 0.808 0.784 0.783 0.024 0.89 0.68 0.11 0.32 0.783 

1 Conv 

Layer 
0.274 0.35 0.353 0.076 0.887 0.862 0.861 0.025 0.94 0.79 0.06 0.21 0.861 

4.9:1 

Class 

Ratio 

0.119 0.459 0.458 0.34 0.95 0.867 0.867 0.083 0.53 0.94 0.47 0.06 0.867 

Manual 

Adjust 
0.391 0.395 0.392 0.004 0.825 0.825 0.826 0 0.88 0.77 0.12 0.23 0.826 

No BN 0.186 0.303 0.309 0.117 0.93 0.895 0.896 0.035 0.93 0.86 0.07 0.14 0.896 

Current 0.078 0.191 0.184 0.113 0.972 0.946 0.948 0.026 0.97 0.92 0.03 0.08 0.948 

  

The current method outperforms nearly all other methods tested except for in 

overfit where the RandomSearch tuning combined with manual adjustment outperformed 

it, and the negative class predictions where it was outperformed by the imbalanced 

genome. The ‘Manual Adjust’ model greatly outperformed all other methods when it 

came to the lowest degree of overfit, however this performance did not translate to a 

higher classification performance than the current method as shown by the confusion 
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matrix and F1 score values. The use of imbalanced data found in the ‘4.9:1 Class Ratio’ 

model led to a 2% improvement in classification on the negative class compared to the 

current method as shown in the TN and FN columns, but much worse performance in 

classification on the positive class, where this iteration of the model only achieved 

accurate genic class predictions on 53% of the test data (Table 2-2). 

 Model overfitting is easier to notice in graphical format than in a table, as the 

trends in training and validation datasets can be compared over the training period 

measured in epochs, which are individual passes of the training data through the model. 

Overfitting as a measure of model loss over the course of the training period is evident in 

Figure 2-3, where the validation loss begins increasing over the training period while the 

training loss continues to decrease. This beginning of an inverse relationship between 

validation loss and training loss affirms that the generalizations made by the model using 

the training data begin to become poor for withheld data and is why the model was 

stopped from further training at 20 epochs. Meanwhile, overfitting as a measure of model 

accuracy was at a lower level for the current method (Table 2-2). To verify that the level 

of overfitting for accuracy is low and not just due to variance in the final epoch, a graph 

is used (Figure 2-4). This graph verifies that the level of model overfitting is low when 

measured via accuracy, as the validation accuracy shows high performance relative to the 

training accuracy, with only a minor level of variance observed once the validation 

accuracy plateaus at approximately 94.5%. 
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Figure 2-3. A graphical display of the model loss over time using the current iteration of 

GeneCNN. Loss is shown over a training period of 20 epochs with both training and 

validation datasets. Model overfitting can be seen through the increasing degree of loss in 

the validation data relative to the training data during the training period. 
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Figure 2-4. A graphical display of the model accuracy over time using the current 

iteration of GeneCNN. Accuracy is shown over a training period of 20 epochs with both 

training and validation datasets. Model overfitting is not evident here but there is a minor 

level of variance in the validation accuracy once it plateaus at approximately 94.5%.  

 

Discussion 

 Several different paths were explored for developing GeneCNN for buffalograss 

gene prediction and its iterative improvements (Table 2-2). The objective of improving 

GeneCNN was to minimize the type I error (the ‘FP’ column of Table 2-2), as this 

minimizes the number of genes falsely predicted. Since gene prediction is a major step in 

workflows such as gene annotation, this minimization of falsely predicted genes is 

important to not adversely affect downstream analysis. Minimization of type I error 

typically came at a cost to the overall accuracy and loss, especially through overfitting. 
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This is seen in the current iteration where GeneCNN has relatively high overfitting 

compared to the other model iterations, especially in loss (Table 2-2). Of the different 

model iterations tested, the current model iteration performs the best overall. The current 

GeneCNN iteration reduced overfitting by a small margin with the introduction of batch 

normalization yet maintains a low type I error rate of 3%, which keeps genic 

classification largely pure for downstream analysis.  

Of the iterations tested for both GeneCNN accuracy and hyperparameter 

optimization, the current set of hyperparameters yield the best overall performance. 

Though the BayesianOptimization tuning method iterates relatively slowly for tuning 

hyperparameters compared to random search or Hyperband, its parameter selection is 

much more informed due to its hyperparameter search being dictated by the performance 

of the previous iterations rather than random selection. Given that the 

BayesianOptimization method reached higher performance for GeneCNN in the same 

number of computational cycles as Hyperband, which is known for its fast convergence 

on optimal hyperparameters, there is confidence in the parameters provided by the 

BayesianOptimization tuning method given the number of trials used. 

 The current method for GeneCNN was outperformed in the negative class 

predictions shown in the ‘4.9:1 Class Ratio’ model in Table 2-2. This result of better 

negative class prediction was due to the large bias of negative class samples provided to 

GeneCNN for learning. Given this large class imbalance, the model learning is biased 

towards the negative class to the extent that it begins to make negative predictions solely 

because negative predictions are correct the majority of the time, rather than learning 

generalizations for the sample data. This bias in learning due to sample class imbalance is 
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a well-known problem in machine learning and is why random oversampling was 

performed to correct for this issue.  

Model overfitting is a common problem in deep learning and there are two 

common regularization approaches used to alleviate this which include dropout and batch 

normalization. Batch normalization alone was used for the current implementation of 

GeneCNN as it has been shown that dropout generally results in poor performance when 

used in a CNN (Garbin et al., 2020). In the study done by Garbin et al. (2020), it was 

demonstrated that there are particular cases where dropout may improve model 

performance in CNNs, but the implementation and experimentation for dropout takes a 

large amount of time. Additionally, not every model case has this potential to be 

improved by dropout. 

