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Nitrosamines comprise a large group of potentially toxic compounds occurring in the 

environment as by-products of various manufacturing, agricultural and natural processes. 

Nitrosamines are produced from reaction of nitrite with a suitable secondary amine in an 

acidic matrix; these acidic conditions can occur in environmental media and in the 

mammalian gastrointestinal (GI) tract. This research focused on the stability, transfer, and 

impacts of the environmentally relevant nitrosamines, N-nitrosodimethylamine (NDMA), 

N-nitrosmorpholine (NMOR), and N-nitrosoatrazine (NNAT) (formed from reaction of 

nitrite with dimethylamine, morpholine, and atrazine), using the chicken egg and embryo 

model systems. Chicken eggs were used to determine nitrosamine transfer between a 

hydrophilic medium (egg white or albumin) and a lipophilic medium (yolk) via a 

biomembrane (vitelline membrane). Results from these studies with unfertilized chicken 

eggs showed that the selected nitrosamines transferred from the egg white to yolk where 

they were relatively stable. NNAT has a relatively higher affinity for the lipophilic yolk 

fraction, which suggests that it may have a greater potential to bioconcentrate than 

NDMA and NMOR. An understanding of the transfer behavior of nitrosamines can be 

used to assess bioavailability and fate, as well as potential environmental and biological 



impacts. An observed decrease in total nitrosamine in the yolk with time may indicate 

denitrosation, releasing nitrous acid, which can decompose to nitrite and nitric oxide 

(NO), an important biological messenger during embryonic and fetal development. Thus 

teratogenicity of these compounds was assessed using chicken embryos. Major defects 

observed after exposure to these selected compounds included ectopic heart, 

gastroschisis, caudal regression, craniofacial hypoplasia, and neural tube defects. A 

significant relationship was observed between malformed embryos and NNAT (0.46 µg). 

Additionally nitrotyrosine concentrations (a marker of NO-mediated stress) in NNAT 

treated, malformed embryos were greater than those observed in treated, normal-

appearing embryos. Results indicate that NNAT may be teratogenic and that 

nitrotyrosine, a marker of NO-dependent oxidative stress, maybe reflective of one 

biochemical pathway through which nitrosamines exert teratogenic effects.  
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 INTRODUCTION 

          Nitrosamines comprise a large class of mutagenic, teratogenic and carcinogenic 

chemicals found in the environment as by-products of various manufacturing, agricultural 

and natural processes (Magee and Barnes 1967, Lijinksy and Epstein 1970, Loeppky et 

al. 1994, McKnight et al.1999). Nitrosamines generally affect the GI tract, associated 

organs, and the brain (Mirvish 1995). Exposure to nitrosamines is estimated to be 

approximately 1.10 µmol/day (Tricker 1997, Lijinksy 1999). Nitrosamines are found in 

certain foods that contain nitrite or are exposed to nitrogen oxides (Walker 1990). 

Humans are also exposed to a wide range of nitrogen-containing compounds and 

nitrosating agents which can react in vivo under the acidic conditions of the gastric 

environment to form nitrosamines (Mirvish 1975, 1977, Lijinsky and Taylor 1977). N-

nitroso compounds (NOCs) formed endogenously in the maternal stomach may be 

transmitted via the placenta to the fetus (Cowdin et al. 2003). Studies demonstrate that 

exposure to NOCs may be associated with birth defects such as neural tube defects and 

cleft palate, neonatal deaths and stillborns in rodents but the mechanisms are not yet 

understood (WHO, Takeuchi 1984, Carozza et al. 1995).  

          Partitioning between liquid and solid phases, membrane penetration, entry in the 

organs of the host, and subsequent biochemical effects determine chemical toxicity. The 

transfer behavior of nitrosamines can be studied using model systems such as the chicken 

egg. Aside from its use as a model of embryological development, chicken eggs can be 

used to study the partitioning of nitrosamines between hydrophilic or lipophilic biological 

compartments or phases.  
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          The fertilized chicken egg and the developing embryo are useful models for the 

study of teratogenicity. The chick embryo provides an acceptable measure of 

embryotoxic potency (Jelinek et al. 1985) and chicken embryos are widely used to study 

development and developmental abnormalities (Rosenquist et al. 2001, 2007, 2010, Lie et 

al. 2010). 

Denitrosation of nitrosamines in the endoplasmic reticulum may be a pathway of 

detoxification (Lee 1996, Williams 2004) that can lead to increases in nitric oxide which 

can cause cell injury. Hiramoto (2002) demonstrated that nitrosamines decomposed on 

contact with reactive oxygen species, accompanied by release of NO. Nitrotyrosine is a 

product of tyrosine nitration mediated by reactive nitrogen species such as peroxynitrite 

anion and nitrogen dioxide. Its concentration is a marker of NO-dependent oxidative 

stress and may reflect one pathway by which nitrosamines exert their teratogenic effects. 

          The three nitrosamines explored in this thesis are N-nitrosodimethylamine 

(NDMA), N-nitrosomorpholine (NMOR) and N-nitrosoatrazine (NNAT), representing 

environmentally significant nitrosamines. NDMA is a known hepatotoxin and carcinogen 

(Lijinsky et al. 1972, IARC). NMOR has also been found to be carcinogenic in many 

animal species (Preussmann and Tricker 1991, WHO). NNAT can be formed from 

atrazine, a widely used triazine herbicide that has been detected in groundwater (Spalding 

2003).  

          The unfertilized chicken egg and developing embryo were used to determine:  

(1) stability and transfer of the selected nitrosamines among biological compartments,  

(2) teratogenic potential, and (3) impacts on nitrotyrosine concentrations.  
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LITERATURE REVIEW 

Nitrosamine Formation 

          N-Nitroso compounds (NOC) consist of nitrosamines [RN(NO)R`] and 

nitrosamides [RN(NO)COR`]. N-Nitrosamines comprise cyclic nitrosamines (e.g., 

NMOR) and dialkylnitrosamines (e.g., NDMA) (Magee and Barnes 1967, Mirvish 1977). 

Nitrosamines first drew attention after an outbreak of acute hepatotoxicity in Norwegian 

sheep, which was linked to the presence of NDMA in nitrite-preserved fish meal (Magee 

and Barnes 1967). Magee and Barnes (1967) were the first to discover that NDMA was 

acutely hepatotoxic in a number of animal species. In murine models, nitrosamines have 

been found to induce tumors of the esophagus, nose, liver, kidneys, pancreas and other 

organs (Mirvish 1977).  

          Nitrosamines have been found in foods that contain nitrite or are exposed to 

nitrogen oxides. These foods include fish, alcoholic beverages and cured meats (Walker 

1990), especially bacon in which concentrations of 10-100 µmol/kg have been found 

(Lijinksy 1999). Cooking method, temperature and time influences the formation of 

nitrosamines in meat products (Lee et al. 2003). Humans are also exposed to a range of 

nitrogen-containing compounds and nitrosating agents which can react in vivo to form 

nitrosamines. Nitrosamines may originate from the reaction of nitrite and nitrosatable 

molecules under the acidic conditions of the gastric environment (Mirvish 1975, 1977, 

Lijinsky and Taylor 1977).  

          Mean nitrite levels were 0.1-2.6 and 26-54 µM for fasting gastric juice of pH < 5 

and > 5, respectively (Xu and Reed 1993). An anion transport mechanism actively 
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secretes 25% of the absorbed nitrate into the saliva. Oral bacteria reduce 5% of the 

ingested nitrate to nitrite (Spiegelhalder et al. 1976, McKnight et al. 1999). While nitrite 

itself can be sufficiently toxic, it also serves as a nitrosating agent (Spiegelhalder et al. 

1976, Tenovuo.1986). The reduction of ingested or endogenous nitrate accounts for 

almost 80% of gastric nitrite in the normal acidic stomach. The remaining 20% of gastric 

nitrite arises from ingested nitrite found in processed foods (Mirvish 1977, 1983).  

          Nitrosatable molecules include secondary amines, tertiary amines, alkylureas and 

amino acids (Mirvish 1970, Lijinsky et al. 1972). Under the acidic conditions of the 

human stomach, nitrite is protonated to nitrous acid (HNO2). HNO2 can then 

spontaneously form dinitrogen trioxide (N2O3), nitric oxide (NO), and nitrogen dioxide 

(NO2). NO
+
 can also be donated by N2O3 to secondary and tertiary amines that can then 

form potentially carcinogenic nitrosamines in vivo (Leaf et al.1989). Under neutral 

conditions, NO can be formed from bacterial reduction of nitrite. NO in turn can react 

with molecular oxygen to form the nitrosating agents N2O3 and N2O4. Inducible nitric 

oxide synthase (iNOS) activity of inflammatory cells is also a source of NO. All of these 

mechanisms of endogenous nitrosation account for almost 40-75% of the total human 

exposure to nitrosatable compounds. 

          Secondary amines can be nitrosated to produce a nitrosamine. The formation of 

nitrosamines from secondary amines can be described by the following reactions (Eq. 1-

3): 

N OO H+Na+ Cl- N OOH Na+ Cl-

Sodium nitrite Nitrous acid  

(1) 
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N OOH H+ N OOH

H

H2O N O N O

Nitrous acid Protonated nitrous acid Nitrosonium ion

R N
H

R
N O R N+

R

H

N O
H2O

R N

R

N O H3O+

Secondary amine Nitrosonium ion Secondary N-nitrosoamine  

The kinetics of the nitrosation reaction depends on the pH of the medium and the 

pKa of the amine. Formation of a nitrosating agent is regulated by pH. The nitrite ion is 

protonated to form HNO2 (pKa 3.37) (Eq. 1). This reaction is favored under acidic 

conditions (which occur in the human stomach). Under these conditions, HNO2 may 

protonate, lose water, and be converted to N2O3 or form other activating nitrosating 

species, including the nitrosonium ion, nitrosyl thiocyanate, or nitrosyl halide (Eq. 2).  

Secondary amines will react with the nitrosonium ion to form nitrosamines (Eq. 3). The 

mechanism for nitrosation involves nucleophilic attack on the nitrosonium ion to form the 

nitrosamine. The unprotonated form of the amine is the more reactive form, so reactivity 

is greater for weak bases (Mirvish 1975, Mergens 1982). Thus, nitrosation occurs readily 

with weakly basic secondary amines such as morpholine and relatively slowly with 

strongly basic secondary amines such as dimethylamine (DMA). The rate of the reaction 

depends on the concentrations of the non-ionized amine and HNO2. At pH > 1, the 

principal nitrosating agent is N2O3. The rate of the reaction is proportional to the 

concentration of nitrous anhydride and the square of nitrous acid, thus the rate of the 

reaction increases tenfold for each one unit decrease in pH (Mirvish 1970, 1972). 

(2) 

(3) 
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          Under suitable conditions, primary amines may be alkylated to form secondary 

amines which can then be nitrosated. Likewise, tertiary amines can be dealkylated to 

form secondary amines which can be nitrosated to form nitrosamines. Tertiary amines 

with dimethylamine functional groups have been identified as potent NDMA precursors 

(Shafer et al. 2010). 

          Nitrosamines can also be formed in an alkaline solution when the nitrosating agent 

is present as N2O3 or N2O4 gas (Challis et al. 1978). The mechanism by which this occurs 

is still not understood completely; however a study (Challis et al. 1978) shows that only 

the unprotonated amino-nitrogen of the selected compounds participates in the nitrosation 

reactions. The possible reaction which may be occurring can be described as follows (Eq. 

4):  

HNO3 + HNO2               ON-NO3                       ON-NO3                 R2NNO + HNO3 

                                                                     R2NH 

                                                                    

          Nitrosamine formation also can occur in the lipid phase, when the reactive amines 

are soluble (Mergens 1982). Unsaturated fatty acids have been shown to enhance (nearly 

double in fatty acid ester solutions) nitrosation of dicyclohexylamine in a lipid medium, 

under aprotic conditions, upon exposure to low concentrations of NO2 (Pryor 1981). The 

nitrosating species under these conditions is HONO formed by the NO2-unsaturated ester 

reactions. Pryor (1981) reported that the rate of nitrosation of the amine nearly doubles in 

the fatty acid solutions. This suggests that the HNO2 (nitrous acid) formed from the 

reaction between NO2 and the unsaturated fatty acid may be participating in nitrosation of 

H2O R2NH 

(4) 2
+
 

Unsymmetrical tautomer 

of N2O4 
Transition  

state 

Secondary  

Nitrosamine 
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the amine. Only the unprotonated (more reactive) amine species would be soluble in a 

lipophilic medium. The pH dependence of the reaction is therefore eliminated and the 

probability of a reaction occurring between an amine and a nitrosating agent is very high 

(Pryor 1981, Mergens 1982).  

