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Interest in highly sensitive magnetic sensors has been great due to their wide 

applications ranging from data storage to geomagnetic exploration.  To achieve better 

performance, magnetic sensors are usually fabricated with micrometer-sized or sub-

micrometer-sized multilayer structures.  The thickness of each layer can be as thin as a 

few angstroms.  The magnetic properties of these small and thin layers are quite different 

from those of the bulk.  As the size of the magnetic devices shrinks and the thickness of 

the ferromagnetic films decreases, the chance of having defects becomes higher.  Those 

defects may be formed during thin film deposition, annealing and the lithography process 

etc.  To have a better understanding the origin of those nanometer sized defects is 

important for improving sensitivity and signal-to-noise ratio of those magnetic sensors. 

In this thesis, a magnetic sensitivity mapping (MSM) system is developed to locate 

the inhomogeneous regions in the ferromagnetic layer of magnetic sensors. An ultra-

sensitive microcantilever torque magnetometer (MTM) system is developed to 

characterize the submicrometer-sized magnetic films and arrays.  The detailed magnetic 

microstructures of both the free layer and the pinned layer in magnetic tunneling 

junctions are studied by the analysis of the temperature and voltage dependence of the 

tunneling magnetoresistance data.  



We have correlated the microstructures to the sources of magnetic noise using the 

developed MSM system. In this study, a scanning nanometer-sized magnetic tip was used 

to generate a localized magnetic field and excite the free-layer magnetic moment at the 

air-bearing surface (ABS). By mapping out the magnetic noise as a function of position, 

the inhomogeneous regions in the ferromagnetic layer of the magnetic sensors that relate 

to magnetic instabilities inside the recording heads are identified.  

We studied the voltage and temperature dependence of resistance and 

magnetoresistance of two types of magnetic tunneling junctions (MTJs).  These two types 

of MTJ samples have different free layer structures but the same pinned structures and 

the same material for free and reference layers. The tunneling magnetoresistance ratio 

(TMR), defined as (RAP-RP)/RP, is 26% and 70% for type 1 and type 2, respectively.  

From the analysis of our results, we conclude that: (1) There are more magnetic 

inhomogeneous regions in the free magnetic layer of type 1 MTJ samples than in those of 

type 2 MTJ samples; (2) There are possible additional spin-glass-like states that occur at 

the interface between the magnetic layer and the insulating layer in the type 1 MTJ 

sample at low temperature. These results clearly indicate that the micro-magnetization 

orientation in the free layer and its interfaces plays an important role in determining the 

TMR ratio in these two types of MTJ samples. 

An ultra-sensitive MTM system is developed to characterize the magnetic 

nanostructures.  The MTM system can be operated in temperature from 10 K to 300 K 

and under vacuum of 5 x 10-8 torr.  We have also developed a new method to deposit 

magnetic patterns on cantilevers that allows us to have more flexibility in magnetic 

studies using MTM in the future. 
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Chapter 1  

Introduction 

 

Magnetic field sensors have had a significant impact over the past fifty years in many 

different technological areas.  The most important areas include homeland security, 

health care, information technology, geomagnetic exploration, and nanotechnology.   

Magnetic field sensing technology has been driven by the need for improved sensitivity, 

small size, low power, low cost and compatibility with electronic systems.  To achieve 

those requirements, magnetic sensors are usually fabricated with micrometer-sized or 

sub-micrometer sized multilayer structures.  The thickness of each layer can be as thin as 

a few angstroms.  

For example, the basic structure of a magnetic tunneling junction (MTJ) is a 

sandwiched structure consisting of two ferromagnetic layers (FM) separated by a thin 

insulating layer.  One of the ferromagnetic layers is called the ‘‘pinned layer’’ and is 

magnetically oriented in a fixed direction.  The other ferromagnetic layer is called the 

‘‘free’’ layer in which the magnetization rotates in response to an external magnetic field. 