 To further improve the performance of GeneCNN, dropout should be explored at 

multiple rates of neuron dropout to potentially identify a method for reducing the amount 

of model overfitting, assuming that GeneCNN has the potential for improvement via 

dropout. This rate of model overfitting, particularly for measuring loss, is currently the 

worst performing aspect of GeneCNN so the ideal solution would be to find a rate of 

dropout that reduces overfitting without worsening prediction accuracy. Additionally in 

testing various rates of dropout, there is potential for further improving hyperparameter 

optimization through more trials with BayesianOptimization. Improvements to 

hyperparameter optimization could result in lower overfitting or improved classification 

accuracy. No other major potential model improvements for training performance are 

expected beyond the aforementioned dropout and hyperparameter optimization. 
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 GeneCNN has proven that genic sequences can be accurately predicted with a 

convolutional neural network-based approach, where genic sequence predictions yielded 

a 97% accuracy rate. However, this performance was only measured on processed data, 

where the test dataset has a large degree of similarity to the training dataset. To further 

evaluate the performance of GeneCNN, unprocessed buffalograss pseudochromosome 

sequences must be used for gene prediction. This performance evaluation of GeneCNN 

includes validation with external data as well as comparing the performance of GeneCNN 

with other gene prediction tools. 
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CHAPTER 3: ASSESSMENT AND VALIDATION OF GENECNN 

 The creation of algorithms for predicting genes in sequenced genomic data is a 

field of study that has spanned thirty years. Many types of algorithms have been 

developed for gene prediction, the most prevalent of which are based on Hidden Markov 

Models (HMMs). Hidden Markov Models have proven to be commonly used in many 

fields, including computational biology, due to their relative ease of implementation and 

computational simplicity compared to other statistical models. However, when used as a 

statistical model in gene prediction, HMMs are built upon a faulty statistical assumption, 

namely the Markovian assumption of independence. This assumption states that any 

given observation is entirely dependent on the immediately prior state within the path of 

states that comprise a HMM, while independent of all other states (Henderson, 1997). 

This assumption is certainly flawed in the case of gene prediction, as an example, 

syntenic genes are known to maintain both their relative chromosomal ordering and 

location in evolutionarily related organisms, even in large evolutionary distances 

(Renwick, 1971; Zakharov, 2010). A new gene prediction tool, GeneCNN, was 

developed and avoids reliance on HMM-based gene prediction models. GeneCNN is a 

gene prediction tool that uses convolutional neural networks (CNNs) for modeling the 

structure of genic sequences. Convolutional neural networks do not assume that data is 

independent like HMMs, rather they use spatial dependence to their advantage by 

creating new data where datapoints are transformed using their surrounding datapoints. 

GeneCNN achieved 97% accuracy using test data for correctly predicting genic 

sequences when trained on buffalograss [Bouteloua dactyloides (Nutt.) Columbus] 

(Chapter 2). However, to fully evaluate the performance of GeneCNN as a gene 
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prediction tool, its performance must be compared against existing gene prediction tools 

and validated with known gene sequences.  

3.1 Predicting genes with GeneCNN 

 To develop GeneCNN, buffalograss was used as a model system. GeneCNN was 

trained using a heavily modified version of the buffalograss genome, where samples were 

created using contiguously labeled nucleotides defined by transcriptome alignment. 

GeneCNN was then used for predicting genes using a shortened but otherwise 

unmodified sequenced genome of buffalograss. GeneCNN is a supervised CNN, meaning 

labeled data is used to train the model to predict the class of given input data, in this case 

whether the input sequence is genic or nongenic. Labels are the assignment of a distinct 

class to a data point, or in the case of GeneCNN, the assignment of a singular nucleotide 

as genic or nongenic. These label assignments were established across the buffalograss 

genome using publicly available transcriptomic data from BioProjects PRJNA237791, 

PRJNA297834, PRJNA578934, and PRJNA231727. Training data for GeneCNN was 

created through collecting contiguous sequences of a single label type, which represented 

exons and noncoding sequences for positive and negative labels respectively. Iterative 

improvements to GeneCNN established a high performing CNN model, allowing the tool 

to then be used for predicting genes given genomic sequences.  

3.1.1 Gene prediction workflow  

 The trained GeneCNN was used for gene prediction where 500 nucleotide length 

sequences are provided as input. For optimal performance, the number of sequences 

should be a multiple of the batch size provided to TensorFlow. The batch size used by 
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GeneCNN is 32, the default for TensorFlow. Once input sequences are provided to 

GeneCNN in prediction mode, it will return two probabilities using the final softmax 

activation function contained in GeneCNN, the nongenic and genic class respectively 

(Shannon, 1948). The returned probabilities represent the likelihood that the entire 500 

nucleotide length sample sequence is nongenic or genic. To generate predictions for a 

genome, the genome sequence must be split into 500 nucleotide length sequences. This 

requirement is due to the matrix-based calculations that are performed in a neural 

network, where since GeneCNN was trained on 500 nucleotide length sequences, 

predictions must also be made on 500 nucleotide length sequences (Figure 3-1).  

 To achieve a finer resolution for gene prediction rather than solely 500 nucleotide 

length sequences, a sliding window-based approach was developed. The sliding window 

technique is a scanning subset of a specified length where the subset is iteratively created 

then replaced by a new subset, allowing for the creation of smaller sequences to perform 

computational tasks within the total genome sequence. For the finest possible resolution, 

a sliding window stride of 1 is used, meaning that GeneCNN makes a prediction on a 

given 500 nucleotide sample sequence, then the sliding window is moved in its entirety 1 

nucleotide downstream and GeneCNN makes a prediction on the newly created 500 

nucleotide sample sequence. This sliding window approach is repeated for a desired 

length of the genome to yield gene predictions and the overall structure of genes for a 

given section of the genome (Figure 3-1).  

 Once sliding window predictions are made by GeneCNN, all predictions are used 

as support for nucleotide positions that were included in any given sliding window 

sample sequence. The average of these scores results in a final genic or nongenic 
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prediction per nucleotide of the genome, where contiguous sequences of genic 

predictions are collected. By applying a contiguity threshold, the number of genes must 

strictly be larger than the threshold, eliminating small gene predictions, that are likely 

false positive. Output of GeneCNN predictions is a FASTA file where predicted gene 

sequences are listed along with unique headers that state the nucleotide starting position 

of the predicted gene sequence (Figure 3-1). 
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Figure 3-5. Visualization of the GeneCNN gene prediction workflow. A given genome is 

flattened by combining all separated sequences into a singular genome-length sequence. 

Samtools with option depth -aa is used to generate read depth per nucleotide where labels 

are assigned to the genome depending on whether transcriptomic data align to the 

nucleotide. All contiguous sequences of one label type are fragmented into the desired 

sample size and used as input to GeneCNN. GeneCNN is optimized through iterative 

testing including with an optimization algorithm. Once GeneCNN finishes training, the 

original genome file is loaded, and a sliding window approach is used to generate 

samples with the same size as samples used to train GeneCNN. All samples are predicted 

with GeneCNN and the best probability of either genic or nongenic is assigned to all 

nucleotides per sample. A scoring matrix is created which retains supporting predictions 

for each nucleotide in the genome per inclusion of each nucleotide in sliding window 

samples. The scores per nucleotide are averaged and gene length predictions are created 
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using contiguous predictions of genic nucleotides. A contiguity threshold is applied to 

remove low quality genic predictions and gene predictions are output.  