          Aside from pH, the rate of nitrosation is influenced by the presence of thiocyanate 

ions, halide ions, and formaldehyde, which accelerate the reaction, and ascorbic acid and 

α-tocopherol that block the formation of N-nitroso compounds (Mirvish 1977). Ascorbic 

acid and α-tocopherol compete for the available nitrite (i.e. N2O3 and H2NO2
+
) and are 

thus capable of inhibiting the formation of nitrosamines. Ascorbic acid reacts rapidly 

with nitrite under acidic conditions to reduce HNO2 to NO and is itself oxidized to 

dehydroascorbic acid. α-Tocopherol reduces NO2 to NO in organic solvents and lipids, 

and its emulsions in water reduce nitrite to NO (Mirvish 1986).  

 

Selected Nitrosamines 

          The nitrosamines explored in this study are N-nitrosodimethylamine (NDMA), N-

nitrosomorpholine (NMOR), and N-nitrosoatrazine (NNAT). The physicochemical 

properties of these nitrosamines and their parent compounds are reported in Tables I and 

II, respectively: 
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Table I. Physicochemical properties of selected nitrosamines 

Structure and Name  Properties  

 

 

 

 

 (NDMA) 

 

 

 

 

 

 

 

 

 

  

 

 

N-Nitrosomorpholine 

(NMOR) 

 

 

 

 

 

 

 

 

 

 

N-Nitrosodimethylamine Volatile yellow oily liquid; 

Soluble in water, organic solvents and 

lipids; 

Photosensitive; 

Molecular weight = 74.1;  

Water solubility = 290 mg/mL;  

Yellow crystals;  

Soluble in organic solvents;  

Photosensitive;  

Molecular weight= 116.1;  

Water solubility = >100 mg/mL;  

Density = 1.11 g/cm³;  

Log Kow = -0.43 

 

Density = 1.005 g/cm³;  

Log Kow = -0.57;  

Log Koc = 1.07   
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Structure and Name  Properties  

 

 

N-Nitrosoatrazine 

(NNAT) 

 

  

  

 

 

 

 

  

Photosensitive; 

Molecular weight= 244.1;  

Water solubility= 0.29 mg/mL;  

Density= 1.42 g/cm
3
 

  Table I continued 
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Table II. Physicochemical properties of parent compounds 

Structure and Name   pKa Properties 

 

 

 

 

 Dimethylamine 

      (DMA) 

 

 

 10.7 Colorless compressed liquefied 

gas with pungent odor ; 

Molecular weight= 450.1; 

Water solubility= 3540 mg/mL; 

Density= 0.67 g/cm
3
;  

Log Kow = -0.38  

 

 

    Morpholine 

 

 

 

  

8.7 

 

 

 

 

 

 

 

 

Colorless oily volatile liquid; 

Water solubility- miscible; 

Molecular weight= 87.1;  

Density- 1.01 g/cm
3
;  

Log Kow = -0.86  

 

 

 

       Atrazine 

        

 

 

 1.7 

 

White solid;  

Molecular weight= 215.7; 

Water solubility= 0.033 

mg/mL; Density= 1.187 g/cm
3
;  

Log Kow = 2.34 

 



11 

 

 

NDMA 

          NDMA is a known hepatotoxin (Lijinsky and Greenblatt 1972, Pegg 1980, Archer 

et al. 1994) and is classified as an IARC (International Agency for Research on Cancer) 

group 2A carcinogen (probably carcinogenic to humans) (IARC 1987, Lijinsky et al. 

1972). NDMA may be present in air due to reactions between dimethylamine (DMA) and 

nitrogen oxides.  

          NDMA is widely used as an industrial solvent (Mirvish 1977). It can be 

synthesized by soil bacteria from various precursor substances, including nitrate, nitrite, 

and amine compounds. NDMA is also an inadvertent by-product of industrial processes, 

such as reaction of alkylamines DMA with nitrogen oxides, nitrous acid, or nitrite salts, 

or transnitrosation via nitro or nitroso compounds. NDMA may thus be present in 

discharges of rubber manufacturing, leather tanning, pesticide manufacturing, food 

processing, meat tinning and dye manufacturing industries (Mitch et al. 2003, Blicharz et 

al. 2005, Vocht et al. 2007). NDMA has also been identified in baby pacifiers, emissions 

from diesel vehicle exhaust and it can be released from industrial sources as a 

contaminant of products such as liquid rocket fuel (Sen et al. 1985, Mitch et al. 2003). 

NDMA has been detected in the air in chemical (0.05-0.5 µg/m
3
) and rubber industries 

(0.07-0.14 µg/m
3
) (Fajen et al. 1979).  

          Dietary sources of NDMA include beer, fish and fish products, dairy products, 

infant formula, cured meats, cereals and vegetables. In fact, NDMA accounts for almost 

86% of the total nitrosamines in salted fish in China (Bulushi et al. 2009). The 
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contribution of NDMA from food is considered high even though concentrations in most 

food products are relatively low (Fristachi and Rice 2007, Shafer et al. 2010).  

          California’s Department of Public Health (CDPH) has set 10 ng/L notification 

levels (advisory levels for chemicals in drinking water that lack maximum contaminant 

levels) for NDMA in drinking water. Most nitrosamine releases from industries are to 

sewage and subsequently water. NDMA concentrations as high as 0.11 mg/L have been 

detected in effluents from manufacturing industries (Mitch et al. 2003). DMA and nitrite 

may enter surface water streams from agricultural runoff. NDMA may also be formed 

during treatment of drinking water. Water treatment plants incorporating a chlorination 

process (e.g., sodium hypochlorite) produce NDMA from precursors (WHO, Fristachi 

and Rice 2007, Asami et al. 2009). High levels of NDMA have been detected in outdoor 

and indoor pools and hot tubs (Walse and Mitch 2008). Free chlorine (HOCl) may react 

with ammonia to form monochloramine (NH2Cl) which in turn may react with DMA to 

form dimethylhydrazine ((CH3)2NNH2) which then oxidizes to NDMA (Eq 5-7) (Mitch et 

al. 2003).  

NH3 + HOCl → NH2Cl (MC) + H2O                                                                          (5) 

NH2Cl + (CH3)2NH → (CH3)2NNH2 + H
+
 + Cl

-
                                  (6) 

(CH3)2NNH2 + 2NH2Cl + H2O → (CH3)2NNO + 2NH3 + 2H
+
 + 2Cl

-                               
(7) 
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NMOR 

          NMOR (nitrosated morpholine) is carcinogenic in many animal species (WHO, 

Tricker and Preussmann 1991) and it has been found to be mutagenic (Manson et al. 

1978). NMOR is an IARC group 2B carcinogen (sufficient evidence of carcinogenesis in 

several experimental animal species) (WHO) as it is responsible for inducing liver, nasal-

cavity, tracheal, oesophagus and stomach tumors in several animal models (Lofberg 

1985).         

          Approximately 25000 metric tonnes of morpholine are produced industrially each 

year (WHO). It is a versatile chemical that is used as an intermediate for rubber 

polymerization accelerators, corrosion inhibitors, synthesis of optical brighteners, crop 

protection agents, dyes and drugs, polishes/waxes and food additives (WHO, Mirvish 

1972, Sen et al 1987, Grosjean 1991, Vocht et al. 2007). Some countries still use 

morpholine in toiletry and cosmetic products, and in several direct and indirect food 

additive applications. Human exposure to morpholine arises from gaseous and aqueous 

emissions and directly from some of its uses. NMOR was produced in mice exposed to 

morpholine and NO2 (Mirvish et al. 1981). NO2 itself is a pollutant formed from 

combustion processes such as gas cooking, cigarette smoking, automobile exhaust, and 

flame drying of foods (Cooney and Ross 1987). Morpholine emissions mainly result from 

its manufacture and use in the chemical industry.  Morpholine has been detected in a 

wide variety of foods and tobacco with the source being the coatings of wax on fruit or 

on packaging papers (WHO, Sen 1986). 90-4830 µg/kg of morpholine was detected in 

the waxed cardboard containers used to package snuff and snuff tobacco itself was found 
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to contain NMOR (10-690 µg/kg) (Brunnemann et al. 1982). NMOR levels of up to 140-

670 µg/kg have been detected in waxes used to protect apples (Tricker et al. 1989).   

          Like NDMA, NMOR has been identified as an air pollutant in chemical (0.07 

µg/m
3
-5.1 µg/m

3
) and aircraft tire industries (0.6 µg/m

3
- 27 µg/m

3
) (Fajen et al. 1979, 

Spiegelhalder and Preussmann 1983). NMOR has been detected in the rubber industry 

and in diesel engine crankcase emissions (Lofberg 1985). Disinfected wastewater 

effluents have also been shown to contain NMOR (Kulshrestha et al. 2010). NMOR has 

been identified in drinking water at maximum concentrations of about 3 ng/L (Padhye 

2010). 

 

NNAT 

          NNAT (nitrosated atrazine) can be formed from atrazine, a widely used broadleaf 

triazine herbicide that has been detected in groundwater (Spalding et al. 2003). Exposure 

to atrazine may occur on the application of the herbicide or consumption of contaminated 

food or water (Mirvish et al. 1991). Due to the widespread application of agrichemicals in 

the Midwest, some groundwaters are contaminated with nitrate and atrazine. 

Groundwater contaminated with atrazine often contains nitrate. A 1997 study (Gosselin et 

al. 1997) reported detection of atrazine in 70 Nebraska domestic wells. Wells 

contaminated by atrazine had a median nitrate-nitrogen concentration of 11.5 µg/L. High 

concentrations of atrazine (1500 µg/kg) have been detected in Wisconsin, where the wells 

also have high nitrate levels (Meisner et al. 1993). Elevated concentrations of nitrate and 

atrazine create the potential for NNAT formation after ingestion. Thus exposure to 

atrazine and nitrate may occur via consumption of contaminated water.  Atrazine is a 
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secondary amine that can be readily nitrosated to form nitrosoatrazine under suitable 

conditions (Mirvish et al. 1991). Atrazine nitrosates almost 200 times faster than DMA at 

pH 2 (Wolfe et al. 1976) and NNAT is relatively stable at alkaline pH (Mirvish et al. 

1991). NNAT is more photolabile than NMOR in water or CH2Cl2 which may be due to 

UV absorption by its triazine ring (Wolfe et al. 1976, Mirvish et al. 1991). NNAT is also 

mildly mutagenic in the Ames assay (Weisenburger et al. 1988, Gammon et al. 2005). 

Meisner (1993) found that exposure of lymphocytes to NNAT resulted in chromosome 

breakage.   

Nitrosamine Sources and Exposure 

          Nitrosamines have been studied extensively in foods as they are found in certain 

foods that contain nitrite or are exposed to nitrogen oxides. These foods include dried 

salted fish, alcoholic beverages and cured meats (Mirvish 1977, Walker 1990), especially 

bacon in which concentrations of 10-100 µg/kg have been found (Lijinksy 1999). Human 

exposure to nitrosamines is estimated to be approximately 1.10 µmol/d. Major sources of 

exposure are the diet (0.79 µmol/d, 80-120 µg/d; 72% of the total exposure), occupational 

exposure (0.15-0.30 µmol/d; 25%), cigarette smoking (0.02 µmol/d, 3.4 µg /d; 2%), and 

miscellaneous sources, including pharmaceutical products (Brambilla et al. 1985, 

Dawson and Lawrence 1987), cosmetics, indoor and outdoor air (0.001 µmol/d, 0.1 µg/d; 

1%) (Tricker 1997). Consumer products such as foods, beverages, pharmaceutical drugs 

and cosmetics that contain nitrosatable compounds and nitrite or have been exposed to 

nitrous oxides can be a source of nitrosamines (Rosenberg et al. 1980, Tenovuo 1986, 

Lijinksky 1999, Yurchenko and Molder 2006).            
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          While nitrate levels are highest in vegetable products (189 mg of nitrate/serving), 

nitrite levels are highest in meat and bean products (1.84 mg/serving). Alcohol, meat and 

dairy products contain the highest concentrations of nitrosamines (0.531 µg/serving) 

(Griesenbeck et al. 2009) (serving indicates standard serving sizes in the United States as 

reported by the Centers for Disease Control).  

          While there is considerable research on nitrosamine exposure from food, concern 

has been expressed about nitrosamine formation, occurrence and exposure in the 

environment. A number of drugs are secondary or tertiary amines (e.g. chlorpheneramine, 

cefadroxil, diphenhydramine, ethambutol, furosemide, metoprolol, procainamide, 

propranolol, and ranitidine) and can be easily nitrosated to form NOC. Large doses of 

drugs are ingested by mouth and their chronic presence in the GI tract could be hazardous 

if they nitrosate to form carcinogenic NOCs. For example, oxytetracycline reacts 

endogenously with nitrite to form NDMA. Similarly, methapyrilene and 

chlorpheniramine can also react with nitrite to form NDMA (Mirvish 1995). 

          Occupational exposure to volatile nitrosamines occurs in rubber/latex and leather 

curing industries. NDMA and NMOR have been detected in the air of rubber industries. 