The resistance of the junction depends on the relative orientation of magnetizations in the 

two ferromagnetic layers.  Also from Julliere model, the magnetoresistance (MR) ratio, 

defined as (RAP-RP)/RP, is higher for the material with higher spin polarization [1].  The 

first reported MTJ with large MR ratio (13.4%) at room temperature has layer structures 

as CoFe (80 Å)/Al2O3(16~18 Å)/Co (100~300Å) [2]. In these studies, with field higher 

than the coercivity of the both FM films, the magnetization of the two FM films is 

saturated and aligned with the applied filed.  To be used as sensor or memory, only the 
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free layer of the MTJ responds to the field, and the pinned layer is required to keep the 

magnetization unchanged during operation.  Then the coercivity of the pinned layer 

should be higher than that of free layer.  And the sensing field has to be restricted to 

being lower than a maximum value so the pinned layer would not be disturbed.  Also it is 

possible that small domains in the pinned layer can be reversed by repeated low field and 

can not return to their original states [3].    

  An improved pinning field is achieved by adding an adjacent antiferromagnetic 

(AFM) layer to the pinned layer through exchange coupling.  A desirable candidate for 

the AFM layer should have high exchange coupling strength, high blocking temperature, 

good corrosion resistance, low cost, and avoid high temperature treatment to establish the 

AFM phase to destroy the TMR effect due to the intermixing at the interface.   So far, 

various AFM materials, such as FeMn, NiO, IrMn, PdPtMn, TbCo, and CrPt etc., have 

been exploited as pinning layers [4-10].   By using the synthetic antiferromagnet (SAF) 

structure in addition to the antiferromagnet layer, the fringing field to the free layer 

caused by the pinned layer can be reduced due to the flux closure of the two 

ferromagnetic layers in the SAF [11-14].  

For the free layer, a small coercivity field is preferred to get higher sensitivity.  

Progressively thinner free layers continue to be required. However, the thickness on the 

order of the spin-up and spin-down conduction electron mean free paths (as an example, 

for Ni80Fe20  is about 50 Å and 6 Å at room temperature for spin-up and spin-down, 

respectively) causes a rapid reduction in magnetoresistance in giant magnetoresistance 

(GMR) sensors [15]. To obtain large magnetoresistance with high sensitivity of free 

layers, synthetic ferrimagnet (SF) free layers have been proposed by decreasing the 



  

 

3

effective free layer thickness while maintaining the large physical free layer thickness 

[16-17]. 

Fig. 1.1 shows typical layer structures of a magnetic tunneling junction sensor, 

80Ru-8CoFeB-15Al2O3-50CoFeB-9Ru-54FeCo-350CrMnPt (in Å).  The 

antiferromagnetic (AFM) material CrMnPt is at the top.  The blocking temperature of 250 

Å CrMnPt films is 320 °C after 230 °C 2 hr thermal anneal [18].  The FeCo/Ru/CoFeB 

forms SAF structure [14].  The 8 Å CoFeB is the free layer.  

 

Fig. 1.1 Layer structure of one magnetoresistance tunneling junction (MTJ).  

 

Magnetic sensors with smaller sized and thinner thickness of complicated layer 

structures are needed.  With the recording bit aerial density proposed as high as 1 

Tbit/inch2, the width of each bit will be as small as 25 nm.  Then the recording head with 

dimension on the same order is required.  Also smaller magnetic elements are demanded 

for the higher density of information storage, such as magnetic random access memory 

(MRAM). With the size of the magnetic devices shrinking and the thickness of the 

ferromagnetic films decreasing, the chance of having defects becomes higher.  These 
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defects may be formed during thin-film deposition, annealing and the lithography process 

etc.  So the magnetic properties of these small and thin layers are quite different from that 

of the bulk.  The sensor behavior depends strongly on the properties of these thin and 

small magnetic elements. To characterize and analysis nanometer sized defects is 

important for improving sensitivity and signal-to-noise ratio of such magnetic sensors.   

Many investigations have been performed to study the magnetic properties of 

very thin films [19-22] and in submicron sized patterned magnetic films [23-26].   The 

characterization methods include x-ray diffraction, vibrating sample magnetometer 

(VSM), alternating gradient force magnetometer (AGM), magnetic force microscopy 

(MFM), atomic force microscopy (AFM), magneto-optical Kerr effect (MOKE), etc.  

However, conventional magnetometers are designed for measuring specimens in 

millimeter dimension.  Therefore they have low signal-to-noise ratio (SNR) for small 

specimens.  To measure small specimens, it is necessary to measure a large amount of 

small samples to get enough signals.  Then the measurement result is the statistic average 

of all the samples.   