 

3.2 AUGUSTUS  

 AUGUSTUS is a gene prediction tool that can be run in either ab initio mode or 

with the assistance of extrinsic data used as additional input (Hoff & Stanke, 2019). For a 

comparison with other gene prediction tools in this study, AUGUSTUS was run in ab 

initio mode. This comparison was made to elucidate the increase in performance due to 

generational improvements and species-specific model training compared to both 

GeneCNN and other gene prediction tools used in this study. When run in ab initio mode, 

AUGUSTUS utilizes species-specific parameters for its HMM implementation through 

pre-trained species-specific configuration files. If one of these configuration files are 

specified, then AUGUSTUS will accept input of only a genome and use the species-

specific parameters to create gene predictions based on the statistical properties of the 

genome used for pre-training. These statistical properties of a particular genome are 

referred to as content sensors, which include hexamer frequency, sequence composition, 

and 3-base periodicity (Do & Choi, 2005; Fickett & Tung, 1992).  

 The modeling approach used by AUGUSTUS is a supervised approach, meaning 

that AUGUSTUS must have a carefully curated set of input data to train the model. The 

curated set of training data used for AUGUSTUS to make gene predictions should ideally 

be from the same organism that AUGUSTUS will generate gene predictions for.  

However, cross-species training is viable with AUGUSTUS so long as the two species 

are evolutionarily related. Hoff & Stanke (2019) verified the viability of cross-species 
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training by training AUGUSTUS with Danio rerio gene sequences then generating gene 

predictions for the Gallus domesticus genome and received only a 6.6% decrease in 

sensitivity and a 4.9% decrease in specificity, despite these two organisms diverging 429 

million years ago (Kumar et al., 2017).  

3.3 BRAKER3 

 A commonly used tool for gene prediction is the BRAKER software suite, of 

which the newest version is BRAKER3 (Gabriel et al., 2023). BRAKER3 functions by 

utilizing GeneMark-ETP and AUGUSTUS, both of which are HMM-based gene 

prediction algorithms (Bruna et al., 2023; Stanke et al., 2008). GeneMark-ETP, the 

newest iteration of GeneMark, has been updated since the release of BRAKER2 to 

integrate genomic, transcriptomic, and protein information over the course of model 

training and gene prediction.  

 The BRAKER3 pipeline can be provided with transcriptomic data, protein data, 

or both. If run with only one of these data types, BRAKER3 executes in ET mode, 

meaning that it uses the BRAKER1 algorithm. The BRAKER1 algorithm differs from the 

newest BRAKER3 algorithm in that it uses GeneMark-ET for half of the predictions 

made by BRAKER1, rather than the newest GeneMark-ETP. GeneMark-ET uses a 

statistical modeling approach for predicting genes that includes an extrinsic source of 

data which for this project is aligned unassembled transcriptomic data, where the 

extrinsic data improves GeneMark-ET model training by indicating intron positions and 

exon-noncoding region borders (Hoff et al., 2016). This use of extrinsic data allows 

GeneMark-ET to refine its parameters through self-training on the given genome. 

BRAKER3 opts to use the approach of unassembled transcriptomic data rather than 
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assembled transcriptomic data due to transcript assemblies being error prone, as transcript 

assemblers often fail to identify all exons (Steijger et al., 2013). Therefore, to avoid the 

propagation of these transcript assembly errors into gene predictions, unassembled 

transcriptomic data is used. Once GeneMark-ET has generated ab initio gene predictions, 

a subset of these genes are provided as input to AUGUSTUS, as AUGUSTUS requires an 

organism-specific training set of data to make predictions. AUGUSTUS then uses both 

the training set and the aligned unassembled transcriptomic data to make predictions. 

Once predictions are made by both GeneMark-ET and AUGUSTUS, BRAKER3 

combines them into a singular prediction file which generates a more robust set of 

predictions than either of these gene prediction tools alone. 

3.4 Fgenesh 

 Fgenesh is an older ab initio gene prediction tool, that was developed when 

dynamic programming was the prominent algorithm used for gene prediction (Salamov & 

Solovyev, 2000; Solovyev et al., 2006). Rather than following similar algorithms at the 

time, Fgenesh was instead built using HMMs to predict genes (Burge & Karlin, 1998). 

Fgenesh was not the first HMM-based gene prediction tool, however it innovated upon 

previously released tools by ascribing a stronger weight to signal sensors, such as gene 

start sites, than content sensors. This stronger weighting of signal sensors than content 

sensors was meant to reflect the biological significance of gene signals. 

Fgenesh develops predictions in a similar way to AUGUSTUS, where 

implementation of its HMM-based model requires prior training on a specific organism to 

ascertain the values of content sensors for an organism. Similarly, Fgenesh also provides 

a number of species-specific training results to use for gene prediction for the provided 
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genomic sequence. Yao et al. (2005) evaluated the performance of Fgenesh trained on 

monocots to predict genes in Zea mays, where Fgenesh outperformed the four other gene 

prediction tools selected. This resulted in Fgenesh yielding an increase of 11% correct 

gene models than the second-best gene prediction tool despite Fgenesh not being trained 

with Zea mays-specific sequences. Output from Fgenesh differs from the other gene 

prediction tools by predicting a single gene region as the entire expanse between the 

transcription start site and the poly(A) tail, whereas the other three gene prediction tools 

focus on the coding regions and will at times predict two genes in the region where 

Fgenesh predicts one. 

3.5 Comparing GeneCNN with other gene prediction tools 

 Due to the nature of GeneCNN predicting on entire 500 nucleotide length 

sequences, there is no simple comparison to make with HMM-based gene prediction 

tools other than through resulting gene predictions. The matrix calculations that occur in 

GeneCNN require specific data sizes, which are 500 nucleotide length sequences for the 

current iteration of GeneCNN, while HMM methods do not require this. However, the 

aforementioned sliding window approach yields the best comparison for gene predictions 

as it allows GeneCNN to iterate through the provided genomic sequence using 500 

nucleotide length samples and a provided stride size. Utilizing the sliding window with 

specified stride size allows for the creation of a large scoring matrix where all 

probabilities for each 500 nucleotide sample are stored, in order of creation. A column 

average can be taken which yields a prediction result of genic or nongenic at the 

nucleotide level. Contiguous sequences of nucleotides with genic predictions are then 

defined as genes, where a length threshold is used to cull small, likely false positive, 
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genic sequences such as predictions of a singular nucleotide being genic. The length 

threshold for GeneCNN was defined to require 200 nucleotide length predicted 

sequences. The length of 200 nucleotide sequences was chosen as it should viably capture 

most gene sizes, including those with single exons (Atambayeva, 2007).  