These are thought to arise from the reaction of exhaust NO2 with amines arising from 

vulcanization accelerators (Mirvish 1995). Average daily intake of NDMA by individuals 

working in rubber industries is 0.8 µg/m
3 

(Tricker et al. 1989). The estimated daily intake 

of NMOR by individuals working in rubber industries is 3.8 µg
 
(Tricker 1989).  

          Of the three nitrosamines considered for this study, the presence of and exposure 

from NDMA has been examined most extensively. NDMA concentrations as high as 70 

µg/L have been detected in German beer, although levels are usually much lower (5-10 
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µg/L). In the U.S., the estimated dietary exposure to NDMA from beer is almost 0.3-0.97 

μg/d (Walker 1990). NDMA has also been detected in bacon (17 µg/kg), smoked pickled 

fish (32 µg/kg) and Japanese broiled squid (300 µg/kg) (Lijinksky 1999). NDMA has 

been identified in Korean dried seafood products and cooking has been shown to increase 

the NDMA content (from about 147 to 630.5 µg/kg) (Lee et al. 2003). NDMA 

concentrations of 0.003-0.4 mg/L have been found in groundwater near rocket engine 

testing facilities (Mitch et al. 2003). High concentrations of nitrosamines have been 

detected in latex gloves and studies have shown that these can migrate and be potentially 

toxic (Feng et al. 2009). NDMA is still found in some fish products (Mirvish 2008). A 

daily tolerance limit of  4 - 9.3 ng NDMA/kg/d or 280– 650 ng/d for a 70 kg person has 

been identified (Schafer et al. 2010).  

 

Nitrosamine Carcinogenicity and Mutagenicity 

          In animal models, nitrosamines induce tumors of the liver, nose, kidneys, pancreas, 

esophagus and other organs. Several studies have shown that tumors are induced in mice 

after treatment with sodium nitrite together with various secondary amines (Mirvish 

1972). More than 300 NOCs are carcinogenic in one or more animal species (Preussmann 

and Stewart 1984, Hasegawa et al. 1998). Exposure to nitrosamines has been associated 

with mortality from cancers of the oesophagus, oral cavity, and pharynx (Straif et al. 

2000). NNAT was also mutagenic in the Ames assay (Weisenburger et al. 1988, 

Gammon et al. 2005).  

          Nitrosamines require metabolic activation to exert carcinogenic and mutagenic 

effects. Cytochrome P450 (P450) enzymes activate nitrosamines in the endoplasmic 
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reticulum to form α-hydroxynitrosamines, which spontaneously decompose to form 

monoalkylnitrosamines and alkyldiazohydroxides (Magee and Barnes 1967, Mirvish 

1977, 1995). Formation of monoalkylnitrosamines followed by alkyldiazohydroxides is 

known as dealkylation. Alkyldiazohydroxides are capable of alkylating nucleophiles to 

form diazoalkanes, some of which can alkylate DNA bases especially at N-7 and O-6 of 

guanine and O-4 of thymine (Mirvish 1995). This induces mutations which are thought to 

initiate carcinogenesis. DNA damage due to alkylation of N-7 in guanine also generates 

reactive oxygen species such as superoxide (O2
-
) and hydrogen peroxide (H2O2). 

Consequences include increased lipid peroxidation, protein adduct formation, and pro-

inflammatory cytokine activation (Tong et al. 2010). 

 

Teratogenic Potential of Nitrates, Nitrites and Nitrosamines 

          Maternal exposure to nitrosatable compounds may be related to birth defects 

(WHO, Takeuchi 1984, Carozza et al. 1995, Croen et al. 2001, Cowdin et al. 2003, 

Brender et al. 2004, Manassaram et al. 2007). Associations have been found between 

occupational exposure in agricultural work and pesticides and the risk of anencephaly (a 

neural tube defect that occurs when the cephalic end of the neural tube fails to close, 

resulting in the absence of a major portion of the brain, skull, and scalp) and other 

adverse pregnancy outcomes such as spontaneous abortion and preterm delivery 

(Greenlee et al. 2004, Lacasana et al. 2006).   

          NDMA decreased the hatching of fertilized eggs in carp (Bieniarz et al. 1996). Ten 

mg/kg of methylnitrosourea induced limb and other defects in murine models (Koyama et 

al. 1970, Iannaccone et al. 1982). Exposure to N-methyl-N-nitrosourea also increased 
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gross malformations in mice (Bossert and Iannaccone, 1985) and N-methyl-N’-nitro-N-

nitrosoguanidine induced mid line defects in mice (Inouye and Murakami 1978). NDMA 

is lethal to or inhibits the growth of chick embryos (Maduagwu and Bassir 1979). A 

methyl derivative of NDMA, N-Methyl-N-(α-acetoxy)methyl-nitrosamine is a strong 

teratogen in a mouse limb bud culture system (Stahlmann et al. 1983). Takeuchi (1984) 

showed that exposure to N-nitroso compounds was associated with neural tube defects 

and cleft palate in mice. Certain nitrosatable drugs have been associated with an 

increased risk of craniosynostosis (premature fusion of the sutures of the skull). It has 

been suggested that ischaemia (restriction in blood supply) and reperfusion injury (tissue 

damage caused after a period of ischemia) leading to an increase in the rate of formation 

of NO may be the cause of dysmorphogenesis (Gardner et al. 1998). 

          A 2004 epidemiological study reported an association between intake of dietary 

nitrite and neural tube defects in humans (Brender et al. 2004). Croen showed that 

maternal exposure to nitrate-contaminated drinking water was associated with risk of 

neural tube defects (Croen et al. 2001). Exposure to nitrate in drinking water at levels 

greater than 45 mg/L (the maximum contaminant level) and in groundwater at 

concentrations below the maximum contaminant level has been associated with an 

increased risk for anencephaly (Croen 2001). Many other studies have indicated links 

between drinking water containing nitrate and neural tube defects (NTDs) (Ward et al. 

2005). The risk of NTDs from high levels of nitrates in food/water increases if mothers 

are exposed to nitrosatable drugs (Brender et al. 2004, Manassaram 2007).  

         Elevated concentrations of dietary nitrosamines have been significantly 

associated with gastroschisis (failure of the abdominal wall to close) (Torfs et al. 1998). 
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In fact, several studies have shown an increase in the rates of gastroschisis and other 

abdominal wall defects in the past two decades (Laughon et al. 2003, Alvarez et al. 2007, 

Collins et al. 2007, Vu et al. 2008). Annola et al. (2009) demonstrated that the human 

fetus can be exposed to NDMA from maternal blood circulation. 

 

Nitrosamine Dealkylation and Denitrosation 

          Research is limited regarding the denitrosation of nitrosamines and fate in 

environmental media and in the mammalian digestive tract. Nitrosamines can be reduced 

across the N-N bond or the N-O bond. Reduction across the N-N bond releases the parent 

amine and nitrous acid. The nitrous acid released can decompose to nitrogen dioxide, 

nitric oxide and water. It may also decompose to nitric acid, nitrous oxide and water (Eq. 

8). Near the site of NO production, NO reacts with dissolved oxygen to form N2O3 and 

N2O4 which react with water at neutral pH to form nitrite and nitrate, and with amines to 

form nitrosamines (Mirvish 1995). Reduction across the N-O bond yields a hydrazine 

which can be further reduced to the parent amine and ammonia (Eq. 9). Hydrazine 

formation may be a pathway for bioactivation as it is a highly reactive base and reducing 

agent.  
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          Metabolism of nitrosamines includes dealkylation and denitrosation. Denitrosation 

in the endoplasmic reticulum may be a pathway of detoxification (Lee 1996, Williams 

2004). There are two denitrosation mechanisms mediated by P450 isoenzymes. One 

electron reduction produces NO and the secondary amine which may be dealkylated. One 

electron abstraction liberates NO via an oxidative mechanism involving the formation of 

an aminium cation radical. An alkylidenaminoalkane is formed due to the loss of a proton 

which in turn hydrolyses to the primary amine and the corresponding aldehyde 

(Haussmann and Werringloer 1987, Appel et al. 1991). Studies with rat liver microsomes 

have demonstrated that denitrosation of NDMA accounts for the formation of 

methylamine and the production of NO via an oxidative mechanism, which is a precursor 

of nitrite (Keefer et al. 1987, Haussmann 1987). Although denitrosation is a possible 

mechanism of detoxification of the nitrosamine, toxic effects due to NO and its 

conversion to nitrite and nitrate (due to intermediate formation of the NO2 radical) are 

possible (Appel et al. 1991).  

          Denitrosation can increase NO and can lead to cell injury (Lee 1996, Williams 

2004). The liberated NO also may result in formation of nitrosamines via nitrosation. 

Hiramoto (2002) demonstrated that on contact with reactive oxygen species (ROS), N-

nitrosamines decomposed, with release of NO. Nitrosamine metabolism may result in the 

formation of ROS, including hydrogen peroxide (H2O2), superoxide anion (O2
-
), and 
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hydroxyl radicals (OH
•
). These ROS may cause oxidative stress and possible induction of 

hepatocellular necrosis, carcinogenesis, tumor formation and other cell damage (Farombi 

et al. 2009).  

 

Nitric oxide, Peroxynitrite and Nitrotyrosine 

          Nitric oxide (NO) is an important biological messenger that mediates critical 

physiological processes, including gene regulation, immune regulation, apoptosis, 

neurotransmission and vascular smooth muscle cell relaxation (Stamler et al. 1992, 

Tiboni and Clementini 2004). NO synthesis via oxidation of L-arginine involves unusual 

chemistry that has uncovered novel aspects of eukaryotic enzymology. L-arginine 

synthesizes NO by the enzyme nitric oxide synthase (NOS) (Stamler et al. 1992, Tiboni 

and Clementini 2004). Of the three isoforms of NOS, the constitutive isoforms nNOS 

(neuronal NOS) and eNOS (endothelial NOS) produce small amounts of NO while iNOS 

(inducible NOS) produces much larger amounts of NO (Dijkstra et al. 1998). The 

biological activity of NO is due to its direct actions on the enzyme guanylyl cyclase. The 

activation of guanylyl cyclase by low concentrations of NO is the major pathway of NO 

signaling that is involved in the regulation of many physiological functions such as 

neurotransmission and vascular smooth muscle relaxation (Moncada et al. 1991).  

          Studies show that a change in NO can alter NO
-
 mediated intracellular signaling 

which can adversely affect embryonic and fetal development (Fantel and Person 2002, 

Trapp et al. 2006). Excessive or inadequate NO can lead to reproductive and 

developmental failure (Tiboni and Clementini 2004). Inhibition of NO may lead to limb 
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defects (Tiboni and Clementini 2004). Abnormally high levels of NO are involved in the 

hypotension associated with endotoxic shock (Kilbourn and Belloni 1990) and 

inflammatory response-induced tissue injury (Mulligan et al. 1991). A recent study by 

Alexander et al. (2007) demonstrated that changes in NO levels resulted in morphological 

defects of the heart, neural tube and eyes in chick embryos. While NO itself can be 

cytotoxic, it may also exert adverse effects via production of other oxidizing agents 

(Dijkstra et al. 1998).          

          Peroxynitrite (ONOO
-
) is produced by the reaction of NO with superoxide radical 

(O2
•
) which occurs at a high rate (Kaur 1994). Peroxynitrite is a potent oxidizing agent 

that has been implicated in various pathological conditions. The adverse effects of 

ONOO
- 
include tissue damage by lipid peroxidation and DNA strand breaks leading to 

apoptosis and oxidation of protein sulfydryl groups (Dijkstra et al. 1998). The half-life of 

ONOO
-
 in vivo is quite short which is why it is usually measured in terms of the 

formation of the comparatively more stable nitrotyrosine (Takizawa et al. 1999). 

Peroxynitrite can decompose to products that nitrate aromatic amino acids, which can be 

markers of NO
-
 dependent oxidative damage in vivo (Kaur 1994). One of these markers is 

3-nitrotyrosine. Measuring 3-nitrotyrosine may be a useful way to provide evidence of 

NO
-
 mediated pathology as it is indicative of a more intense oxidative stress (Kaur 1994, 

Pacher et al. 2007). 

          Nitrotyrosine is produced when ONOO
- 
reacts with tyrosine (i.e. it induces 

nitration of tyrosine) or to proteins containing tyrosine residues (Halliwell et al. 1997, 

Gal et al. 1997). Tyrosine nitration involves addition of a –NO2 group near the –OH 

group on the tyrosine aromatic ring. For tyrosine nitration to occur, a hydrogen atom is 
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abstracted from tyrosine to form a tyrosyl radical. The tyrosyl radical then rapidly reacts 

with nitrogen dioxide to form 3-nitrotyrosine (Pacher et al. 2007). This nitration of 

tyrosine residues can subsequently result in the loss of protein structure, function and 

activity, which may compromise cell signal transduction, alter cytoskeletal organization 

and bring about a change in the catalytic activity of enzymes. This is why tyrosine 

nitration is considered a vital aspect of peroxynitrite-mediated cytotoxicity (Pacher et al. 