In this thesis, a new magnetic sensitivity mapping (MSM) system is developed to 

locate the inhomogeneous regions in the ferromagnetic layer of magnetic sensors. An 

ultra-sensitive microcantielver torque magnetometer (MTM) system is developed to 

characterize the submicrometer-sized magnetic films and arrays.  The detailed magnetic 

microstructures of free layer and pinned layer in magnetic tunneling junctions are studied 

by the analysis of the temperature and voltage dependence of the tunneling 

magnetoresistance data.  
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Chapter 2 

Experiment 

A magnetic sensitivity mapping (MSM) system is developed to characterize the 

magnetic inhomogeneity.  Also an ultra-high sensitivity microcantilever torque 

magnetometry (MTM) is developed, which can be operated under variable temperature 

from 10 K to 300 K and under ultrahigh vacuum to 10-8 torr.  In this chapter, the 

principle, techniques and instrumental setup are briefly described. 

2. 1 Magnetic sensitivity mapping (MSM) system 

2. 1. 1 MSM system setup 

Fig. 2.1 is a schematic graph of the experimental setup of the MSM system. The 

experimental setup is based on a scanning magnetic force microscope (MFM). During the 

measurement, the head under test is fixed on a specially designed stage of the scanning 

magnetic force microscope. The stage includes a circuit that connects the electronics to 

the recording head. A low-noise current source is used to apply a constant dc bias current 

to the recording heads. The voltage output signal from the testing recording head was 

picked up and amplified by a low noise preamplifier with a gain of 1000. This amplified 

signal was connected to a spectrum analyzer to measure the noise in the frequency range 

of interest. The noise data is processed by a computer and then converted back to analog 

signal through a D/A converter. The final signal is fed back into the input channel of the 

MFM. This allows us to plot the noise changes with respect to the tip position to get the 

magnetic noise mapping for the tested recording head. 
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Fig. 2.1 Schematic diagram of the magnetic sensitivity mapping (MSM) 

system. 

 

 

 

Fig. 2.2 Picture of the MSM system. 
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2. 1. 2 Magnetic tip 

A magnetic tip (Fig. 2.3) is used to apply a localized magnetic field to the giant 

magnetoresistance (GMR) or MTJ head. The high-resolution SEM micrograph of a 

typical tip is shown in Fig. 2.3 (b), which shows the details of a tip coated with CoPt 

particles on the apex of the tip. The phase map reconstructed from the hologram of the 

same tip is shown in Fig. 2.3 (c) [1]. The alternatively black and white lines are the 

magnetic flux lines that emerge from the MFM tip. The magnetic stray field that 

originates from the CoPt particles on the tip can be estimated from the analysis of the 

hologram data. The magnetic field generated by this tip at the MR sensor surface is about 

8 kA/m(100 Oe) [2].  

 

 

Fig. 2.3 (a) SEM image of the magnetic force microscopy (MFM) cantilever; (b) 

SEM picture of the very end of the tip coated with CoPt particles; and (c) the 

hologram of the same tip [1]. 
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2.1.3   Methodology 
 

The recording heads used in this investigation are standard PtMn-based bottom 

GMR recording heads and PtMn-based Al2O3 barrier MTJ recording heads provided by 

Seagate Technology. In either case, the magnetization direction of the reference layer is 

aligned perpendicular to the free layer for signal linearity (Fig. 2.4). The heads are 

stabilized by CoCrPt magnets on both sides of the sensor element [3]. The dc bias current 

is in the film plane (x axis) for GMR heads and perpendicular to the film plane (y axis) 

for MTJ heads. During the measurement, tapping mode with no lift height in the MFM 

software was selected. That means the tip end is very close to the air-bearing surface 

(ABS) of the MR heads. The cantilever oscillates at its resonance frequency (typically 

around 70 kHz). 