 Once these full-length gene predictions are made using GeneCNN, the results can 

be compared to existing gene prediction tools, namely BRAKER3, AUGUSTUS, and 

Fgenesh. The comparison of GeneCNN with BRAKER3 is noteworthy due to the 

ongoing development and high accuracy of the BRAKER software suite in novel 

genomes with the combination approach of GeneMark-ET and AUGUSTUS (Hoff et al., 

2019). Unique gene predictions made by GeneCNN compared to the other gene 

prediction tools can be validated with database results using BLAST, specifically blastx 

against the RefSeq non-redundant (nr) protein database, to confirm the presence of 

protein encoding genes at these positions (Altschul et al., 1990). Blastx converts 

predicted gene sequences into protein sequences and searches the nr protein database 

with the converted sequence. The presence of protein sequences for a given converted 

gene prediction supports that the prediction made by GeneCNN is likely true, particularly 

if the protein sequence found in the nr database is experimentally verified. The quality of 

BLAST results can be determined by bit score which is a value that represents the quality 

of query sequence to database sequence that is independent of the query sequence length 

and database size.  

 As a tool, BLAST can also be used for direct comparison rather than only for 

validating the performance comparisons between GeneCNN and the HMM-based gene 

prediction tools. By using blastx on the entire gene prediction set made by GeneCNN, 
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unique predictions made by GeneCNN that are not found in the nr protein database can 

be discovered. Additionally, BLAST results can provide support to all GeneCNN gene 

predictions that have significant similarity to protein sequences found in the nr protein 

database. 

Methods 

3.6 Creation of a dataset for gene prediction with GeneCNN 

 The same buffalograss genome that was used for training GeneCNN was used for 

generating gene predictions. Unlike when used to create the training dataset, the genome 

file used for predicting genes was unprocessed. The first 10 million nucleotides of the 

first pseudochromosome, or largest assembled scaffold, were used as the prediction 

dataset to allow for a smaller computational footprint in which to make comparisons 

among predicted genes made by each tool. This smaller computational footprint was 

necessary when using a stride size of 1, as the scoring matrix will cause the graphics 

processing unit to run out of available memory when used on the whole 

pseudochromosome at once. To prepare the 10 million nucleotide genome fragment for 

gene prediction using GeneCNN, the alphabetic representation of nucleotide bases was 

converted into a numeric representation. The 10 million nucleotide genome fragment was 

one-hot encoded as follows: ‘A’ to (1, 0, 0, 0), ‘C’ to (0, 1, 0, 0), ‘G’ to (0, 0, 1, 0), and 

‘T’ to (0, 0, 0, 1).  

3.7 Creation of a sliding window for GeneCNN predictions 

 A sliding window approach was used to iteratively predict genic sequences in the 

first 10 million nucleotides of the first pseudochromosome. The stride size used for this 
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sliding window was 1, so after creating a sample sequence of 500 nucleotide in length, 

another sample sequence was created by shifting one nucleotide downstream, creating a 

new 500 nucleotide length sample sequence. This sliding window process was done in 

genomic segments of length 16,000 to utilize the batch processing power of GeneCNN 

due to being built using TensorFlow. Predictions were generated for 500 samples per 

batch.  

3.8 Defining GeneCNN gene predictions 

 Once predictions were generated for the entire 10 million nucleotide genome 

fragment, a scoring matrix was created. This scoring matrix was generated by assigning 

genic or nongenic predictions at each nucleotide position using the same sliding window 

approach with stride size of 1. Assignments of genic or nongenic were dependent on 

which received a higher probability when output from GeneCNN. The scoring matrix 

gives support to each nucleotide position for up to 500 different predictions made using 

this nucleotide in any given sliding window subset. The mean of each column was 

calculated, producing a singular value dependent on all predictions made using each 

nucleotide in the entire 10 million nucleotide genome fragment. To generate gene length 

predictions, a length threshold was created for all contiguous genic predicted nucleotides. 

The length threshold was defined to be 200 nucleotide length sequences, making the 

shortest gene predictions by GeneCNN 200 nucleotide in length. Output of GeneCNN is 

a FASTA file where each predicted gene is a nucleotide sequence that is associated with 

a header that defines the gene start position.  

 Gene predictions unique to GeneCNN in comparison to BRAKER3, 

AUGUSTUS, and Fgenesh were validated using NCBI BLAST, specifically blastx 
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against the nr protein sequence database (Altschul et al., 1990). The presence of protein 

sequences matching the converted gene predictions from GeneCNN yields support for 

protein encoding gene predictions. Further support is provided if the protein sequence 

results from BLAST have a high sequence similarity to the converted GeneCNN 

sequence or are experimentally validated.  

Gene predictions unique to GeneCNN were also defined relative to BLAST 

results, where blastx was run on all genes predicted by GeneCNN. Running blastx on this 

gene prediction set from GeneCNN also yielded support by finding the number of genes 

that GeneCNN predicts that are also found in the nr protein sequence database. 

3.9 Running BRAKER3 

 Unassembled transcriptomic data from NCBI BioProjects PRJNA237791, 

PRJNA297834, PRJNA578934, and PRJNA231727 was used for supporting BRAKER3 

gene predictions. Each of these sets of transcriptomic data were globally aligned to the 10 

million nucleotide genome fragment using BBMap (Marić, 2015). Aligned transcriptomic 

data were converted to binary format and sorted using Samtools (Li et al., 2009). 

BRAKER3 was run in BRAKER1 mode with input of the 10 million nucleotide genome 

fragment as the genome sequence to predict genes for, along with the aligned 

transcriptomic data in binary format as support. Output of BRAKER3 is a GTF file which 

lists the sequence feature, which includes gene, transcript, start codon, coding sequence, 

exon, intron, and stop codon. The BRAKER3 GTF output file also lists the start and end 

positions of each predicted sequence feature, and whether AUGUSTUS or GeneMark-ET 

predicted the feature.  
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3.10 Running AUGUSTUS 

 AUGUSTUS was run in ab initio mode, where only the query sequence, the 10 

million nucleotide genome fragment, was used as input along with the pre-trained species 

identifier to use HMM parameters specific to a particular species’ genome. The pre-

trained species identifier used for running AUGUSTUS was Zea mays, the closest related 

species to buffalograss available in the provided configuration files from AUGUSTUS, as 

they both reside within the taxonomic family of Poaceae. Output from AUGUSTUS is a 

GTF file which lists the sequence feature, which only includes gene, transcript, and 

coding sequence, as well as the start and stop positions of the predicted sequence feature. 