2007).  

          Nitrotyrosine levels are elevated in many pathological conditions where 

inflammation is observed. Nitrotyrosine is also elevated in the plasma protein of people 

with chronic renal failure, atheroschelrotic plaque, and ischemia-reperfusion injury. High 

nitrotyrosine levels are also observed in people with diseases that have a high oxidative 

stress burden such as diabetes (Takizawa et al. 1999, Nakazawa et al. 2000, Mohiuddin et 

al. 2006). Elevated nitrotyrosine concentrations have been found in malformed murine 

embryos (Trapp et al. 2006).   

 

Use of chicken egg and embryo model systems to assess bioavailability and potential 

teratogenicity 

          Health risks do not always correlate with the total amount of toxicant in an 

environmental matrix or a biological system. While all of the nitrosamine that is present 

may be considered bioaccessible, assessment of potential impacts requires a 

determination of bioavailability. Bioavailability is the rate and extent to which an active 

agent is absorbed and becomes available at the site of action. The bioaccessible fraction 
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is considered to represent the maximum amount of contaminant that is available for 

intestinal absorption. Bioaccessible fractions of nitrosamines may be absorbed and 

transferred into the blood (or lymph) stream (Oomen et al. 2002) and bioavailability 

depends, in part, on the route of exposure (Caussy 2003, Harmsen 2007).  

          Partitioning between liquid and solid phases, membrane penetration, entry in the 

organs of the host, and subsequent biochemical effects determine nitrosamine toxicity. 

The partitioning behavior of nitrosamines can be studied using model systems. Aside 

from serving as a model of embryological development, chicken eggs can be used to 

study the transfer of nitrosamines among biological compartments.  

          In chicken eggs, the yolk is centered in the albumin or egg white and is surrounded 

by the vitelline membrane (Fig.1). The egg white (pH 7.9-8.0) makes up 60% of the total 

egg weight and is comprised of the proteins ovomucin, globulins, conalbumin, 

ovalbumin, lysozyme, ovotransferrin and ovomucoid (Palmer 1944, Mine 2007). Water is 

the major constituent of egg white (88%) while proteins account for 11%. Polar amino 

acids alternate along the peptide chain in egg white. Egg yolk contains nonpolar 

triacylglycerols and polar phospholipids. In the yolk (pH 5.9-6.0), polyedric droplets are 

surrounded by a membrane in which high density lipoprotein granules and low density 

lipoprotein micelles are held in the aqueous phase. Egg yolk lipids include cholesterol, 

triglycerides, cerebrosides and phospholipids (Palmer 1944, Mine 2007). The vitelline 

membrane is composed of glycoprotein, carbohydrate and lipids (Ternes 2001). Thus the 

egg serves as an ideal model to study the transfer of the selected nitrosamines between 

the hydrophilic and lipophilic phases. 
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Fig.1. Structure and components of the chicken egg. 

The embryotoxic potential of a compound depends on factors such as dose, critical 

window of exposure and sensitivity of the developing morphogenetic system at the time 

of administration. Also important is the metabolic activity of the morphogenetic system 

that transforms a substance to active or inactive metabolites.  

          The chicken egg and developing embryo are useful models for the study of 

teratogenicity. Chicken embryos are widely used to study development and 

developmental abnormalities (Rosenquist et al. 2001, 2007, 2010, Lie et al. 2010). The 

chick embryo in ovo represents a morphogenetic system that includes epigenetic tissue 

interactions and it possesses a drug metabolizing capacity. The chick embryo provides an 

acceptable measure of embryotoxic potency (Jelinek et al. 1985). It is an inexpensive and 

rapid in vitro model system. Hamburger and Hamilton staged the chicken embryo in 

1951, describing the various features of the chicken that can be observed at specific times 

(mean of a range) after fertilization.  The chicken embryo reaches the blastoderm stage 

by the time the egg is laid.  Three h after fertilization the newly formed single cell divides 

and division continues until there are many cells grouped in a small, whitish spot visible 
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on the upper surface of the egg yolk. Within the first 24 h, the alimentary tract appears 

and the brain crease, nervous system and head fold begin to form. The heart starts to beat 

within 48 h (Hamburger and Hamilton 1951). The external form of chicken embryos at 

various stages of development can be studied beginning with the second or third day of 

incubation by carefully breaking open or windowing an egg each day (Matthew et al. 

2007). Defects such as neural tube abnormalities can also be detected by observing the 

developing embryo within 36 h of incubation (Madeleine et al. 2005). Thus the chick 

embryo model can provide a useful tool to screen for toxicity and developmental 

abnormalities.  
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MATERIALS AND METHODS 

Chemical Reagents and Eggs 

          All chemicals used in the experiments were analytical grade. Atrazine (98%) was 

obtained from Chem Service (West Chester, PA). NDMA and NMOR were purchased 

from Sigma-Aldrich (St. Louis, MO). NNAT was synthesized using the method of 

Mirvish et al. (1991). Fertilized chicken eggs were obtained from Charles River 

Laboratories International, Inc (Wilmington, MA).  

 

Nitrosamine Stability and Transfer among Biological Compartments 

          Unfertilized chicken eggs were used to characterize the stability and transfer of the 

selected nitrosamines.  To determine the stability of NDMA, NMOR and NNAT, the egg 

white, membrane and yolk were separated and weighed. One mL of deionized, distilled 

(DD) water containing 1 mg nitrosamine/mL was added to individual fractions of the egg. 

After incubation on a rotary shaker at room temperature (ca. 25 °C) for different time 

intervals (4, 6, 10, 16 and 24 h), the yolk, egg white and membrane fractions were 

separated and weighed. Using methodology similar to the EPA SW846 method for 

nitroaromatics and nitramines, nitrosamines were extracted from each egg fraction. In 

this procedure, acetonitrile was added to each fraction and the samples were placed on 

the shaker for 16 h. The supernatant was centrifuged, filtered and analyzed by HPLC 

(Shimadzu, Kyoto, Japan), using a 250 × 4.6 mm Keystone NA column (Thermo 

Hypersil-Keystone, Bellefonte, PA).  

    To characterize the transfer of the selected nitrosamines between the biological 

compartments, NDMA, NMOR and NNAT were added to the air cell, via a window, and 
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the treated eggs were placed on a rotary shaker at room temperature for varying time 

intervals (1, 4, 6, 10, 16, 24, 48, 72 and 120 h). After incubation and subsequent 

separation of the fractions, the same method of extraction, detection and quantification 

was used to determine the amount of nitrosamine in each fraction of the egg.  

    To determine nitrosamine transfer within the egg, its distribution between just two 

fractions was studied. To determine the distribution between the egg white and 

membrane, the yolk was removed and the nitrosamine was added to the egg white-

membrane matrix. For the distribution between membrane and yolk, the egg white was 

removed after which the nitrosamine was added. To determine the distribution between 

egg white and yolk, the nitrosamine was added to the egg. Treated eggs were placed on a 

rotary shaker at room temperature for varying time intervals (1, 4, 10 and 24 h), after 

which the amount in each fraction was determined. Extraction and analysis of the 

nitrosamine were carried out using the method described above. All values were 

corrected for recovery. 

 

Teratogenic Potential 

          Experiments were performed using a chick embryo model to determine dose-

response and evaluate the teratogenic potential of atrazine, NDMA, NMOR and NNAT. 

Pathogen-free fertilized chicken eggs were incubated in a forced air incubator at 38 °C 

and 65–75% relative humidity for 30 h (HH stage 9 – 10; Hamburger and Hamilton 

1951). The eggs were treated in the air cell at HH stage 9 -10, when there are 7 to 10 

somites (Hamburger and Hamilton 1951), by delivering 50 µL of DD water containing 

various concentrations of each of the selected nitrosamines using a micropipette. 
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Negative controls included fertilized eggs injected with DD water. The eggs were 

returned to the incubator after dosing. The embryos were harvested at days 3 (72 h, HH 

stage 20) and 5 (120 h, HH stage 27) and examined microscopically for soft tissue and 

skeletal abnormalities, including: neural tube defects (failure of the neural tube to close), 

craniofacial hypoplasia (tissue deficiency or agenesis, failure of an organ to develop 

during embryo development), microphthalmia (abnormally small eye/s), anophthalmia 

(absence of one or both eyes), ectopic heart (displacement of the heart outside the 

thoracic cavity), gastroschisis (intestines and other organs develop outside the fetal 

abdomenfailure of the abdominal wall to close), and caudal regression (lack of or the 

degenerative regression of the caudal aspect of the embryo leading to absence or lack of 

caudal stuctures). 

          Embryos were compared to the negative controls to identify developmental 

anomalies and assess mortality and abnormality rates. The amounts of nitrosamine in the 

50 µL injections and concentrations of the three nitrosamines used to treat fertilized 

chicken eggs are reported in Table III. 
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Table III. Dose and concentration of selected nitrosamines 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound Dose  

(µg in 50 µL DD 

water) 

Concentration 

(µg/g egg matrix (excluding egg shell)) 

NDMA 

 

12.5 

25.0 

50.0 

 

0.2 

0.5 

0.9  

 

 

 

 

 

 

25.0 

250.0 

1250.0 

2500.0 

5000.0 

7500.0 

 

  0.5  

  4.7 

  23.6  

  47.2 

  94.3 

  141.5 

 

 

            0.06 

           0.01 

           0.2 

           0.5 

           0.9 

  0.001 

 0.002 

 0.004 

  0.009 

  0.017 

NMOR 

NNAT 
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Table III continued  

 

 

 

  1.8  0.03 

                               3.6                                0.07 

                               5.5 0.10 

                               7.3 0.14 

                               14.5                                            0.27 

 

                               16.5                                            0.31 

 

 

 

Nitrotyrosine Determination 

          Measuring the stable 3-nitrotyrosine may be a useful way to provide evidence of 

NO-mediated pathology as it is indicative of intense oxidative stress. Nitrotyrosine was 

measured in tissue sonicates of embryos treated with DD water (negative controls), 

embryos treated with NNAT that appeared normal and embryos treated with NNAT that 

were malformed using the OxisResearch™ Bioxytech® Nitrotyrosine Enzyme 

Immunoassay (EIA) for Nitrotyrosine (Portland, OR). The EIA is a “sandwich” ELISA. 

The antigen that is captured by a solid phase monoclonal antibody is detected with a 

biotin labeled goat polyclonal anti-nitrotyrosine. A streptavidin peroxidase conjugate then 

Compound Dose  

(µg in 50 µL DD 

water) 

Concentration 

(µg/g egg matrix (excluding egg shell)) 

NNAT 

Atrazine 
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binds to the biotinylated antibody. A tetramethylbenzidine (TMB) substrate is added and 

the yellow product is measured at 450 nm. Nitrotyrosine concentrations (expressed in 

terms of nmol/µg Protein) were measured in tissue sonicates of five-day-old embryos 

treated with different doses of NNAT (0.06, 0.23, 0.46, 0.91 and 3.63 µg/50 µL) and 

deionized, distilled water (controls). Protein concentrations (expressed as µg/µL) were 

determined in control and treated embryos using the Bradford assay (Bradford 1976, 

Kruger 2002).   

 

HPLC Analyses  

          The nitrosamines (NDMA, NMOR and NNAT) and atrazine were identified and 

quantified by HPLC. HPLC analyses were carried out by injecting 10 µL of sample onto 

a 250 × 4.6 mm Keystone NA column (Thermo Hypersil-Keystone, Bellefonte, PA). 

HPLC mobile phases and operating conditions for the nitrosamine analyses are given in 

Table IV.  

 

TABLE IV. HPLC conditions for nitrosamine analyses 

Compound Wavelength 

(nm) 

Flow rate 

(mL/min) 

Mobile phase 

NDMA 220 1.0 70:30 Methanol:Water 

NMOR 248 1.0    50:50 Water:Acetonitrile 

NNAT 246 1.0    50:50 Water:Acetonitrile 

Atrazine 235 1.0            50:50 Water:Acetonitrile 
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Statistical Analyses 

Chi square tests (SAS, Cary, NC) were used to examine the relationship between 

NDMA, NMOR and NNAT treatment and the subsequent effect observed (i.e., 

embryo death and malformation). Differences in nitrotyrosine concentrations between 

and within groups (i.e., treated malformed, treated normal and controls) were 

determined by analysis of variance (ANOVA) in SAS (SAS Institute Inc., Cary, NC). 