Since most noise associated with magnetic instability is typically in the low 

frequency range, all the noise investigated in this chapter was chosen in the frequency 

range of 20 kHz – 60 kHz. When no tip was scanning over the MR heads, the noise 

spectrum is measured in the specified frequency range by a spectrum analyzer, as shown 

in (Fig. 2.5 trace “A”). That noise is the integration of the system noise plus all the noise 

sources of the head that are not related to the magnetic field excitation, such as electronic 

noise in the circuit, Johnson-Nyquist noise etc. We set this noise as the noise floor of the 

measured head. When the tip scans over the stable part of the GMR head, the noise 

spectrum has no obvious difference from the noise floor. However, when the magnetic tip 

is scanning over the unstable part of the head, noise increases (Fig. 2.5 trace “B”). The 

noise difference between the tip scanning over the heads and when the tip is away from 

the head is the noise due to the magnetic excitation.  
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Fig. 2.4 Schematic drawing of the principle of the dynamic magnetic sensitivity 

mapping (MSM) system. The ABS plane is defined as the x–y plane. The direction of 

the magnetic moment of the free layer is defined as positive x direction. The 

magnetic moment of the reference layer is perpendicular to the free layer magnetic 

moment direction and aligned in the positive z direction. During measurement, the 

cantilever oscillates at its resonance frequency. The spacer layer is nonmagnetic 

material for GMR and insulating material for MTJ. 

 

The cantilever’s scanning rate should be selected to be slower than the spectrum 

analyzer’s sweep rate. Unmatched scan rate with analyzer’s sweep rate will cause image 

distortion. The spatial resolution of this noise mapping system is mainly determined by 

the magnetic tip dimension. The resolution of the MSM images can be comparable to the 

magnetic force microscope. 
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Fig. 2.5 Trace “A”: the noise spectra data of a GMR head when the tip scans over 

the stable part of the head or far away from the head; Trace “B”: the noise spectra 

data when the tip scans over the unstable part of the same GMR recording head. 

 

2. 2 Microcantilever torque magnetometry (MTM) 

2. 2. 1 MTM system setup 

The schematic diagram of the microcantilever torque magnetometry (MTM) system is 

shown in Fig. 2.6.  It mainly consists of one custom designed oscillator cantilever, a fiber 

optic interferometer, a lock-in amplifier, a solenoid coil, one function generator, 

temperature controller, and a magnet.  The sample to be measured is put on the cantilever 

and the cantilever is placed between the two poles of the electromagnet.   The magnetic 

sample is magnetized ( M ) by an applied dc field in the sample plane.  A small ac torque 

field is applied perpendicular to the sample plane (
→

tH , torque field) by the solenoid coil.  



  

 

15

(Fig. 2.8 shows the calibration between the dc current and the generated dc field.) Then a 

torque, 

tHM
→

×=τ  

is applied to the cantilever.  If the torque field oscillates at the resonance frequency of the 

cantilever, the amplitude of the oscillating cantilever is at the maximum.  Since the angle 

of oscillation is small, it is assumed that the oscillation amplitude is proportional to the 

torque amplitude. So with a known torque field, the magnetization of the sample is 

proportional to the magnetite of the oscillation.   

The distance change is detected by an optical interferometer.  The optical 

interferometer can transfer the amplitude change of the cantilever to an electrical voltage 

signal.  And the output voltage from the optical interferometer is connected to the lock-in 

amplifier to measure the amplitude of the cantilever at the resonance frequency. By 

plotting the amplitude versus the applied magnetic field in the sample plane, the 

hysteresis loop can be obtained.  

 



  

 

16

 

 

Fig. 2.6 Schematic diagram of the variable temperature and vacuum 

microcantilever torque magnetometer (MTM). 

 

Fig. 2.7 shows a photo of the MTM system.  The system allows MTM 

measurements from 10 K to 300 K under vacuum to 5 x 10-8 torr, and under a magnetic 

field ranging of ±677 kA/m (±8.5 kOe).  By reading the temperature with a CY7-SD7 

diode sensor, a Lakeshore332 temperature controller adjusts the power to the heater, 

which results in a temperature stability within ± 0.01 K in the range from 10 K to 400K.  

The magnetic field was measured by Lakeshore 450 gaussmeter.  The gaussmeter can 

resolve ±10-7 T (±0.001 G) at the range of ±0.03 T (±300Gauss).   
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Fig. 2.7 Pictures of (a) the variable temperature and vacuum MTM system, (b) 

sample probe and (c) enlarged sample holder. 
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Fig. 2.8 Calibration of torque field versus coil current. 

 

2. 2. 2 Optical interferometer 

The optical interferometer is a sensitive instrument to detect a displacement change 

[4-6].  The schematic diagram of a fiber optic interferometer is as shown in Fig. 2.9.  