AUGUSTUS also outputs the translated protein sequence for each predicted gene.  

3.11 Running Fgenesh 

 Fgenesh was run using the 10 million nucleotide genome fragment as an input 

sequence, along with the pre-trained species name to use HMM parameters specific to the 

genome of a particular species. The pre-trained species used for running Fgenesh was 

Setaria italica, the closest related species to buffalograss available, as they both reside 

within the taxonomic family of Poaceae. Output from Fgenesh is in a custom format, 

where the sequence feature includes transcription start site, coding sequence, and poly-A 

tail. Additionally, Fgenesh output lists the start and end positions of all coding sequences, 

as well as the translated protein sequence for each predicted gene.  

3.12 Creating total predicted gene counts 

 Total gene predictions for each gene prediction tool were used to generate counts 

on predictions made for the same gene for each combination of gene prediction tool. To 
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determine whether gene prediction tools predicted the same gene, the start and stop sites 

for predicted genes of one tool were used to compare against the start and stop sites for 

predicted genes of the three other tools in every combination. A leniency of 200 

nucleotide length from both ends of a given predicted gene was used for determining if 

the predicted gene from one tool was the same as the predicted gene from another tool.  

Results 

3.13 GeneCNN gene predictions 

GeneCNN predicted 3,015 genes within the 10 million nucleotide length genome 

fragment. To compare gene predictions made by GeneCNN to the HMM-based gene 

prediction tools, the number of uniquely predicted genes was calculated. GeneCNN 

uniquely predicted 1,089 gene predictions compared to BRAKER3, 1,535 compared to 

AUGUSTUS, and 478 compared to Fgenesh when using a leniency threshold of 200 

nucleotides. When compared using BLAST, GeneCNN uniquely predicted 431 genes. To 

verify that the uniquely predicted genes from GeneCNN are truly gene sequences missed 

by the HMM-based gene prediction tools, blastx was used to query the nr protein 

database with uniquely predicted gene sequences from GeneCNN. Uniquely predicted 

genes from GeneCNN were found to be supported by the nr protein database at a range of 

77.8% to 82.2% of the uniquely predicted genes from GeneCNN compared to each of the 

other gene prediction tools (Table 3-1). To further investigate the uniquely predicted 

genes from GeneCNN, one uniquely predicted gene compared to each tool was manually 

checked in the nr protein database results for experimental validation. 
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Table 3-1. Uniquely predicted genes from GeneCNN compared to BRAKER3, 

AUGUSTUS, and Fgenesh. All 3,015 predicted genes by GeneCNN were compared 

against gene predictions made by BRAKER3, AUGUSTUS, and Fgenesh to determine 

predictions unique to GeneCNN. Uniquely predicted genes from GeneCNN were queried 

against the NCBI nonredundant protein database using blastx. The number of uniquely 

predicted genes supported by protein sequences in the nr database are in the ‘Unique in 

nr’ column, where the percentage is calculated using values from the ‘Uniquely predicted 

genes from GeneCNN’ column. Uniquely predicted genes not found in the nr protein 

database are in the ‘Unique not in nr’ column, where the percentage is calculated using 

values from the ‘Uniquely predicted genes from GeneCNN’ column. 

Tool comparison 
Uniquely predicted genes 

from GeneCNN 

Unique 

in nr 

Unique 

not in nr 

GeneCNN vs BRAKER3 1,089 
895 

(82.2%) 

194 

(17.8%) 

GeneCNN vs AUGUSTUS 1,535 
1,233 

(80.3%) 

302 

(19.7%) 

GeneCNN vs Fgenesh 478 
372 

(77.8%) 

106 

(22.2%) 

 

 A unique prediction made by GeneCNN in comparison to BRAKER3 is found 

starting at nucleotide position 4561 and ending at 5009 on the first pseudochromosome of 

the buffalograss genome. When searched against the nr database using blastx, a number 

of similar proteins are returned. The top three of which are derived from the organisms 

Panicum hallii  ̧Panicum virgatum, and Zea mays, all of which belong to the same family 

as buffalograss of Poaceae. All three of these protein sequences return a bit score ranging 

from 164 to 167 with sequence identity ranging from 81.91% to 84.78%. However, all 

three of these protein sequences found in the nr database are predicted proteins which 

were generated by the NCBI tool Gnomon. There is also an experimentally verified 

protein in the results from searching the nr protein database, namely a hAT transposon 

superfamily protein with the accession CAA0807048.1 from the organism Striga 
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hermonthica, that returned a bit score of 132 and sequence identity of 75% (Qiu et al., 

2022).  

 One unique prediction made by GeneCNN in comparison to AUGUSTUS is 

found starting at nucleotide position 180482 and ending at 181248 on the first 

pseudochromosome of the buffalograss genome. When searched against the nr database 

using blastx, the top three results are from the organisms Panicum miliaceum, Oryza 

sativa, and Digitaria exilis, all of which are in the same family of Poaceae as 

buffalograss. The bit scores and sequence identities for these three protein results range 

from 219 to 228, and 88.5% to 93.64% respectively. All three of these resulting proteins 

are gene predictions from other gene predictions tools that were submitted to the nr 

database. However, there are a number of experimentally verified proteins in the nr 

database results given the unique prediction by GeneCNN as a query. The most notable 

of which is the DExH-box ATP-dependent RNA helicase DExH12 isolated from Zea 

mays which has the accession ONM60047.1 (Jiao et al., 2017). This nr database result 

has a bit score of 225 and a sequence identity of 91.15%. 

 A unique prediction made by GeneCNN in comparison to Fgenesh is found 

starting at nucleotide position 237433 and ending at position 242295 on the first 

pseudochromosome of the buffalograss genome. When searched against the nr database 

using blastx, the top three results are hypothetical proteins predicted in the organisms 

Eragrostis curvula, Panicum virgatum, and Panicum hallii. These nr database results 

yielded bit scores ranging from 1311 to 1343, and sequence identities ranging from 

88.66% to 92.49%. The fourth best nr database result is the experimentally verified 

leucine-rich repeat receptor-like protein kinase PXL2 isolated from Panicum miliaceum 
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with the accession of RLM80341.1 (Zou et al., 2019). This experimentally verified nr 

database result has a bit score of 1310 and a sequence identity of 89.42% when found 

with the unique prediction generated by GeneCNN compared to Fgenesh.  