Risks of mortality and malformations from exposure to the three nitrosamines (versus 

the non-exposed group i.e. controls) were determined by Relative Risk in SAS (SAS 

Institute Inc.). Relative risk is the risk of developing a particular condition (in this 

case malformations and mortality) for one group compared to another group:  

Relative risk =   P exposed / P non-exposed. Analysis of relative risk is used frequently in the 

statistical analysis of binary outcomes where the outcome of interest has relatively 

low probability. For all analyses, statistical significance was accepted at a p value = 

0.05. 
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 RESULTS AND DISCUSSION 

Stability and Transfer of Selected Nitrosamines 

To study the stability and transfer of nitrosamines, experiments were carried out using 

unfertilized chicken eggs. Results indicate that NDMA, NMOR and NNAT partition into 

the yolk where they are fairly stable and it is hypothesized that this may impact NO 

concentrations during embryo development in fertilized eggs. Standard deviations (n=3) 

were typically small for egg white and yolk measurements but large for membrane 

measurements due to the difficulty in separating this fraction.  

 

Stability of NDMA 

To determine the stability of NDMA in the various fractions of the egg, a known amount 

was added to each fraction and the amount remaining was determined over time.  

    The amounts of NDMA in the egg white and yolk were relatively constant over time 

(Fig. 2), indicating that NDMA is quite stable in the egg white and yolk. 
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Fig. 2. NDMA stability in egg white (albumin) (●) and yolk (○) in a 24-h experiment. 

Error bars indicate mean standard deviations; where absent bars fall within symbols. 

 

NDMA Transfer among Egg Fractions 

          NDMA amount and concentration within the egg white decreased during 120 h of 

incubation (Fig. 3). The NDMA content increased in the yolk, while it decreased in the 

membrane from 1 to 24 h and then increased to 72 h after which a decrease was observed 

(Fig. 3).  The decrease in NDMA in the egg white and concomitant increase in the yolk 

with time suggests that NDMA partitions from the egg white into the yolk. 
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Fig. 3. NDMA concentrations (µg/g) in the albumin (egg white), membrane and yolk, 

and total amount of NDMA (mg) in the albumin (egg white) (●), membrane (○) and yolk 

(▼) during 120 h of incubation. Error bars indicate mean standard deviations; where 

absent bars fall within symbols. 

 

    The total amount of NDMA in the egg decreased during 120 h of incubation 

(Table V). This suggests that NDMA gradually decomposes. The NDMA may be 

denitrosating to the parent compound (DMA) and/or is being transformed to other 

products (not determined).  
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TABLE V. Total NDMA in the egg during a 120-h experiment (1 mg added) 

Time  

(h) 

NDMA in Egg     

(mg) 

NDMA Lost or Unaccountable       

(    (mg)                    (%) 

 1 0.70 (0.009)
a
 0.30 30  

 4 0.73 (0.004) 0.27 27  

 6 0.68 (0.003) 0.32 32  

10 0.67 (0.010) 0.33 33  

24 0.66 (0.007) 0.34 34  

48 0.65 (0.009) 0.35 35  

72 0.65 (0.008) 0.34 34  

120 0.60 (0.013) 0.40 40 

    a
 Values in parenthesis indicate standard deviations (n = 3) 

 

Transfer between Fractions 

          On analyzing the distribution of NDMA between two layers, NDMA decreased in 

the egg white with time while the amount in the vitelline membrane increased (Table VI). 

This shows transfer of NDMA from the egg white to the membrane. In the membrane-

yolk matrix, the amount of NDMA in the membrane decreased with time while that in the 

yolk remained constant after an initial increase (Table VII), suggesting transfer from the 

membrane to the yolk. The distribution of NDMA between the egg white and yolk also 

indicated transfer from the egg white into the yolk over a period of time (Table VIII).  
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TABLE VI. NDMA in the membrane and egg white of an egg white-membrane 

matrix during a 24-h experiment (1 mg added) 

 Egg white Membrane Total 

Time  

 

(h) 

Amount  

 

(mg) 

Relative 

percent 

(%) 

Amount 

 

(mg) 

Relative 

percent 

(%) 

Amount  

 

(mg) 

Loss  

 

(%) 

 1 0.33 

(0.004)
a
 

60 0.22 

(0.008) 

40 0.55 45 

 4 0.30 

(0.021) 

52 0.28 

(0.005) 

48 0.58 42 

10 0.16 

(0.001) 

33 0.32 

(0.005) 

67 0.48 52 

24 0.11 

(0.024) 

24 0.35 

(0.003) 

76 0.46 54 

a
 Values in parenthesis indicate standard deviations (n = 3) 
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Table VII. NDMA in the membrane and yolk of a membrane-yolk matrix during a 

24-h experiment 

 Membrane Yolk Total 

Time Amount Relative 

Percent 

Amount Relative 

Percent 

Amount Loss 

(h) (mg) (%) (mg) (%) (mg) (%) 

  1 0.88 

(0.008)
a
 

69 0.39 (0.009) 31 1.27 23 

  4 0.60 

(0.006) 

60 0.40 (0.023) 40 1.00  0 

  6 0.44 

(0.017) 

47 0.49 (0.013) 53 0.93  7 

10 0.39 

(0.019) 

42 0.54 (0.006) 58 0.93  7 

16 0.34 

(0.011) 

43 0.45 (0.010) 57 0.79 21 

24 0.24 

(0.014) 

38 0.40 (0.011) 63 0.64 36 

a
 Values in parenthesis indicate standard deviations (n = 3) 
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Table VIII. NDMA in the egg white, membrane and yolk during a 24-h experiment 

          Egg white         Membrane               Yolk           Total 

Time Amount Relative  

Percent 

Amount Relative  

Percent 

Amount Relative  

Percent 

Amount  

 

Loss 

(h) (mg)  (%)  (mg) (%) (mg) (%) (mg) (%) 

  1 0.42 

(0.009)
a
 

  63 0.16 

(0.019) 

  23  0.10 

(0.005) 

  14  

0.68   32 

  4 0.33 

(0.013)
 
 

  31  0.27 

(0.001) 

  26 0.45 

(0.012) 

  43 

1.05   20 

  6 0.43 

(0.015) 

  43  0.31 

(0.014) 

  31 0.26 

(0.011) 

  26 

1.00     0 

10 0.34 

(0.014) 

  66 0.11 

(0.002) 

  22 0.07 

(0.106) 

  13 

0.52   48 

16 0.21  

(0.019) 

  15  0.27 

(0.107) 

  20 0.89 

(0.015) 

  65 

1.37   13 

24 0.32 

(0.104) 

  36 0.07 

(0.036) 

    8 0.51 

(0.039)
a
 

  57 

0.90   10 

a
 Values in parenthesis indicate standard deviations (n = 3) 
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Stability of NMOR 

To determine NMOR stability, a known amount of NMOR was added to individual 

fractions of the egg. The amount of NMOR in the egg white and yolk were constant for 

the duration of the experiment (Fig. 4), suggesting stability in both fractions.  

 

 

 

 

NMOR Transfer among Egg Fractions 

           The amount and concentration of NMOR in the egg white decreased with time. 

Membrane-associated NMOR increased up to 24 h after which it decreased. The amount 

and concentration of NMOR within the yolk steadily increased with time up to 120 h 

(Fig. 5).  

 

 

 

Fig. 4. NMOR in albumin (egg white) (●) and yolk (○) in a 24-h experiment. Error bars 

indicate mean standard deviations; where absent bars fall within symbols. 
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Fig. 5: NMOR concentrations (µg/g) in the albumin (egg white), membrane and yolk, 

and total NMOR (mg) in the albumin (egg white) (●), membrane (○) and yolk (▼) 

during 120 h of incubation. Error bars indicate mean standard deviations; where absent 

bars fall within symbols. 

           

          The total amount of NMOR in the egg remained constant for the first 24 h then 

decreased through the remainder of the 120-h experiment (Table IX). 
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TABLE IX. Total NMOR in the egg during a 120-h experiment (1 mg added) 

Time 

 

Amount of 

NMOR in egg 

NDMA Lost or Unaccountable 

 

(h) (mg) (mg) (%) 

 1 0.88 (0.004)
a
 0.12 12 

 4 0.81 (0.013) 0.19 19 

 6 0.84 (0.054) 0.16 16 

10 1.18 (0.014) 0.06   5 

24 1.15 (0.012) 0.10   8 

48 0.78 (0.019) 0.22 22 

72 0.79 (0.121) 0.21 21 

120 0.79 (0.118) 0.21 21 

a
 Values in parenthesis indicate standard deviations (n = 3) 

 

Transfer between Fractions 

          On analyzing the distribution of NMOR between the egg white and membrane 

(Table X), NMOR transferred from the egg white to the membrane. NMOR differed from 

NDMA as less NMOR transferred from the egg white to the membrane. NMOR 

transferred from the membrane to the yolk during the 24-h incubation period. The results 

suggest dynamic movement of NMOR between the membrane and yolk (Table XI). 

Transfer to the yolk also was observed in the egg white-yolk matrix (Table XII). 
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TABLE X. NMOR transfer from the egg white to the membrane during a 24-h 

experiment (1 mg added) 

 Egg white Membrane Total 

Time Amount Relative 

Percent 

Amount Relative 

Percent 

Amount Loss 

(h) (mg) (%) (mg) (%) (mg) (%) 

  1 0.49 (0.009)
a
 68 0.23 (0.029) 32 0.72 28 

  4 0.58 (0.053) 75 0.19 (0.009) 25 0.77 23 

  6 0.54 (0.009) 64 0.30 (0.001) 36 0.84 16 

10 0.61 (0.015) 75 0.20 (0.007) 25 0.81 19 

16 0.53 (0.035) 71 0.22 (0.071) 29 0.75 25 

24 0.52 (0.139) 71 0.22 (0.001) 30 0.74 26 

a
 Values in parenthesis indicate standard deviations (n = 3) 
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TABLE XI. NMOR transfer from the membrane to the yolk during a 24-h 

experiment (1 mg added) 

 Membrane Yolk Total 

Time Amount Relative 

Percent 

Amount Relative 

Percent 

Amount Loss 

(h) (mg) (%) (mg) (%) (mg) (%) 

  1 0.46 (0.017)
a
 53 0.41 (0.037) 47 0.87 13 

  4 0.41 (0.006) 49 0.43 (0.091) 51 0.84 16 

  6 0.29 (0.055) 26 0.82 (0.040) 74 1.11 14 

10 0.40 (0.012) 50 0.40 (0.011) 50 0.8 20 

16 0.56 (0.135) 65 0.30 (0.021) 35 0.86 14 

24 0.37 (0.002) 42 0.52 (0.012) 58 0.89 11 

a
 Values in parenthesis indicate standard deviations (n = 3) 
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Table XII. NMOR transfer from the egg white to the yolk during a 24-h experiment 

(1 mg added) 

 Egg white Membrane Yolk Total 

Time Amount Relative 

Percent 

Amount Relative 

Percent 

Amount Relative 

Percent 

Amount 

 

Loss 

(h) (mg) (%) (mg) (%) (mg) (%) (mg) (%) 

 1 0.49 

(0.001)
a
 

64 0.13 

(0.012) 

17 0.15 

(0.002) 

20 

0.77 23 

 4 0.56 

(0.013) 

78 0.07 

( 0.015) 

10 0.09 

(0.009) 

13 

0.72 28 

 6 0.53 

(0.012) 

62 0.12 

(0.151) 

14 0.21 

(0.006) 

24 

0.86 14 

10 0.58 

(0.009) 

74 0.08 

(0.004) 

10 0.12 

(0.010) 

15 

0.78 22 

24 0.57 

(0.003) 

76 0.10 

(0.041) 

13 0.08 

(0.070) 

11 

0.75 25 

a
 Values in parenthesis indicate standard deviations (n = 3) 
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Stability of NNAT 

To determine the stability of NNAT in the various fractions of the egg, a known amount 

was added to each fraction and the amount remaining was determined with time. The 

amounts of NNAT in the egg white and yolk decreased slightly during the first 10 h, but 

then remained relatively constant for at least 24 h (Fig. 6). 

 

 

Fig. 6. NNAT in albumin (egg white) (●) and yolk (○) in a 24-h experiment. Error bars 

indicate mean standard deviations; where absent bars fall within symbols. 

 

NNAT Transfer among Egg Fractions 

          In the egg white and membrane, the amount of NNAT reached a maximum at 4 h 

and then progressively decreased (Fig. 7). The amount of NNAT decreased in the yolk 

after 1 h. After 24 h no NNAT was detected in any fraction. The lack of change in 

atrazine concentrations (atrazine was an impurity in NNAT) indicated that NNAT was 

not decomposing to atrazine.  
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Fig. 7. NNAT concentrations (µg/g) in the albumin (egg white), membrane and yolk, and 

total NNAT (mg) in the albumin (egg white) (●), membrane (○) and yolk (▼) during 120 

h of incubation. Error bars indicate mean standard deviations; where absent bars fall 

within symbols. 