Two optical interferometers are used in the study. The laser source of one optical 

interferometer is a laser diode (AFM interferometer 0022-2000) and the other one is HP 

8164 A.  The wavelength of the laser source is 1543.68 nm to 1547.83 nm for laser diode 

[7] and 1510 nm to 1640 nm for HP 8164A lightwave measurement system [8].  An 

optical isolator is added, so light can only comes out and can not go back to the laser 

source.  The output laser beam from the fiber is reflected by the surface of the sample 

(cantilever) and comes back into the fiber.  The reflected laser beam is then detected by a 

photoreceiver.  The photoreceiver, which translates the light signal to a voltage signal.   
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Fig. 2.9 Schematic diagram of the interferometer 

 
The photo receiver (New focus, Model 2034) can detect light with wavelengths 

between 800 nm and 2200 nm.  It has three ranges, low, medium, and high, which 

transimpedance gains 2x103, 105, and 2x106 V/A, respectively. The noise equivalent power (NEP), 

which is a measure of the weakest optical signal that the photoreceiver can detect, is 46 

pW/√Hz.  To compute the approximate output voltage for a given input optical power, 

the relationship Vout=Pin·R·G is used, where Pin is the input optical power in watts; R is 

the photo detector’s responsivity in A/W (Fig. 2.10), and G is the amplifier’s 

transimpedance gain in V/A. For example, the Model 2034 on the medium gain setting 

and with 10 μW of optical power at 1600 nm will have an output voltage of 

approximately (10 μW)·(1 A/W)·(105V/A) = 1 V.  If the 3 dB bandwidth is 80 kHz, the 

voltage corresponding to the minimum detectable signal is (46 pW/√Hz)*(80 kHz)*(1.1 

A/W)*(2*106) = 3.6*10-7 V. 
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Fig. 2.10 Typical responsivity of the model 2034 photodiode 

 

Simple two-component interference is used to model the interferometer response. The 

voltage from the signal photodiode is given by )]/4cos(1[0 λπdVvv −= ,where λ is the 

laser wavelength and the d is the fiber-to-cantilever spacing, and v0 is the midpoint 

voltage [9] .  The quantity V is the fringe visibility and given by max min

max min

v vV
v v

−
=

+
 and 

0 max min( ) / 2v v v= + , where vmax and vmin are the voltage corresponding to maximum 

constructive and destructive interference, respectively.  Then is the laser wavelength is 

driven to λ1 and gets a maximum output, then  

1

1

1

2

2/4
1)/4cos(

λ

πλπ
λπ

md

md
d

=

=
=

                              (2-1) 

where m is an integer.  If the next maximum peak occurs at some wavelength λ2, then  
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2)
2

1( λ+
=

md                                        (2-2) 

Combine equation (2-1) and (2-2), the fiber-to-cantilever spacing can be determined by  

)(2 21

21

λλ
λλ
−

=d . 

In Fig. 2.11, the fiber-to-cantilever spacing is the etching depth of the cantilever from the 

wafer, which is designed as 135 μm.  And from the experiment, the distance is 

m
nmnm

nmnmd μ137
)15661575(2

15751566
=

−×
×

= . 

 

 

Fig. 2.11 the dc output with changing laser wavelength at a fixed 

fiber-to-cantilever distance at (a) high sensitivity range and (b) 

medium sensitivity range of the photoreceiver. 

 

The most sensitive operating point occurs when d = λ/8, 3 λ/8, 5 λ/8, …   At quadrate, 

the response for small distance changes, Δd, and the small wavelength change Δλ, is 

given by 0 2

4 4 4sin ( )d d ddv v V π π π λ
λ λ λ

Δ Δ
= − . At (2 1) / 8d n λ= + , where n is any integer, 
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the equation becomes as 2
0

4 ( )v d dV
v

λπ
λ λ

Δ Δ Δ
= − .  As shown in Fig. 2.12, the voltage from 

the signal photodiode (dc voltage) and ac signal from the lock-in amplifier varies with 

changing laser wavelength.  As the wavelength decreases from 1547.83 nm, the dc and ac 

signals both increase. The ac signal reaches a maximum when the wavelength is 1546.3 

nm.  As the wavelength decreases more, the dc signal increases and the ac signal 

decreases.  By comparing the dc and ac signals, the ac signal reaches zero when the dc 

signal is at a maximum or minimum voltage; and ac signal gets maximum at the dc signal 

is the middle point of the maximum and the minimum output voltage.   

