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REDUCED HAMSTER USAGE AND STRESS IN PROPAGATING LEISHMANIA CHAGASI

PROMASTIGOTES USING CRYOPRESERVATION AND SAPHENOUS VEIN INOCULATION

Soi Meng Lei*, Amanda E. Ramer-Tait�, Rebecca R. Dahlin-Laborde`, Kathleen Mullin§, and Jeffrey K. Beetham*I

ABSTRACT: Leishmania chagasi, a causal agent of visceral leishmaniasis, requires passage through lab animals such as hamsters to
maintain its virulence. Hamster infection is typically accomplished via cardiac puncture or intraperitoneal injection, procedures
accompanied by risks of increased animal stress and death. The use of the hamster model also necessitates a regular supply of infected
animals, because L. chagasi parasites newly isolated from an infected hamster can be grown in culture for only several weeks before loss
of function/phenotype occurs. In an effort to decrease animal usage and animal stress, experiments were performed to assess a more
gentle inoculation procedure (saphenous vein inoculation) and the use of cryopreserved parasite cells for research experiments. Of 81
hamsters inoculated by the saphenous vein, 80 became infected as determined ante mortem, by display of clinical symptoms of
leishmaniasis (onset of symptoms at 105 ± 22 days post-inoculation), and postmortem by the presence of parasites within the spleen.
Splenic parasite load calculated for a subset (n 5 34) of infected hamsters was 124 to 26,177 Leishmania donovani infection units.
Cryopreserved, and never-stored, cells were equivalent in all properties evaluated, including developmental changes in morphology
during culture, culture growth rates, parasite resistance to serum-mediated lysis, and expression of developmentally regulated surface
proteins major surface protease and promastigote surface antigen.

Leishmania spp. (Trypanosomatidae) are protozoan parasites

that cause leishmaniasis, a disease group that in humans varies in

severity from self-healing cutaneous lesions to potentially fatal

visceral infections. The parasites have a heteroxenous life cycle,

existing as flagellated promastigotes within the alimentary system

of the sand fly vectors, or as ovoid, sessile amastigotes primarily

found within macrophages of the vertebrate hosts. Amastigotes

within a blood meal ingested by a sand fly enter the midgut and

within 24 hr transform into procyclic promastigotes. Over a

period of 1 to several weeks, promastigotes initially replicate and

generate a mixed population consisting of several morphologi-

cally defined developmental stages, and eventually generate a

population predominated by the metacyclic promastigote parasite

stage (Gossage et al., 2003). Studies of axenic culture, or fly-

derived, promastigotes representing a number of Leishmania

species have shown that metacyclic promastigotes are distinguish-

able from other promastigote forms by several criteria in addition

to morphology, i.e., metacyclic promastigotes are highly infec-

tious to vertebrates (Sacks and Perkins, 1984); resist complement-

mediated lysis (Pinto-da-Silva et al., 2002; Dahlin-Laborde et al.,

2005); display increased levels of surface glycoproteins including

major surface protease (MSP) (Yao et al., 2008) and promastigote

surface antigen (PSA) (Beetham et al., 2003); and exhibit modified

glycosylation states of lipophosphoglycan, the most abundant

surface macromolecule on promastigotes.

The process by which promastigotes mature into the metacyclic

promastigote stage within the sand fly is recapitulated in axenic

cultures initiated with parasites derived from infected animals

(Pearson and Steigbigel, 1980; Gossage et al., 2003); such cultures

progress from a logarithmic growth phase to a stationary phase in

which the parasites have properties of metacyclic promastigotes.

One limitation in the utility of such axenic cultures is that serial

passage results in stationary phase cells that lose some of the

properties of cells found in low passage stationary phase cultures.

Studies with Leishmania chagasi, one of the species causing

visceral leishmaniasis, have shown that promastigotes from

serially passaged cultures at stationary growth phase do not resist

complement lysis and do not exhibit upregulated abundance of

MSP and PSA (Wilson et al., 1989; Beetham et al., 2003). For this

reason, most experiments utilizing axenic promastigotes use

cultures passaged 5, or fewer, times. This necessitates maintaining

a constant supply of animal-derived parasites with which to

initiate axenic cultures.