3.14 BRAKER3, AUGUSTUS, and Fgenesh gene predictions 

BRAKER3 predicted 2,068 genes within the 10 million nucleotide genome 

fragment when using aligned unassembled transcriptomic data as support. AUGUSTUS 

predicted 1,865 genes within the 10 million nucleotide genome fragment when using the 

Zea mays-specific genome parameters in ab initio mode. Fgenesh predicted 2,308 genes 

within the 10 million nucleotide genome fragment when using the Setaria italica-specific 

genome parameters. 

3.15 Comparison of gene predictions with all tools 

To compare how well BRAKER3, AUGUSTUS, and Fgenesh performed in 

comparison to GeneCNN, the number of unique predictions made by these gene 

prediction tools was calculated. BRAKER3 uniquely predicted 1,014 genes compared to 

GeneCNN, AUGUSTUS uniquely predicted 1,305 genes compared to GeneCNN, and 

Fgenesh did not predict any unique genes when compared to GeneCNN (Table 3-2). 

While Fgenesh did not predict any unique genes compared to GeneCNN, the number of 

predicted genes shared by all gene prediction tool combinations including Fgenesh is 

high due to how Fgenesh predicts genes. A gene predicted with Fgenesh is denoted as the 

entire region spanning from a transcription start site to the poly(A) tail, whereas the other 

gene prediction methods focus on coding regions, which can lead to two predictions 

made by the other tools spanning one prediction made by Fgenesh.  
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Table 2-2. Uniquely predicted genes from BRAKER3, AUGUSTUS, and Fgenesh, 

compared to GeneCNN. Uniquely predicted genes from each tool were queried against 

the NCBI nonredundant protein database using blastx. The number of uniquely predicted 

genes supported by protein sequences in the nr database are in the ‘Unique in nr’ column, 

where the percentage is calculated using values from the ‘Uniquely predicted genes 

compared to GeneCNN’ column. Uniquely predicted genes not found in the nr protein 

database are in the ‘Unique not in nr’ column, where the percentage is calculated using 

values from the ‘Uniquely predicted genes compared to GeneCNN’ column. 

Tool 

comparison 

Total predicted 

genes compared 

to GeneCNN 

Uniquely predicted 

genes compared to 

GeneCNN 

Unique 

in nr 

Unique 

not in nr 

BRAKER3 vs 

GeneCNN 
2,068 1,014 

901 

(88.9%) 

113 

(11.1%) 

AUGUSTUS vs 

GeneCNN 
1,865 1,305 

1,234 

(94.6%) 

71 

(5.4%) 

Fgenesh vs 

GeneCNN 
2,308 0 N/A N/A 

 

Gene predictions made by GeneCNN that are shared with gene predictions made 

by the other three HMM-based tools are relatively large at a minimum value of 40% of 

all genes predicted by GeneCNN, which supports that GeneCNN is accurately predicting 

genes as the majority of predictions made by any given gene prediction tool should also 

be predicted by other gene prediction tools (Table 3-3). However, it can also be seen that 

AUGUSTUS gene predictions are somewhat divergent compared to GeneCNN which 

affects all gene prediction tool combinations that include AUGUSTUS. As such, this 

divergence in gene prediction of AUGUSTUS may be due to the maize-specific genome 

parameters used for its HMM model. 
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Table 3-3. The number of gene predictions made by GeneCNN that are supported by 

BRAKER3, AUGUSTUS, Fgenesh, or some combination of the three. The initial ‘B’ 

represents BRAKER3, ‘A’ represents AUGUSTUS, and ‘F’ represents Fgenesh. Numeric 

values are the number of gene predictions out of 3,015 total genes predicted by 

GeneCNN that are supported by at least one other tool. A leniency of 200 nucleotides in 

length from both ends of predicted genes was included in determining whether the 

predictions made by GeneCNN were the same as genes predicted by the other three tools. 

Gene prediction tool 

combinations 

Number of gene predictions made 

by GeneCNN supported by other tools 

B, A, F 1220 (40.5%) 

B, A 1249 (41.4%) 

B, F 1786 (59.2%) 

A, F 1434 (47.6%) 

B 1940 (64.3%) 

A 1480 (49.1%) 

F 2537 (84.1%) 

  

BRAKER3, AUGUSTUS, and Fgenesh were also compared to each other to see 

how successful they were at predicting the same genes (Table 3-4; Table 3-5; Table 3-6). 

Comparisons of AUGUSTUS and Fgenesh to BRAKER3 resulted in a low percentage of 

27.8% shared gene predictions, increasing to 59% shared gene predictions when 

comparing Fgenesh to BRAKER3 (Table 3-4). Comparisons of BRAKER3 and Fgenesh 

to AUGUSTUS resulted in a large percentage of shared gene predictions ranging from 

75% to 87.5% (Table 3-5). Comparisons of BRAKER3 and AUGUSTUS to Fgenesh 

resulted in a low percentage of shared gene predictions, ranging from 10.4% to 32.5%, 

where best support comes from comparing only BRAKER3 to Fgenesh (Table 3-6).  
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Table 3-4. The number of gene predictions made by BRAKER3 that are supported by 

AUGUSTUS, Fgenesh, or the combination of AUGUSTUS and Fgenesh. The initial ‘A’ 

represents AUGUSTUS and ‘F’ represents Fgenesh. Numeric values are the number of 

gene predictions out of 2,068 total genes predicted by BRAKER3 that are supported by at 

least one other tool. A leniency of 200 nucleotides in length from both ends of predicted 

genes was included in determining whether the predictions made by BRAKER3 were the 

same as genes predicted by the other three tools.  

Gene prediction tool 

combinations 

Number of gene predictions made 

by BRAKER3 that are supported 

by AUGUSTUS and Fgenesh  

A, F 574 (27.8%) 

A 623 (30.1%) 

F 1220 (59%) 

 

Table 3-5. The number of gene predictions made by AUGUSTUS that are supported by 

BRAKER3, Fgenesh, or the combination of BRAKER3 and Fgenesh. The initial ‘B’ 

represents BRAKER3 and ‘F’ represents Fgenesh. Numeric values are the number of 

gene predictions out of 1,865 total genes predicted by AUGUSTUS that are supported by 

at least one other tool. A leniency of 200 nucleotides in length from both ends of 

predicted genes was included in determining whether the predictions made by 

AUGUSTUS were the same as genes predicted by the other three tools. 