 

          The total amount of NNAT in the egg decreased during the 24 h experiment and 

none was detected after 24 h (Table XIII). 
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Table XIII. Total NNAT in the egg during a 24-h experiment (1 mg added) 

Time 

Amount of 

NNAT in egg 

Amount of NNAT lost/ 

unaccounted for 

(h) (mg) (mg) (%) 

  1 0.08 (0.007)
a
 0.92 92 

  4 0.08 (0.009) 0.92 92 

  6 0.01 (0.003) 0.99 99 

10 0.01 (0.001) 0.99 99 

16 0.01 (0.001) 0.99 99 

24 0.0 0 (0.001) 1.00 100 

a
 Values in parenthesis indicate standard deviations (n = 3) 

 

Transfer between Fractions 

          On analyzing the distribution of NNAT between two layers, the amount of NNAT 

in the egg white decreased while the amount in the membrane increased within the first 4 

h in the egg white-membrane matrix (Table IV). Within 4 h, the amounts of NNAT in the 

egg white and the membrane decreased and neither could be detected after 24 h. This 

shows that although NNAT transferred from the egg white into the membrane within the 

first few hours, NNAT degraded on longer incubation. In the membrane-yolk matrix, the 

amount of NNAT in the membrane fraction decreased with time while that in the yolk 

remained relatively constant after an initial increase (Table XV), suggesting transfer from 

the membrane to the yolk. The distribution of NNAT between the egg white and yolk 

also indicated increased transfer from the egg white into the yolk with time (Table XVI).  
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TABLE XIV. NNAT transfer from the egg white to the membrane in a 24-h 

experiment (1 mg added) 

 Egg white Membrane Total 

Time Amount Relative 

Percent 

Amount Relative 

Percent 

Amount Loss 

(h) (mg) (%) (mg) (%) (mg) (%) 

1 0.31 (0.003)
a
 84 0.06 (0.010) 16 0.37  63 

4 0.23 (0.075) 70 0.1 (0.011) 30 0.33  67 

10 0.02 (0.030) 50 0.02 (0.050) 50 0.04  96 

16 0.01 (0.001) - Not detected - -  99 

24 Not detected - Not detected - - 100 

a
 Values in parenthesis indicate standard deviations (n = 3) 
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Table XV.  NNAT transfer from the membrane to the yolk during a 24-h 

experiment (1 mg added) 

 Membrane Yolk Total 

Time Amount Relative 

Percent 

Amount Relative 

Percent 

Amount Loss 

(h) (mg) (%) (mg) (%) (mg) (%) 

 1 0.26 (0.002)
a
 87 0.04 (0.004) 13 0.30 70 

 4 0.13 (0.007) 48 0.14 (0.006) 52 0.27 73 

10 0.07 (0.070) 39 0.11 (0.051) 61 0.18 82 

16 0.13 (0.018) 42 0.18 (0.005) 58 0.31 69 

24 0.05 (0.011) 39 0.08 (0.008) 61 0.13 87 

a
 Values in parenthesis indicate standard deviations (n = 3) 

 

  



53 

 

Table  XVI. NNAT transfer from the egg white to the yolk during a 24-h experiment 

(1 mg added) 

 Egg white Membrane Yolk Total 

Time Amount Relative 

Percent 

Amount Relative 

Percent 

Amount Relative 

Percent 

Amount 

 

Loss 

(h) (mg) (%) (mg) (%) (mg) (%) (mg) (%) 

 1 0.06 

(0.003)
a
 

60 0.01 

(0.001) 

10 0.03 

(0.010) 

30 

0.1 90 

 4 0.03 

(0.001) 

50 0.01 

(0.070) 

17 0.02 

(0.027) 

33 

0.06 94 

10 0.02 

(0.012) 

40 0.01 

(0.053) 

20 0.02 

(0.004) 

40 

0.05 95 

16 0.02 

(0.070) 

40 0.01 

(0.006) 

20 0.02 

(0.021) 

40 

0.05 95 

 

24 

Not 

detected 

 

- 

0.01 

(0.016) 

33 

 

0.02 

(0.001) 

67 

 0.03 97 

a
 Values in parenthesis indicate standard deviations (n = 3) 

 

The distribution of the nitrosamines in unfertilized chicken eggs indicates that while most 

of the NDMA and NMOR remained in the egg white, NNAT rapidly moved into the 

yolk. The total amount of NNAT decreased with time (Fig. 8). 
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Fig. 8. Distribution of NDMA, NMOR and NNAT in the albumin (egg white) (♦), 

membrane (■) and yolk (▲) during a 24-h incubation. 

 

          A comparison among the three compounds shows that NDMA and NMOR are 

similar in their transfer behavior in that both have a greater affinity for the yolk fraction 

over the egg white fraction (Table XVII). Although the concentration of NNAT is very 

low compared to NDMA and NMOR, it readily moves into the yolk. The larger Yolk/Egg 

white distribution coefficient for NNAT indicates that it has a greater affinity for yolk 

(larger bioconcentration potential) than NDMA or NMOR. 
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Table  XVII. Maximum nitrosamine concentrations in the egg fractions 

Highest concentration NDMA NMOR NNAT 

Egg white (µmol/g) 0.24 (0.02)
a
 0.4 (0.02) 0.03 (0.02) 

Membrane (µmol/g) 0.22 (0.15) 0.24 (0.02) 0.002 (0.02) 

Yolk (µmol/g) 0.26 (0.005) 0.46 (0.02) 0.11(0.02) 

Yolk/Egg white  

(Distribution coefficient) 

1.08 1.15 3.67 

a
 Values in parenthesis indicate standard deviations (n = 3) 

 

The biological effects of nitrosamines depend in part on their stability and transfer 

behavior. The studies with unfertilized chicken eggs indicate that NDMA, NMOR and 

NNAT partition from the egg white into the yolk because temporal decreases in their 

amounts in the egg white and membrane were accompanied by concomitant increases in 

the yolk. All three compounds were also fairly stable in the yolk fraction. NNAT has a 

higher affinity than NDMA and NMOR for the more lipophilic yolk fraction, consistent 

with its octanol-water partition coefficient (Kow). This suggests that it may have a greater 

potential to bioconcentrate than NDMA and NMOR.  

          A loss in the total amount of the nitrosamines with time suggests that they may be 

decomposing or denitrosating. Haussmann and Werringloer (1987) and Appel et al. 

(1991) demonstrated two possible pathways by which nitrosamines denitrosate in 

biological media:  one electron reduction that produces NO and the secondary amine or 

one electron abstraction that liberates NO via an oxidative mechanism involving the 
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formation of a primary amine and the corresponding aldehyde. Because the parent 

compounds of the nitrosamines were not detected in this study, decomposition or 

denitrosation in the yolk likely occurred via an oxidative mechanism (i.e. one electron 

abstraction). This mechanism also liberates NO, which may subsequently affect 

development of chicken embryos.  

 

 Teratogenic Potential of Selected Nitrosamines 

From the studies with unfertilized eggs, it was determined that all three nitrosamines 

partition into the yolk where they are all fairly stable. Decreases in the total amounts of 

nitrosamines may be due to denitrosation or decomposition. It was hypothesized that the 

presence of the nitrosamine may alter NO levels and affect development. Thus, studies 

were conducted with fertilized chicken eggs to determine the impact of the three 

nitrosamines on the development of chicken embryos. The embryos were harvested at 

days 3 and 5 and examined microscopically for any soft tissue or skeletal abnormalities. 

          All three nitrosamines adversely affected development of the chicken embryos to 

varying degrees. Malformations were observed in embryos exposed to much lower 

concentrations of NNAT than NDMA or NMOR. 

  

Impact of NDMA on developing embryos 

Fertilized chicken eggs were treated with 12.5, 25.0, or 50.0 µg NDMA in 50 µL of DD 

water. Mortality and deformities were observed only in embryos treated with 25 µg and 

higher doses of NDMA (Fig 9). 
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Fig. 9. Impact of NDMA dose (in 50 µL DD water) on chicken embryo mortality (     ) 

and malformations (   ) 

 

          The most common defects observed on exposure to NDMA included gastroschisis 

(33%), heart defects, neural tube defects (22% each), microphthalmia (11%) and caudal 

regression (11%). 

          Analysis of the frequency of mortality or abnormalities resulting from NDMA 

exposure using chi square test (SAS, Cary, NC) indicated that NDMA does not 

significantly affect development in chicken embryos (p > 0.05). There was also no 

difference within treatments; i.e., between dosage groups of NDMA (p > 0.05) and thus 

there was no dose – response relationship. No significant association was observed 

between exposure to NDMA and embryo mortality observed in the embryos (p > 0.05). 

Analysis of the relative risk of mortality or abnormalities from exposure to NDMA is 

very low (RR < 1.0, 95% CI).  
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Impact of NMOR on developing embryos 

Fertilized chicken eggs were treated with 25, 250, 1250, 2500, 5000, and 7500 µg NMOR 

in 50µL DD water. Mortality and abnormalities were observed in embryos treated with 

high doses of NMOR (≥2500 µg) (Fig 10). 

 

Fig. 10. Impact of NMOR dose (in 50 µL DD water) on chicken embryo mortality (    ) 

and malformations (   ) 

 

          Gastroschisis was the most frequently occurring malformation (30%), followed by 

heart defects (~ 26%). Other defects observed include neural tube defects, 

microphthalmia and caudal regression (11, 11, and 22%, respectively).  

          A chi square test was used to assess relationships between exposure to varying 

doses of NMOR and the effects observed (mortality and malformations). On comparing 

overall exposure to NMOR and subsequent effects (mortality and deformity), NMOR had 
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a significant adverse effect on the developing embryos (p < 0.05). There also was a 

difference between doses of NMOR (p < 0.05) with respect to the effect they produce.  

          NMOR exposure (combining all doses) was associated with embryo death (p < 

0.05). There also was a significant dose – response relationship; larger doses of NMOR 

induced a high level of mortality in exposed chicken embryos. An analysis of relative risk 

indicated a greater risk of mortality in embryos treated with NMOR than in the controls 

(RR < 1.0, 95% CI).  

          NMOR exposure (combining all doses) was associated with malformations (p < 

0.05). However, there were no significant differences among the NMOR doses. Relative 

risk analysis indicated that the chance of the embryos being malformed is greater for 

embryos treated with NMOR than for controls (95% CI). A comparison (by chi square 

test) of each NMOR dose with the control shows that there is a significant association 

between exposure and malformations and mortality at doses ≥2500 µg.  

 

Impact of NNAT on developing embryos 

Fertilized chicken eggs were treated with 0.06, 0.01, 0.23, 0.46, 0.91, 1.82, 3.63, 5.50, 

7.25, and 14.50 µg NNAT in 50µL DD water. Adverse effects (mortality and 

malformations) were observed in embryos exposed to doses as low as 0.06 µg NNAT 

(Fig 11). NNAT exposure resulted in malformations at lower doses than NDMA or 

NMOR, therefore of the three nitrosamines, NNAT was the most potent embryotoxic 

compound. 
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Fig. 11. Impact of NNAT dose (in 50 µL DD water) on mortality (    ) and malformations 

(   ) 

 

          Heart defects (ectopic and abnormally looped heart) and gastroschisis (each 24%) 

were the most frequently observed defects observed following exposure to NNAT. Other 

defects include caudal regression (19%), craniofacial hypoplasia, microphthalmia (each 

11%) and neural tube defects (8%). Some of the embryos (4%) showed anophthalmia, 

which was not observed in embryos exposed to either NDMA and NMOR. Some of the 

defects are shown in Fig 12.    
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Fig. 12. Malformations in 5-day-old chicken embryos following exposure to NNAT. 1= 

neural tube defect, 2=craniofacial hypoplasia, 3=microphthalmia, 4=ectopic heart, 5= 

gastroschisis, 6=caudal regression 

 

          A chi square test was used to evaluate the impact of NNAT on mortality and 

malformations in chicken embryos. Exposure to NNAT adversely affected (mortality and 

malformation) chicken embryos (p < 0.05), although there is no clear dose-response 

relationship between various doses of NNAT and either lethality or observed 

abnormalities. 

          The relationship between mortality and NNAT exposure was evaluated using a chi 

square test and relative risk analysis. There was an association between NNAT exposure 

(all doses) and embryo mortality (p < 0.05) but there was no difference among the doses. 
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Relative risk analysis showed a greater chance of mortality in chicken embryos exposed 

to NNAT (the chance of control embryos remaining alive was 1.1 times greater than 

those exposed to NNAT (95% CI)).  

          Analysis of the impact of NNAT (all doses) on malformations showed a significant 

association (p < 0.05) between exposure to NNAT and subsequent deformity. However, 

there was no significant association between NNAT dose and defect. Assessment of 

relative risk indicates that the chance of an embryo developing normally is 1.3 times 

greater for controls than for those treated with NNAT (95% CI); i.e. the risk of 

malformations from exposure to NNAT is greater than if there is no exposure. A 

comparison (chi square test) of each NNAT dose with the control showed a significant 

association between exposure and defect at 0.46, 0.91, 3.63, 5.50, and 7.25 µg in 50 µL 

DD water.  

There is conflicting evidence about the adverse effects of atrazine. Atrazine may 

be an endocrine disrupter in some animal models (mainly amphibian) (Gammon et al. 