Mice and hamsters are the 2 common animal models for

visceral leishmaniasis (Handman, 2001). Hamsters are frequently

the preferred model because they are more susceptible and display

symptoms such as hepatosplenomegaly during late-stage chronic

infection that are also seen in dog and human infections (Requena

et al., 2000). Regardless of the animal model used, inoculation is

routinely achieved using either cardiac puncture or intraperito-

neal injection (Stauber, 1958; Pearson and Steigbigel, 1980; Wyllie

and Fairlamb, 2006), procedures accompanied by modest risk of

complications, including cardiac arrest, cardiac tamponade,

hemorrhage in hamster for cardiac puncture, and very slow onset

of symptoms and frequent need for repeated inoculation after the

initial inoculation for intraperitoneal injection (Wyllie and Fair-

lamb, 2006; Moreno et al., 2007).

As with any animal model, ethical and economic concerns

encourage efforts aimed at minimizing animal usage and animal

stress. Consequently, experiments were undertaken that sought to

minimize these factors. One experimental aim was to establish the

equivalency between low passage cultures initiated using parasites

freshly isolated from hamsters and parasites recovered from

cryopreserved low passage promastigotes. The other aim was to

determine the utility of saphenous vein inoculation to inoculate

hamsters.

MATERIALS AND METHODS

Parasites

Infectious L. chagasi amastigotes (strain MHOM/BR/00/1669, original-
ly isolated in Brazil from a patient with visceral leishmaniasis) were
maintained in golden Syrian hamsters as described previously (Pearson
and Steigbigel, 1980). Axenic promastigote cultures in supplemented
modified minimum essential media (HOMEM) were initiated with
amastigotes isolated from hamster spleen and subsequently passaged as
described previously (Pearson and Steigbigel, 1980; Zarley et al., 1991;

Received 4 June 2009; revised 23 July 2009; accepted 7 August 2009.
*Departments of Veterinary Pathology and Entomology, Iowa State

University, Ames, Iowa 50011. e-mail: jbeetham@iastate.edu
{Department of Veterinary Microbiology and Preventive Medicine, Iowa

State University, Ames, Iowa 50011.
{Department of Experimental Medicine and Pathology, The Mayo

Clinic, Rochester, Minnesota 55902.
}Lab Animal Resources, Iowa State University, Ames, Iowa 50011.
ITo whom correspondence should be addressed.

DOI: 10.1645/GE-2192.1

J. Parasitol., 96(1), 2010, pp. 103–108

F American Society of Parasitologists 2010

103



Ramamoorthy et al., 1992; Dahlin-Laborde et al., 2005). In brief, axenic
promastigote culture densities increased throughout logarithmic culture
phase until reaching a maximum (stationary) phase concentration of 2–5
3 107 cells/ml at approximately day 5 of culture; cultures were passaged by
dilution to 1.0 3 106 cells/ml 48 hr after reaching stationary phase.
Parasite cultures used were serially passaged for ,5 wk.

Hamster inoculation

All animal work was approved by the Iowa State University
Institutional Animal and Care and Use Committee and was conducted
between 1999 and 2007. Outbred 10- to 16-wk-old male golden Syrian
hamsters weighing 88–145 g were anesthetized by intraperitoneal
administration of ketamine (120 mg/kg) with acepromazine (1.2 mg/
kg); if not fully anesthetized within 5 min, they were given up to an
additional dose of anesthesia. Immediately upon exhibiting full sedation,
triple antibiotic ointment (containing polymyxin B sulfate, bacitracin
zinc, and neomycin) was topically applied to corneas to maintain eye
moistness and prevent eye ulcers (because anesthetized hamsters do not
blink), and the hind legs were shaved to visualize the lateral saphenous
veins. Blotting 70% ethanol onto the shaved area increased vein
visibility. Moderate digital pressure applied on the upper thigh along
with slight tension stretching the skin caused blood retention and the
vein to stand out and be stabilized. A 1-ml tuberculin syringe fitted with
a 26-gauge, 2.5-cm-length needle, and containing 0.2 ml of inoculum (2–
10 3 107 stationary phase promastigotes in sterile phosphate-buffered
saline [PBS], pH 7.4), was inserted bevel-up into the vein; digital pressure
on the upper thigh was removed, and then the inoculum was delivered
over a 15- to 30-sec range. Inoculum was derived from low passage
cultures initiated either with parasites freshly isolated from infected
hamsters or with cryostored parasites. After removal of the needle and
gentle compression at the site of injection to stop any bleeding, animals
were observed to verify full and non-complicated recovery from the
anesthesia and procedure.