Gene prediction tool 

combinations 

Number of gene predictions made by 

AUGUSTUS that are supported by 

BRAKER3 and Fgenesh 

B, F 1400 (75.1%) 

B 1503 (80.6%) 

F 1631 (87.5%) 
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Table 3-6. The number of gene predictions made by Fgenesh that are supported by 

BRAKER3, AUGUSTUS, or the combination of BRAKER3 and AUGUSTUS. The 

initial ‘B’ represents BRAKER3 and ‘A’ represents AUGUSTUS. Numeric values are the 

number of gene predictions out of 2,308 total genes predicted by Fgenesh that are 

supported by at least one other tool. A leniency of 200 nucleotides in length from both 

ends of predicted genes was included in determining whether the predictions made by 

Fgenesh were the same as genes predicted by the other three tools. 

Gene prediction tool 

combinations 

Number of gene predictions made 

by Fgenesh that are supported by 

BRAKER3 and AUGUSTUS 

B, A 241 (10.4%) 

B 750 (32.5%) 

A 320 (13.9%) 

  

Comparisons of AUGUSTUS, BRAKER3, and Fgenesh to each other confirm 

that the gene predictions generated by AUGUSTUS are divergent, as comparisons 

including AUGUSTUS to both BRAKER3 and Fgenesh result in very low percentages of 

shared predictions (Table 3-4; Table 3-6). Additionally, the comparisons of BRAKER3 

and Fgenesh to AUGUSTUS yielded very high percentages of shared predictions (Table 

3-5). This inverse relationship in comparisons to and with AUGUSTUS states that the 

gene predictions made by AUGUSTUS are very small and likely fragmented genes, such 

that 75-87.5% of AUGUSTUS predictions can be found within the length of genes 

predicted by BRAKER3 and Fgenesh, while only upwards of 30% of BRAKER3 and 

Fgenesh predictions can be found within the length of genes predicted by AUGUSTUS. 

This low gene prediction performance of AUGUSTUS means that each prediction made 

by AUGUSTUS potentially only represents a single exon, while GeneCNN, BRAKER3, 

and Fgenesh, are generating gene length predictions. The poor comparisons including 

AUGUSTUS also suggest that the number of GeneCNN predictions supported by 
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BRAKER3 and Fgenesh, at a range of 59.2% to 84.1% shared gene predictions, are much 

more indicative of the overall performance of GeneCNN, as the majority of predictions 

made by GeneCNN are also found by two other gene prediction tools (Table 3-3). 

When compared directly using BLAST, GeneCNN predicted genes were 

supported by 85.7% of the BLAST results. Running blastx on the entire gene prediction 

set by GeneCNN yielded significant similarity results in the nr protein sequence database 

for 2,584 of the total 3,015 genes predicted by GeneCNN.  

Discussion 

 The predictive power of GeneCNN when trained on a novel genome was 

demonstrated through the comparison of gene predictions made with BRAKER3, 

AUGUSTUS, and Fgenesh. The number of unique genes predicted by GeneCNN were 

comparable to BRAKER3 and AUGUSTUS when both were compared against 

GeneCNN. GeneCNN uniquely predicted 1,089 genes compared to BRAKER3, 1,535 

compared to AUGUSTUS, and 478 compared to Fgenesh. Meanwhile, BRAKER3 and 

AUGUSTUS uniquely predicted 1,014 and 1,305 genes compared to GeneCNN 

respectively. A singular unique gene prediction for each comparison of GeneCNN to 

another tool were demonstrated to have at least one experimentally validated gene that 

was missing from the predictions made by BRAKER3, AUGUSTUS, and Fgenesh. As 

BRAKER3 is one of the highest performing gene prediction tools currently available, 

especially for use in novel genomes, the resulting performance by GeneCNN in 

comparison to BRAKER3 is significant. In the case of the experimentally validated gene 

predicted by GeneCNN and not by Fgenesh, the bit score result was 1310, one of the 

highest scores observed in unique predictions checked with blastx.  
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The number of predictions alone, however, does not fully represent the quality of 

these predictions. One known area where GeneCNN is known to lose prediction power is 

in genes with long introns, as it has previously predicted two genes within the span of one 

predicted gene by BRAKER3. This is likely due to a number of factors which include the 

kernel size used during GeneCNN training, the 500 nucleotide length sample size, and 

the sliding window stride size used during gene prediction. The 500 nucleotide length 

sample size alone should not constitute much of the loss in prediction power however, as 

the average intron size in Setaria italica, a species in the same taxonomic family as 

buffalograss, is 442 nucleotides in length (Zhang et al., 2012). Therefore, the 500 

nucleotide length sample size used by GeneCNN will capture most genes in a single 

prediction. GeneCNN predictions could potentially be improved by changing the kernel 

size during training, even if it generates a lower training performance, as this directly 

influences the spatial dependence of a given datapoint on its surrounding datapoints. 

GeneCNN predictions could also potentially be improved by modifying the sliding 

window stride size, as this generates the amount of support for assigning any given 

nucleotide position as genic. By increasing the sliding window stride size, there will be 

an overall loss in support per nucleotide position but there will be a longer range in 

support for whole genic sequences. Likely some combination of changing the kernel size 

during GeneCNN training and changing the sliding window stride size for creating whole 

gene sequences will yield the highest performance. Both the kernel size and stride size 

should be considered before modifying the sample size length for GeneCNN. 

 The resulting genes predicted by GeneCNN could likely be refined by 

incorporating transcriptomic data into more than solely creating class labels for training 
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and test datasets. One of the advantages that the HMM-based gene prediction tools have 

over GeneCNN is that they have a stronger incorporation of signal sensors. These signal 

sensors include genomic facets such as transcription start sites as well as start and stop 

codons. In comparison, GeneCNN defines genic start and end sites through the iterative 

incorporation of spatially dependent information into singular datapoints. So, while some 

measure of signal sensors are incorporated into GeneCNN natively through convolutions 

and dimensionality reductions, a stricter inclusion of these signal sensors may better 

refine the ends of genic predictions made by GeneCNN.  