2005). Atrazine has been shown to affect development in rats and rabbits (delayed 

skeletal ossification) and the reproductive NOEL is 25 mg/kg body weight/d (Gammon et 

al. 2005). The present studies with chicken embryos showed that 16.5 µg atrazine was 

neither teratogenic nor lethal to chicken embryos.  

          Teratogenic potential and lethality varied among the three nitrosamines tested. 

NDMA, a known hepatotoxin and carcinogen, was neither lethal nor teratogenic in 

chicken embryos at the doses administered. Previous work with chicken embryos showed 

that NDMA is lethal or inhibits growth (Maduagwu and Bassir 1979). Inoculating White 

Leghorn chicken eggs with 2.25 mg/mL NDMA (similar to the methodology of the 
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present studies) on the tenth day of development resulted in 100% mortality. However, 

these effects were not observed in the present study. NMOR was teratogenic and lethal at 

relatively high doses (≥2500 µg). NNAT proved to be the most potent teratogen (lowest 

dose at which malformations were observed was 0.455 µg). There was no clear dose- 

response relationship with NNAT because it was teratogenic at 0.91 µg but not at the 

higher dose of 1.82 µg. It also induced defects at doses of 3.63 µg to 7.25 µg but not at 

the largest dose of 14.50 µg.  

Despite the lack of a clear dose-response relationship between NNAT and the 

observed teratogenic effects, this study shows that exposure to NNAT or the endogenous 

formation of NNAT could be potentially harmful. Research is limited regarding exposure 

to atrazine and NNAT and the potential for in vivo formation of NNAT from exposure to 

atrazine and nitrate. Atrazine, due to its weak basicity, nitrosates rapidly (200 times faster 

than dimethylamine at pH 2 (Mirvish et al. 1991) and thus exposure to atrazine poses a 

risk for endogenous formation of NNAT. High concentrations of atrazine (1500 µg/kg) 

have been detected in well water in Wisconsin, where some wells also have high nitrate 

levels (Meisner et al. 1993). This creates the potential for NNAT formation after 

ingestion. As observed in experiments with unfertilized eggs, NNAT has a high affinity 

for the lipophilic yolk fraction and rapidly moves into the yolk in a short period of time. 

NNAT showed a greater bioconcentration potential than NDMA and NMOR, which may 

be contributing to the occurrence of the biological effects observed in the experiments 

with fertilized eggs.  

          Several factors may explain the variability in observed effects of the nitrosamines 

on the chicken embryos, despite measures taken to control treatment conditions. Embryo 
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maturity at the time of treatment/exposure will vary due to small differences in 

temperature. There is variability in embryo robustness and genetic susceptibility to a 

particular compound or to certain developmental defects. Variability may result from the 

combined effects of multiple factors. These factors cannot be excluded with certainty as 

contributors to the variability in observed defects. Despite these drawbacks, the chicken 

embryo is a useful model for preliminary screening of compounds for teratogenicity. For 

a clearer, in-depth understanding of potential teratogenic effects of these and other 

environmentally relevant nitrosamines, further study with murine models are warranted 

as are epidemiological studies to evaluate associations between nitrosamine exposure and 

birth defects.  

 

Impact of NNAT on nitrotyrosine concentrations in chicken embryos 

Teratology studies with chicken embryos showed a significant association between 

exposure to NNAT and developmental abnormalities. Because transfer studies show 

NNAT bioconcentration in yolk and suggest loss with time may be due to denitrosation 

or nitrosamine decomposition, it was hypothesized that the defects observed in chicken 

embryos may be due to alterations in NO concentrations. As previously mentioned, 

measurement of the stable 3-nitrotyrosine is a useful way to provide evidence of NO-

dependent damage and may reflect one pathway by which NNAT exerts teratogenic 

effects. Nitrotyrosine was measured in tissue sonicates from five-day-old chicken 

embryos treated with DD water (controls), embryos exposed to NNAT that appeared 

normal, and embryos exposed to NNAT that were malformed.  
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          Malformed five-day-old embryos had higher concentrations of nitrotyrosine than 

normal-appearing embryos of the same treatment group (Fig. 13). Paired t-tests were used 

to compare nitrotyrosine values in normal and malformed embryos for each treatment. 

Malformed embryos treated with 0.06, 0.46, 0.91 and 3.63 µg NNAT had significantly 

higher concentrations of nitrotyrosine than treated embryos that appeared normal. 

 

Fig. 13. Nitrotyrosine concentrations in malformed 5-day-old embryos exposed to NNAT  

 

          One-way analysis of variance (ANOVA) showed that nitrotyrosine concentrations 

in normal-appearing embryos treated with 0.06, 0.46 and 3.63 µg NNAT were 

significantly smaller than those in controls (p < 0.05). Nitrotyrosine concentrations were 

greater (p < 0.05) in malformed embryos treated with 0.46 and 0.91 µg NNAT than in the 

controls. What comprises “normal” nitrotyrosine concentrations in developing chicken 
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embryos is uncertain. In our study we observed high levels of nitrotyrosine in the controls 

which could indicate stress induced by rapid mitotic divisions and subsequent cellular 

differentiation during embryogenesis and organogenesis. At higher doses of NNAT 

exposure, where nitrotyrosine concentrations were observed to be lower than controls, 

other mechanisms of denitrosation/dealkylation may be influencing NO and subsequently 

nitrotyrosine levels.  

         One-way ANOVA analysis also was used to compare nitrotyrosine concentrations 

in embryos (normal and malformed combined) receiving different doses of NNAT. 

Nitrotyrosine was greater (p < 0.05) in embryos treated with 0.91 µg NNAT than in 

embryos treated with 0.06 µg NNAT. Embryos treated with 0.23, 0.46 and 0.91 µg 

NNAT had significantly larger concentrations of nitrotyrosine than those treated with the 

largest dose of NNAT (3.63 µg). The large 3.63 µg dose may have induced a different 

deleterious response, resulting in overall lower nitrostyrosine concentrations. 

          The ANOVA showed that nitrotyrosine levels were significantly larger in treated 

malformed embryos than in treated, normal-appearing embryos. These experiments show 

that exposure to NNAT can affect nitrotyrosine concentrations in five-day-old chicken 

embryos. NO-mediated stress may reflect one pathway by which NNAT exerts 

teratogenic effects.  
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CONCLUSIONS AND RECOMMENDATIONS 

The main objectives of this study were to use unfertilized chicken eggs and developing 

chicken embryos to evaluate the stability, biological transfer and potential teratogenicity 

of three environmentally relevant nitrosamines: NDMA, NMOR and NNAT. 

Experiments using unfertilized chicken eggs showed that all three nitrosamines transfer 

from the egg white into the yolk where they are relatively stable. NNAT has a greater 

potential to bioconcentrate than NDMA and NMOR due to its higher affinity for the yolk 

fraction of the egg. A decrease in the total amounts of the three nitrosamines in the egg 

yolk suggests that they may be denitrosating (or otherwise decomposing) and releasing 

NO. Alterations in NO levels can affect intracellular signaling and adversely impact 

embryonic and fetal development. Studies with fertilized chicken eggs showed the three 

nitrosamines were detrimental to the development of chicken embryos to varying 

degrees. Observed abnormalities include neural tube defects, craniofacial hypoplasia, 

microphthalmia, anophthalmia, heart defects, gastroschisis, and caudal regression. 

Malformations were observed in embryos exposed to much lower concentrations of 

NNAT than NDMA or NMOR proving that NNAT was the most potent teratogen.  

Exposure to NNAT was associated with developmental abnormalities in chicken 

embryos. However, atrazine, the parent compound of NNAT, did not affect development. 

It was hypothesized that defects observed in chicken embryos may be due to alterations 

in NO concentrations resulting from exposure to NNAT. Subsequent test showed 

significantly higher levels of nitrotrotyrosine, a stable marker of NO and subsequent 

nitrosative stress, in NNAT-treated, five-day-old embryos with malformations than in 

treated, normal-appearing embryos.  
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          Considering the increasing prevalence of nitrates in ground and drinking water and 

the widespread use of atrazine, data are inadequate about potential exposure to NNAT. 

Epidemiological studies concerning potential exposure to NNAT and other nitrosamines 

are needed. Laboratory studies also need to be conducted to quantify the exposure and 

kinetics of a given dose of the nitrosamine absorbed by chicken/rodent embryos, which 

can then be used to estimate exposure levels in humans. Although much is known about 

the carcinogenic effects of nitrosamines, there is limited research regarding their 

teratogenic impacts and the mechanisms by which they induce abnormal development. 

More epidemiological studies are needed to assess the association between exposure to 

these and other nitrosamines and adverse fetal outcomes.  

NNAT may be teratogenic and nitrotyrosine, a marker of NO-dependent oxidative 

stress, may reflect one pathway through which nitrosamines could exert their teratogenic 

effects. Further studies are needed to understand this and other possible mechanisms. The 

activation of guanylyl cyclase by low concentrations of NO is the major pathway of NO 

signaling that is involved in the regulation of many physiological functions. An increase 

or decrease in the NO levels due to nitrosamine exposure could disrupt the normal 

activation of guanylyl cyclase. Levels of NO and guanylyl cyclase could be determined 

after nitrosamine exposure to evaluate this possible mechanism.  

Apoptosis is crucial during development (sculpting digits and extremities and 

governing the connection between central nervous system, distal structures and cardiac 

development). Therefore another focus for future investigations would be to extend areas 

of apoptosis leading to malformations. Depending on which organ is malformed, 

embryos (chicken or rodent) can be evaluated for disruption of apoptosis in the 
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primordial tissues that develop into the affected tissue. Cellular injury resulting from 

reactive nitrogen species is another parameter that can be studied.  

          The unfertilized chicken egg model provides a useful model to study the biological 

stability and transfer of chemical compounds. While the chicken embryo is a faster and 

relatively inexpensive model to screen compounds for potential teratogenicity, further 

studies with murine models are required to reach firm conclusions regarding the 

teratogenic behavior of nitrosamines. 
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APPENDIX A: STABILITY AND TRANSFER OF SELECTED NITROSAMINES 

Average weight of egg fractions 

Egg Fraction Average weight 

(g) 

Egg white 30.0 

Membrane 8.0 

Yolk 12.0 

Whole egg 

(without shell) 

50.0 

 

Percent recovery of nitrosamines from each fraction of egg 

Egg Fraction NDMA  

(%) 

NMOR  

(%) 

NNAT 

(%) 

Egg White 100 100 49 

Membrane 80 88 63 

Yolk 60 99 37 
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APPENDIX B: TERATOGENIC POTENTIAL OF SELECTED NITROSAMINES 

NDMA 

Number of eggs treated with NDMA 

Dose (µg) No. treated No. unfertilized No. dead No. malformed 

Controls 25 0 1 1 

12.5 10 2 0 0 

25.0 10 1 0 1 

50.0 20 1 2 5 
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SAS output  

                                          Case-Control Study of Malformation               

                                                      The FREQ Procedure 

 

Statistics for Table of Treatment by Outcome 

Statistic                                    DF       Value      Prob 

Chi-Square                                 6      6.6753    0.3519 

Chi square test shows that no statistically significant relationship exists between 

treatment with NDMA and subsequent adverse effects (i.e. mortality and deformity) 

in chicken embryos. 
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Case-Control Study of Malformation 

 

The FREQ Procedure 

 

Statistics for Table of trt by Outcome 

 

Estimates of the Relative Risk (Row1/Row2) 

 

    Type of Study                   Value        95% Confidence Limits 

Case-Control (Odds Ratio)    0.2576        0.0290        2.2874 

Cohort (Col1 Risk)                0.2899        0.0372        2.2604 

Cohort (Col2 Risk)                1.1253        0.9622        1.3162 (>1) 

 

Analysis of relative risk indicates that the risk of mortality or malformations in 

chicken embryos from exposure to NDMA is very low (95% CI) 
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NMOR 

Number of eggs treated with NMOR 

Dose 

(µg) 

No. 

treated 

No. 

unfertilized 

No. 

dead 

No. 

malformed 

Controls 35 3 1 1 

25.0 

250.0 

1250.0 

2500.0 

5000.0 

7500.0 

15 

15 

10 

30 

15 

15 

2 

2 

 

1 

 

4 

 

0 

 

1 

0 

   1 

 

   0 

 

   10 

 

   5 

 

   11 

3 

0 

 

1 

 

8 

 

4 

 

2 
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SAS output 

Case-Control Study of Malformation 

The FREQ Procedure 

 

Table of Treatment by Outcome 

 

                                         Treatment     Outcome 

 

 
 

Statistics for Table of Treatment by Outcome 

 

Statistic                    DF       Value      Prob 

Chi-Square               12     54.5979    <.0001 

Chi square test shows that NMOR has a statistically significant impact on 

development of chicken embryos (malformations and death). 