Spleen impression smears and L.D. units

Hamsters were killed within 7 days of exhibiting symptoms of advanced
leishmaniasis, i.e., ascites fluid buildup in abdominal cavity, dull coat,
rough (ruffled) coat, general slow activity, and loss of ear turgor. Animals
were then weighed, and the spleens were aseptically removed, weighed,
and processed for isolation of amastigotes as described previously
(Pearson and Steigbigel, 1980). Spleen impression smears were made by
lightly touching a small cut piece of spleen to a glass slide. Tissues on slides
were stained with HEMA 3 stain set (Thermo Fisher Scientific, Waltham,
Massachusetts) or Giemsa, and visualized (31,000, oil). For animals killed
from 2004 through the study’s end, the degree of infection was quantified
as Leishmania donovani infection units (L.D. units), which were calculated
as (amastigotes per nucleated host cell) 3 spleen weight (in milligrams)
(Stauber, 1958; Wilson et al., 1989).

Cryopreservation

Promastigotes from cultures at late logarithmic growth phase (1.0–1.5 3

107 cells/ml) were washed twice in sterile PBS and resuspended at 1 3 107

cells/ml in HOMEM containing 7.5% dimethyl sulfoxide (Thermo Fisher
Scientific). Aliquots (1 ml) within 2.0-ml cryogenic vials were placed into
room temperature Cryo 1C Freezing containers (Nalgene, Rochester, New
York), stored 12–24 hr at 280 C, and then stored in the vapor phase of
liquid nitrogen. Stored cells within vials were recovered by thawing
(immersion in 26 C water until fully thawed, approximately 1 min) and
then diluted in a 25-cm2 cell culture flask (Corning Life Sciences, Lowell,
Massachusetts) containing 2 ml of HOMEM. Cultures reached stationary
phase 2–5 days after initiation and were ready for serial passage and/or
expansion.

Human serum and complement assay

Human serum from multiple naı̈ve donors was pooled and stored at
280 C in ,1.0-ml aliquots. Complement assays were performed by
exposing 3.5 3 106 promastigotes in PBS (50 ml) to equal volume of 24%
human serum in PBS and then incubated at 37 C for 30 min as described
previously (Dahlin-Laborde et al., 2005).

Promastigote morphology study

Promastigotes within 10-ml culture samples were applied to glass slides
and then air-dried, stained with HEMA 3 stain set (Thermo Fisher
Scientific), visualized via light microscopy, and measured using NIS-
Elements D software (Nikon Instruments, Melville, New York). Cells were
categorized into 1 of 4 different promastigote stages (procyclic,
leptomonad, nectomonad, or metacyclic) based upon morphology as
described previously (Rogers et al., 2002; Gossage et al., 2003; Yao et al.,
2008). In brief, procyclic, leptomonad, and metacyclic promastigotes all
have similar body lengths (6.5–11.5 mm) but are individually distinguish-
able by simultaneous consideration of body width and of flagellum length
relative to body length. Procyclic and leptomonad forms both have width
.1.5 mm, but the procyclic flagella are shorter than body length, whereas
the leptomonad flagella are longer than body length. The widths of
metacyclic promastigotes are #1.5 mm, and the flagella are 1.5 to 2 times
the body length. The fourth group, nectomonad promastigotes, have
longer body lengths (.12 mm).

Protein detection

Promastigote culture (10 ml) was pelletted at 2,000 g for 10 min at 4 C,
resuspended in 0.1 M potassium phosphate buffer, pH 7.8, containing 1%
Triton X-100, and then lysed via 3 cycles of freeze/thaw using liquid
nitrogen and immersion in a 37 C water bath. Total cell lysates were
separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis
and electro-semi-dry-transferred to polyvinylidene fluoride membranes
using standard procedures. Gel loadings were equivalent to 0.5 3 106 and
3.0 3 106 parasites/lane for assessment of MSP and PSA abundance,
respectively. Nonfat powdered milk (5%) was used as the blocking agent.
Reagents used included sheep antisera to MSP (Wilson et al., 1989) diluted
1:10,000; rabbit antisera to PSA (Beetham et al., 2003) diluted 1:1,500;
horseradish peroxidase-conjugated anti-sheep antibody (Jackson Immu-
noResearch Laboratories, West Grove, Pennsylvania) diluted 1:30,000;
and horseradish peroxidase-conjugated anti-rabbit antibody (Pierce
Chemical, Rockford, Illinois) diluted 1:20,000. Antibody binding was
visualized via enzyme-linked chemiluminescence (SuperSignalH, Pierce
Chemical).