 A major benefit of GeneCNN is the relatively low amount of data required to 

obtain performance rivaling BRAKER3, AUGUSTUS, and Fgenesh. The buffalograss 

genome was used as a foundation for the training and test datasets, with publicly 

available transcriptomic data from four different BioProjects used to generate genic 

labels for the training and test data. Once trained on the buffalograss genome with 

supporting information, the buffalograss genome was then reused for gene prediction. As 

GeneCNN is composed of a neural network for its modelling algorithm, a larger amount 

of supporting data or application of GeneCNN to a larger, more complex genome than 

the diploid buffalograss genome should increase the performance of GeneCNN even 

further compared to other gene prediction tools. This is due to the potential performance 

increases in neural networks as datasets grow larger and more complex, where their 

nonlinear nature allows for better generalizations of complex datasets than other 

statistical models (Korotcov et al., 2017). 

 Given that this is the first major iteration of GeneCNN and therefore has potential 

to be further refined, its performance compared to other gene prediction tools is 
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noteworthy. There are a higher number of genes uniquely predicted by GeneCNN 

compared to the other tools, where an average of 80% of unique predictions by 

GeneCNN were supported by protein data in the NCBI nr database (Table 3-1). 

Additionally, the majority of the total GeneCNN predicted genes were supported by other 

tools, where 85.7% of GeneCNN predicted genes were supported by BLAST results, 

while BRAKER3 and Fgenesh gene predictions supported 64.3% to 84.1% of the total 

GeneCNN predicted gene set (Table 3-3). Though there is some bias in the comparisons 

of uniquely predicted genes, multiple uniquely predicted genes generated from GeneCNN 

compared to BRAKER3, AUGUSTUS, and Fgenesh were queried against the nr protein 

database using blastx and were shown to be experimentally validated protein encoding 

genes. As such, there is value in the creation of the CNN-based gene prediction tool 

GeneCNN, as the spatial dependence informed gene predictions capture genes that are 

not found in the gene prediction sets generated by the HMM-based tools BRAKER3, 

AUGUSTUS, and Fgenesh. 
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APPENDIX A: SUPPLEMENTAL FIGURES 

 

 

Figure A-1. Historical graph result of the model loss over time using the ‘200 nt’ 

iteration of GeneCNN. Loss is shown over a training period of 50 epochs with both 

training and validation datasets. Model overfitting can be seen through the increasing 

degree of loss in the validation data during the training period. 
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Figure A-2. Historical graph result of the model accuracy over time using the ‘200 nt’ 

iteration of GeneCNN. Accuracy is shown over a period of 50 epochs with both training 

and validation datasets. A small degree of overfitting may be present but there is variance 

in the validation data once it plateaus at roughly 77%. 



78 
 

 

Figure A-3. Historical confusion matrix for the ‘200 nt’ iteration of GeneCNN. The 

nongenic class prediction accuracy was 93%, found in the top left quadrant, while the 

genic class prediction accuracy was 32%, found in the bottom right quadrant. The false 

positive rate was 68%, found in the bottom left quadrant, while the false negative rate 

was 7%, found in the top right quadrant.  
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Figure A-4. Historical graph result of the model loss over time using the ‘1 Conv Layer’ 

iteration of GeneCNN. Loss is shown over a training period of 30 epochs with both 

training and validation datasets. Model overfitting can be seen through the increasing 

degree of loss in the validation data during the training period. 
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Figure A-5. Historical graph result of the model accuracy over time using the ‘1 Conv 

Layer’ iteration of GeneCNN. Accuracy is shown over a period of 30 epochs with both 

training and validation datasets. Model overfitting can be seen through the decreasing 

accuracy in the validation data relative to the training data during the training period. 
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Figure A-6. Historical confusion matrix for the ‘1 Conv Layer’ iteration of GeneCNN. 

The nongenic class prediction accuracy was 90%, found in the top left quadrant, while 

the genic class prediction accuracy was 52%, found in the bottom right quadrant. The 

false positive rate was 48%, found in the bottom left quadrant, while the false negative 

rate was 10%, found in the top right quadrant. 
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Figure A-7. Historical graph result of the model loss over time using the ‘4.9:1 Class 

Ratio’ iteration of GeneCNN. Loss is shown over a training period of 50 epochs with 

both training and validation datasets. Model overfitting is not evident here. 
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Figure A-8. Historical graph result of the model accuracy over time using the ‘4.9:1 

Class Ratio’ iteration of GeneCNN. Accuracy is shown over a period of 50 epochs with 

both training and validation datasets. Model overfitting is not evident here but there is 

variance in the validation accuracy once it plateaus at roughly 83.8%. 
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Figure A-9. Historical confusion matrix for the ‘4.9:1 Class Ratio’ iteration of 

GeneCNN. The nongenic class prediction accuracy was 98%, found in the top left 

quadrant, while the genic class prediction accuracy was 16%, found in the bottom right 

quadrant. The false positive rate was 84%, found in the bottom left quadrant, while the 

false negative rate was 2%, found in the top right quadrant. 
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Figure A-10. Historical graph result of the model loss over time using the ‘Manual 

Adjust’ iteration of GeneCNN. Loss is shown over a training period of 30 epochs with 

both training and validation datasets. Model overfitting is not evident here, however there 

is variance in the validation loss. 
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Figure A-11. Historical graph result of the model accuracy over time using the ‘Manual 

Adjust’ iteration of GeneCNN. Accuracy is shown over a period of 30 epochs with both 

training and validation datasets. Model overfitting is not evident here but there is variance 

in the validation accuracy once it plateaus at roughly 81%. 
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Figure A-12. Historical confusion matrix for the ‘Manual Adjust’ iteration of GeneCNN. 

The nongenic class prediction accuracy was 81%, found in the top left quadrant, while 

the genic class prediction accuracy was 80%, found in the bottom right quadrant. The 

false positive rate was 20%, found in the bottom left quadrant, while the false negative 

rate was 19%, found in the top right quadrant. 
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Figure A-13. Historical graph result of the model loss over time using the ‘No BN’ 

iteration of GeneCNN. Loss is shown over a training period of 20 epochs with both 

training and validation datasets. A large degree of model overfitting is present, as the 

validation loss continued to increase while the training loss decreased. 
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Figure A-14. Historical graph result of the model accuracy over time using the ‘No BN’ 

iteration of GeneCNN. Accuracy is shown over a period of 20 epochs with both training 

and validation datasets. Model overfitting is present as the validation accuracy decreases 

while the training accuracy increases.  
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Figure A-15. Historical confusion matrix for the ‘No BN’ iteration of GeneCNN. The 

nongenic class prediction accuracy was 96%, found in the top left quadrant, while the 

genic class prediction accuracy was 99%, found in the bottom right quadrant. The false 

positive rate was 1%, found in the bottom left quadrant, while the false negative rate was 

4%, found in the top right quadrant. 
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