  



97 

 

 

 

Statistics for Table of Treatment by Outcome 

 

Statistic                         DF       Value      Prob 

Chi-Square                     6     15.0753    0.0197 

Chi square test shows that there is a statistically significant relationship between 

exposure to NMOR and subsequent malformations in chicken embryos.  

Case-Control Study of Malformation           

The FREQ Procedure 

 

Statistics for Table of trt by Outcome 

 

Estimates of the Relative Risk (Row1/Row2) 

 

         Type of Study                   Value       95% Confidence Limits 

Case-Control (Odds Ratio)      0.1129        0.0144        0.8850 

Cohort (Col1 Risk)                  0.1406        0.0196        1.0100 

Cohort (Col2 Risk)                  1.2455        1.0915        1.4213 

Analysis of relative risk indicates that risk of malformations in chicken embryos 

from exposure to NMOR is significantly high. 
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Statistics for Table of Treatment by Outcome 

 

 Statistic                     DF       Value      Prob 

 Chi-Square                 6     44.3219    <.0001 

Results from chi square test show that there is a statistically significant relationship 

between exposure to NMOR and subsequent mortality in chicken embryos. 

Case-Control Study of Malformation               

The FREQ Procedure 

 

Statistics for Table of trt by Outcome 

 

Estimates of the Relative Risk (Row1/Row2) 

 

Type of Study                          Value       95% Confidence Limits 

Case-Control (Odds Ratio)      0.0753        0.0098        0.5799 

Cohort (Col1 Risk)                  0.1042        0.0148        0.7356 

Cohort (Col2 Risk)                1.3839        1.1925        1.6061 

Analysis of relative risk indicates that risk of death in chicken embryos from 

exposure to NMOR is significantly high. 
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NNAT 

Number of eggs treated with NNAT 

Dose 

(µg) 

No. 

treated 

No. 

unfertilized 

No. 

dead 

No. 

malformed 

Controls 75 2  0         0 

0.06 

0.12 

0.23 

0.46 

0.91 

1.82 

3.63 

5.50 

7.25 

14.50 

30 

25 

25 

40 

25 

30 

40 

15 

25 

25 

4 

2 

 

0 

 

2                                    

 

2                

 

3 

 

0 

 

0 

 

2 

 

2 

 3 

    3 

 

    0 

 

    4 

 

    4 

 

    2 

 

    3 

 

    0 

 

    1 

 

    0  

        3 

        6 

 

        6 

 

        11 

 

        9 

 

        3 

 

        16 

 

        6 

 

        7 

 

        7 
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SAS output 

 

Case-Control Study of Malformation 

 

The FREQ Procedure 

 

Statistics for Table of Treatment by Outcome 

 

Statistic                         DF       Value      Prob 

Chi-Square                    20     50.2383    0.0002                                                                

Chi square test shows that NNAT has a statistically significant impact on 

development of chicken embryos (malformations and death).  
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Case-Control Study of Malformation 

 

The FREQ Procedure 

 

Statistics for Table of Treatment by Outcome 

 

Statistic                         DF       Value      Prob 

Chi-Square                    10     32.0366    0.0004 

Chi square test shows that there is a statistically significant relationship between 

exposure to NNAT and subsequent malformations in chicken embryos.  



102 

 

Case-Control Study of Malformation 

 

The FREQ Procedure 

 

Statistics for Table of trt by Outcome 

 

Estimates of the Relative Risk (Row1/Row2) 

 

Type of Study                       Value       95% Confidence Limits 

Cohort (Col2 Risk)             1.3109        1.2323        1.3946 

Analysis of relative risk indicates that risk of malformations in chicken embryos 

from exposure to NNAT is significantly high. 
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Case-Control Study of Malformation 

 

The FREQ Procedure 

 

Statistics for Table of Treatment by Outcome 

 

Statistic                       DF       Value      Prob 

Chi-Square                    10     20.1202    0.0281 

Chi square test shows that there is a statistically significant relationship between 

exposure to NNAT and subsequent mortality in chicken embryos. 

Case-Control Study of Malformation               

 

The FREQ Procedure 

 

Statistics for Table of trt by Outcome 

 

Estimates of the Relative Risk (Row1/Row2) 

 

Type of Study                     Value       95% Confidence Limits 

Cohort (Col2 Risk)             1.0840        1.0464        1.1231 

Analysis of relative risk indicates that risk of death in chicken embryos from 

exposure to NNAT is significantly high. 
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APPENDIX C:  IMPACT OF NNAT ON NITROTYROSINE 

CONCENTRATIONS IN CHICKEN EMBRYOS 

Nitrotyrosine concentrations in controls and embryos treated with different doses of 

NNAT 

No.  Treatment  Nitrotyrosine 

nmol/µg Protein 

     

1 Control 1 824.0 

2 Control 2 787.6 

3 Control 3 14292.4 

4 Control 4 699.5 

5 Control 5 474.9 

6 Control 6 450.8 

7 Control 7 438.9 

8 Control 8 318.7 

9 NNAT 0.06 µg  Normal (1) 281.0 

10 NNAT 0.06 µg  Normal (2) 293.2 

11 NNAT 0.06 µg  Normal (3) 256.9 

12 NNAT 0.06 µg  Normal (4) 402.7 

13 NNAT 0.06 µg  Malformed (1) 407.6 

14 NNAT 0.06 µg  Malformed (2) 384.7 

15 NNAT 0.06 µg  Malformed (3) 327.8 
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16 NNAT 0.06 µg  Malformed (4) 410.0 

17 NNAT 0.23 µg Normal (1) 501.2 

18 NNAT 0.23 µg Normal (2) 959.9 

19 NNAT 0.23 µg Normal (3) 568.7 

20 NNAT 0.23 µg Normal (4) 548.6 

21 NNAT 0.23 µg Malformed (1) 579.5 

22 NNAT 0.23 µg Malformed (2) 501.2 

23 NNAT 0.23 µg Malformed (3) 617.5 

24 NNAT 0.23 µg Malformed (4) 737.8 

25 NNAT 0.46 µg Normal (1) 311.8 

26 NNAT 0.46 µg Normal (2) 293.1 

27 NNAT 0.46 µg Normal (3) 182.1 

28 NNAT 0.46 µg Normal (4) 195.7 

29 NNAT 0.46 µg Normal (5) 358.2 

30 NNAT 0.46 µg Normal (6) 388.7 

31 NNAT 0.46 µg Normal (7) 287.3 

32 NNAT 0.46 µg Normal (8) 280.1 

33 NNAT 0.46 µg Malformed (1) 676.0 

34 NNAT 0.46 µg Malformed (2) 1697.0 

35 NNAT 0.46 µg Malformed (3) 1099.0 

36 NNAT 0.46 µg Malformed (4) 1105.1 

37 NNAT 0.46 µg Malformed (5) 380.8 

38 NNAT 0.46 µg Malformed (6) 326.5 
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39 NNAT 0.46 µg Malformed (7) 372.8 

40 NNAT 0.46 µg Malformed (8) 426.4 

41 NNAT 0.91 µg Normal (1) 338.9 

42 NNAT 0.91 µg Normal (2) 257.9 

43 NNAT 0.91 µg Normal (3) 241.4 

44 NNAT 0.91 µg Normal (4) 886.7 

45 NNAT 0.91 µg Malformed (1) 1146.4 

46 NNAT 0.91 µg Malformed (2) 864.7 

47 NNAT 0.91 µg Malformed (3) 758.4 

48 NNAT 0.91 µg Malformed (4) 861.3 

49 NNAT 3.63 µg Normal (1) 223.6 

50 NNAT 3.63 µg Normal (2) 227.7 

51 NNAT 3.63 µg Normal (3) 550.7 

52 NNAT 3.63 µg Normal (4) 193.2 

53 NNAT 3.63 µg Malformed (1) 372.9 

54 NNAT 3.63 µg Malformed (2) 306.9 

55 NNAT 3.63 µg Malformed (3) 257.0 

56 NNAT 3.63 µg Malformed (4) 466.7 
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SAS output  

Paired t-test to compare nitrotyrosine concentrations in NNAT treated malformed 

and NNAT treated normal embryos 

Dose: 0.06 µg: 

The TTEST Procedure 

Statistics                            

Difference                    N    Std Err 

Normal - Malformed    4    0.0755 

T-Tests 

Difference                       DF    t Value    Pr > |t| 

Normal - Malformed          3      -3.14      0.0515- Difference is statistically significant 

Dose: 0.23 µg: 

The TTEST Procedure 

Statistics                             

Difference                    N           Std Err 

Normal - Malformed    3            0.1 

 

T-Tests 

Difference                        DF    t Value    Pr > |t| 

Normal - Malformed          2      -3.32      0.08- Difference is not statistically significant 
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Dose: 0.46 µg: 

The TTEST Procedure 

Statistics                             

Difference                    N           Std Err 

Normal - Malformed    8            0.59 

T-Tests 

Difference                        DF    t Value    Pr > |t| 

Normal - Malformed          7      -2.54      0.0388- Difference is statistically significant 

Dose: 0.91 µg: 

The TTEST Procedure 

Statistics                       

Difference                    N           Std Err 

Normal - Malformed    3            0.27 

T-Tests 

Difference                        DF    t Value    Pr > |t| 

Normal - Malformed          2      -7.49      0.0173- Difference is statistically significant 

Dose: 3.63 µg: 

The TTEST Procedure 

Statistics                       

Difference                    N           Std Err 

Normal - Malformed    4            0.11 
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T-Tests 

Difference                        DF    t Value    Pr > |t| 

Normal - Malformed          3      -5.49      0.0119- Difference is statistically significant 

One way analysis of variance (ANOVA) to compare nitrotyrosine concentrations in 

NNAT treated and control embryos 

The SAS System 

The Mixed Procedure 

 

Number of Observations Read              55 

Number of Observations Used              55 

Number of Observations Not Used         0 

Differences of Least Squares Means 

Effect         Treatment                                   Treatment                Adj P 

Treatment   NNAT 0.06 Normal                  Control                    0.4877 

Treatment   NNAT 0.06 Malformed            Control                    0.8318 

Treatment   NNAT 0.23 Malformed            Control                    1.0000 

Treatment   NNAT 0.23 Normal                  Control                    1.0000 

Treatment   NNAT 0.46 Malformed            Control                    0.6430 

Treatment   NNAT 0.46 Normal                  Control                    0.1917 

Treatment   NNAT 0.91 Malformed            Control                    0.2082 

Treatment   NNAT 0.91 Normal                  Control                    0.9655 

Treatment   NNAT 3.63 Malformed            Control                    0.6921 
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Treatment   NNAT 3.63 Normal                  Control                    0.2468 

 

The adjusted P values indicate that nitrotyrosine concentrations were not 

statistically significantly different between NNAT treated (malformed and normal) 

five day old embryos and the controls.  

 

One way analysis of variance (ANOVA) to compare nitrotyrosine concentrations in 

embryos treated with various doses of NNAT 

The Mixed Procedure 

Differences of Least Squares Means 

Effect            Trt                               Trt                           Pr > |t 

 

Trt             NNAT 0.06               NNAT 0.23                  0.0829 

Trt             NNAT 0.06               NNAT 0.46                  0.1034 

Trt             NNAT 0.06               NNAT 0.91                  0.0125 

Trt             NNAT 0.06               NNAT 3.63                  0.6283 

Trt             NNAT 0.23               NNAT 0.46                  0.6562 

Trt             NNAT 0.23               NNAT 0.91                  0.4628 

Trt             NNAT 0.23               NNAT 3.63                  0.0351 

Trt             NNAT 0.46               NNAT 0.91                  0.1807 

Trt             NNAT 0.46               NNAT 3.63                  0.0390 

Trt             NNAT 0.91               NNAT 3.63                  0.0047 
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The p-values indicate that there was a significant difference in the nitrotyrosine 

concentrations of embryos treated with 0.06 µg NNAT and those treated with NNAT 

dose 0.91 µg. Similarly, there was a significant difference in the nitrotyrosine 

concentrations of embryos treated with 0.23 µg NNAT and those treated with the 

highest NNAT dose of 3.63 µg. There was also a significant difference in the 

nitrotyrosine concentrations of embryos treated with 0.46 µg and 0.91 µg NNAT and 

those treated with 3.63 µg NNAT. 
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One way analysis of variance (ANOVA) to compare nitrotyrosine concentrations in 

controls with embryos exposed to NNAT that were normal  

The SAS System 

The Mixed Procedure 

Differences of Least Squares Means 

 

Effect             Trt                     Trt                   Adj P 

Trt       NNAT 0.06              Control               0.0586 

Trt       NNAT 0.23              Control               0.9989 

Trt       NNAT 0.46              Control               0.0089 

Trt       NNAT 0.91              Control               0.5314  

Trt       NNAT 3.63              Control               0.0145 

 

The p-values indicate that the nitrotyrosine concentrations in normal – appearing 

embryos treated with 0.46µg and 3.63 µg NNAT were significantly different from 

nitrotyrosine in control embryos. 
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