RESULTS

Comparison of freshly isolated and cryostored L.
chagasi promastigotes

Under appropriate conditions, in cultures seeded with L.

chagasi amastigote parasites newly isolated from infected

hamsters, the parasites differentiate into promastigotes that

divide (logarithmic phase) for several days before reaching a

non-divisional state (stationary phase). Associated with this

progression to stationary culture phase, promastigotes undergo

several changes in morphology and surface protein expression and

also become more resistant to lysis by the complement component

of human serum. Therefore, as indicators of the equivalency of

cryopreserved versus fresh, i.e., never stored (see Materials and

Methods) promastigotes, growth rates, complement resistance,

morphology, and surface MSP and PSA protein expression were

evaluated during parasite culture. For each analyses presented,

fresh parasites and cryopreserved parasites were derived from the

same initial culture; that is, they were derived from parasites

isolated at one time from a single infected hamster. The duration

of cryostorage ranged from 2 to 4 wk.

Parasites within cultures derived from fresh versus cryopre-

served cells had very similar growth rates and peak densities

(representative data shown as line graph in Fig. 1A, B). Similarly,

as cultures progressed from logarithmic to stationary phase, cells

became increasingly and equivalently resistant to complement/

serum lysis, reaching more than 100% survival relative to control

cells not incubated in serum. (Stationary culture survival in excess
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of 100% seen here was commonly obtained; this results from an

increased number of cells that died in the no-serum controls and

may be due to cells in serum being more heat tolerant than cells

not in serum.)

Enumeration of morphological forms within cultures, i.e.,

procyclic, leptomonad, nectomonad, and metacyclic forms, also

yielded very similar data for cultures derived from fresh versus

cryopreserved cells (Fig. 1C, D). The density of metacyclic stage

forms increases dramatically at days 4 to 5 before reaching a

plateau at approximately 40 3 106 cells/ml in culture. Based on

the total culture density being approximately 45 3 106 cells/ml in

stationary phase, metacyclic promastigotes in both cultures made

up approximately 90% of the whole population. Analysis of the

other parasite forms (procyclic, leptomonad, and nectomonad) is

subject to greater between-experiment variability because they are

intermediate parasite forms that increase, then decrease, tempo-

rally. Still, there seems to be great similarity to their expression

patterns in both cultures; e.g., leptomonad and nectomonad

promastigote densities increased modestly from day 3 to days 4

and 5 before decreasing. Examples of parasite forms found in day

3 and day 7 cultures are also provided in Figure 2. All 4

promastigote forms were seen in day 3 cultures.

The surface proteins PSA and MSP also exhibited similar

changes in expression during culture growth, with MSP isoforms

(63 and 58 kDa) and PSA increasing dramatically in cells from

stationary phase cultures (day 7 lanes in Fig. 3). This differential

expression of PSA (Beetham et al., 2003) and MSP (Roberts et al.,

1995; Yao et al., 2005) during logarithmic and stationary growth

phases have been characterized previously, as has been their

decreased expression in cells from cultures subjected to serial

passage (Brittingham et al., 2001; Beetham et al., 2003).

Assessment of parasite inoculation via saphenous vein

Inoculating L. chagasi parasites into hamsters via cardiac

puncture involves potential complications that may result in

FIGURE 1. Complement survival rates and developmental profiles are
equivalent between fresh and cryopreserved Leishmania chagasi promas-
tigotes in vitro. (A, B) Culture density and percent survival in normal
human serum were determined daily via enumeration on a hemocytom-
eter. (C, D) A minimum of 100 parasites was examined per day to
determine morphology. The density of each parasite form was determined
by multiplying the number of each parasite form counted per 100 total
parasites by the total culture density. Data are representative of 8
independent experiments.

FIGURE 2. Equivalent distributions of different morphological forms
between fresh and cryopreserved cultures in logarithmic or stationary
culture growth phase. Logarithmic (top) and stationary (bottom) cultures
were taken from day 3 and 7 cultures, respectively. Promastigote
developmental stages were determined in the fresh cells (left) and in cells
from cultures initiated with cryopreserved cells (right). Procyclic (P),
nectomonad (N), leptomonad (L), and metacyclic (M) promastigotes were
determined by cell size and shape and flagellum length. The promastigotes
that were dividing are labeled with an asterisk (*). Logarithmic cultures
contained a mixed population of all 4 populations. All promastigotes in
the bottom panels are metacyclic cells (31,000 magnification; bars 5
10 mm).

FIGURE 3. MSP and PSA protein levels are equivalent between fresh
and cryopreserved L. chagasi promastigotes. Whole parasite lysates were
generated from parasite cultures on days 3 and 7 and analyzed via Western
blotting. Equivalent parasite numbers were loaded in each lane. Separate
membranes were probed with antiserum against either MSP or PSA. Blots
are representative of 8 independent experiments.
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increased animal use or discomfort. Consequently, the utility of

an alternative method involving intravenous inoculation via the

saphenous vein was assessed. Inoculum was successfully admin-

istered to 78 of 81 hamsters on the first attempt at inoculation,

and the remaining 3 were successfully inoculated on a second

attempt performed 1 to 2 wk later. Almost 100% of the animals

inoculated with L. chagasi via the saphenous vein became infected

as assessed by clinical symptoms; 80 of 81 injected animals

exhibited ruffled fur, abdominal swelling due to hepatospleno-

megaly, and/or ascites buildup within approximately 15 wk (105

± 22.2 days) post-inoculation. One of the 81 inoculated hamsters

failed to develop parasitemia or clinical symptoms. A small

amount of bleeding sometimes occurred at the injection site, but

this stopped quickly upon application of mild pressure to the

point of bleeding.

Animals were killed within 7 days of onset of clinical

symptoms. Spleens removed from the 80 infected hamsters were

almost 1% of total weight (1.02 ± 0.43 g) relative to total body

weight (117 ± 30.0 g). By comparison, the spleen and total weight

of a single, naive, age-matched hamster were 0.16 and 106 g,

respectively.

The infected hamsters (n 5 34) killed in the later time period of

the study (see Materials and Methods) were subjected to more

extensive examination post mortem to visualize by microscopy

and to quantify by L.D. units the parasite burden within the

spleens. Parasites were easily discernable by light microscopy in

Giemsa-stained impression smears made from the spleens (Fig. 4).

A large number of intracellular amastigotes were present within

mononuclear phagocytes, and additional extracellular amasti-

gotes were also present in all smears (Fig. 4). In smears

representing 20 of the 34 spleens, some extracellular amastigotes

seemed to be enclosed by a membrane not associated with any

host nuclei (indicated by a circle in Fig. 4A); these amastigotes

possibly derive from phagocytes whose structural integrity is

disrupted during sample workup.

The splenic parasite load calculated for these 34 animals ranged

from 124 to 26,177 L.D. units, with a mean of 6,440 (Table I).

These values are well above the lower threshold of determination

of the assay, which is 1 L.D. (1 parasite per 1,000 nucleated host

cells, which is equivalent to 200 parasites/mg of organ tissue)

(Stauber, 1958). Interestingly, in a plot of L.D. units versus

hamster terminal weight, there is an apparent clustering of the

data points, with spleens of smaller animals tending to have larger

parasite loads than spleens of larger animals (Fig. 5). Based upon

that observation, the 34 hamsters were separated into 2 subgroups

composed of animals with terminal weights ,115 or $115 g

(Table I). Neither days of survival, spleen weight, nor weight at

inoculation varied significantly within these subgroups. However,

as was suggested by the data of Figure 5, L.D. units did vary

significantly (P , 0.001). The average L.D. unit was 5-fold higher

in the ,115-g group than the .115-g group.

Inocula for 18 of the 34 hamsters were from cell cultures

initiated with parasites that had been isolated from hamsters and

had never been cryostored, whereas inocula for the remaining 16

were from cultures initiated with cryostored parasites. No

differences were observed between these 2 groups either in the

infection characteristics in hamster, e.g., L.D., or in the properties

of parasites isolated from those infected hamsters, e.g., comple-

ment survival rates, developmental profiles, and surface protein

expression.

FIGURE 4. Amastigotes are visible in impression smears of spleens from infected hamsters. Splenic tissues from 2 different hamsters (A, B) were
touched to slides, and then Giemsa stained to allow visualization of amastigotes by microscopy (31,000 magnification). Examples of host cell nuclei and
amastigotes are indicated by (h) and arrows (R), respectively. Examples of membrane-bound amastigotes that are not associated with any host cell
nuclei are indicated by circles in A. Bar 5 10 mm.

FIGURE 5. Smaller hamsters correspond to higher parasite loads. The
degree of infection was quantified as L.D. units in hamsters sacrificed
within 7 days of exhibiting enlarged abdomen and ruffled fur.
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DISCUSSION

The use of cryopreserved promastigotes to establish parasite

cultures has the potential to reduce animal usage. In addition, use

of cryopreserved parasites can enable experiments that require

analyzing at different times same-passage parasites derived from a

single infected hamster. Previous studies showed that cryopre-

served amastigote forms of L. donovani produced the same level of

infection in juvenile hamsters as did freshly isolated amastigotes

(Wyllie and Fairlamb, 2006). Results presented here demonstrate

that L. chagasi promastigotes within cultures initiated either with

cryopreserved or fresh low passage promastigotes are equivalent

in their culture growth dynamics, including ordered appearance of

morphologically distinct promastigote stages, their resistance to

serum-mediated-lysis, and in their promastigote stage-specific

expression of surface proteins MSP and PSA.

Our experiments used cells cryopreserved up to 4 wk. We also

have used cells cryostored for 4 yr to successfully initiate

promastigotes cultures. Although these cultures initiated with

the longer stored cells have not been compared as rigorously to

non-stored cells as were the cells/cultures reported here, they were

equivalent in complement resistant characteristics (data not

shown).

Saphenous vein inoculation of parasites minimizes stress on

the hamster because the animal is sedated during the procedure.

The hamster data shown herein reflects an analysis of all L.

chagasi inoculated hamsters used by our group over more than

7 yr. Therefore, the duration of our usage of the procedure and

its efficacy in yielding infected hamsters indicates its utility in

maintaining this hamster model of infectious parasites. As

reported here, the time from inoculation to onset of severe

clinical symptoms requiring termination of the infection is 105

± 22.2 days; this is similar to values seen by others in studies of

hamsters inoculated with amastigotes of the closely related

Leishmania donovani species via intracardiac and intraperito-

neal routes, which were 117 ± 32 (n 5 9) and 139 ± 30 (n 5 11)

days, respectively (Wyllie and Fairlamb, 2006). The same study

demonstrated, similar to data presented here, a relatively large

variance in infection intensity among animals, with mean values

of 1.50 (± 0.76) and 1.90 (± 0.86) amastigotes (3 1010/g spleen)

in animals inoculated via intracardiac and intraperitoneal

routes, respectively. We speculate the large variance in infection

intensity seen in this and other studies is partially attributable

to variance in physical and immunological properties among

the hamsters that, in turn, are influenced by the outbred nature

of golden Syrian hamster colonies maintained by animal

providers.

Technically, the procedure does require training; a veterinarian

having extensive small animal experience conducts all inocula-

tions for our group. Another point is that saphenous vein

inoculation was facilitated by using smaller animals (,130 g),

relative to larger animals. The saphenous veins in these smaller

animals (approximately the same size as a mouse lateral tail vein)

were easier to locate and access (Fig. 6). Fatty tissue obscures the

vein in larger animals.

TABLE I. Mean values for hamsters.

No. of hamsters

Terminal wt ,115 g Terminal wt $115 g All hamsters

22 12 34

Days survived 101 (13)* 112 (37) 105 (24)

Inoculation wt (g) 116 (13) 119 (12) 117 (13)

Spleen wt (g) 0.88 87 0.94 (0.36) 0.90 (0.37)

Terminal wt (g) (0.38) (16) 131 (11) 103 (26)

Mean L.D. units 9,376{ (6,531) 1,058{ (1,206) 6,440 (6,626)

Min. L.D. units 1,142 . 124 . 124 .

Max. L.D. units 2,6177 . 3,688 . 26,177 .

* Values in parentheses are standard deviations.
{ Indicates significantly different at P , 0.0001 using a 2-sample independent t-test.

FIGURE 6. Saphenous vein inoculation. The hind leg of the anesthetized golden hamster was shaved, and then mild pressure was applied by
compression to the upper lateral thigh to expose the saphenous vein (black arrow in A) before insertion of a 26-gauge needle (B).
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