 

 

Fig. 2.12 The voltage of the photodetector output and ac voltage from 

lock-in amplifier as a function of wavelength of the laser source.    
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To get the maximum sensitivity, we can either change the fiber-cantilever spacing, or 

change the wavelength of the laser [10].  The wavelength of the laser can be adjusted by 

the temperature of the laser diode.  During the measurement, the laser wavelength is 

adjusted until the signal photodetector voltage v0=(vmax+vmin)/2.  Then to ensure that the 

interferometer can be calibrated within the maximum wavelength shift of the laser Δλ, 

the fiber-cantilever spacing d need to satisfy the condition of 2( ) / 2d λ λ λ λ≥ + Δ Δ .  The 

laser wavelength range of the laser diode in AFM interferometer 0022-2000 is from 

1543.68 nm to 1547.83 nm, and for the other system (HP 8164A) is from 1510nm to 

1640nm.  Then the minimum fiber-cantilever spacing is 137.5 μm and 19 μm. The 

maximum output voltage from the detector is 5 V, and the minimum output step is 

3.6*10-7. Then the minimum displacement can be detected by the interferometer is  

fm7m19
V5

V106.3 7

=×
×

=Δ
−

μd . 

 2.2.3  Microcantilever 

The microcantilever used in the microcantilever torque magnetometry (MTM) 

systems is fabricated from a double-sided polished <100>-oriented, single-crystal silicon 

wafer 75mm in diameter and 150 μm in thickness.  The fabrication process is done in 

National Institute of Standard and Technology (NIST) at Boulder, Colorado.  The 

detailed fabrication process of the microcantilever is shown in Fig. 2.13.  First a thin 

photoresist layer about 2 μm thick is coated on the wafer.  The photoresist is patterned by 

the UV light from the top.  After that, a deep RIE process is used to remove the Si 

substrate not covered with  photoresist to a depth of about 15 μm.  This process defines 

the cantilever.  Next, 0.5 μm thick Si3N4 is deposited on both sides of the wafer.  And the 

backside nitride is then patterned using both reactive ion etching (RIE) and deep RIE 
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(DRIE).  Then the DRIE is used to remove the Si in the backside about 130 μm at the 

position where will be the cantilever.  The cantilever release process is based on a KOH 

anisotropic etch (30 % by weight with 2-3% of isopropyl alcohol (IPA), and an oxygen 

bubbler at 75ºC).  Finally, the Si3N4 is removed by the 1% HF solution.   Fig. 2.14 shows 

some of cantilevers that fabricated by this process. 

 

 

Fig. 2.13 Schematic diagram of the fabrication process of cantilevers. 
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Fig. 2.14 (a) Photograph of the wafer and (b) (c) (d) cantilevers 

with different dimensions and shapes. 
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Chapter 3 

Locating magnetic noise sources in magnetic sensors 

 

In this chapter, we correlate the microstructure to the source of magnetic noise in 

giant magnetoresistance (GMR) and magnetic tunneling junction (MTJ) recording heads 

using our newly developed magnetic sensitivity mapping (MSM) system [1, 2]. A 

scanning nanometer-sized magnetic tip was used to generate a localized magnetic field 

and excite the free-layer magnetic moment at the air-bearing surface (ABS). By mapping 

out the magnetic noise as a function of position, the inhomogeneous regions in the 

ferromagnetic layer of the magnetic sensors that relate to magnetic instabilities inside the 

recording heads are identified. An understanding of those nanometer sized defects is 

important to design heads with better signal to noise ratio (SNR). 

 

3.1 Giant magnetoresistance junction 

GMR heads are current-in-plane devices composed of multilayer structures of 

magnetic and a very thin nonmagnetic metal layers (typically Cu) [3-4]. Currently the 

GMR heads have a spin-valve structure (Fig. 3.1) [5].  The magnetization of one 

ferromagnetic layer is pinned by exchange coupling with the adjacent antiferromagnetic 

layer.   The magnetization direction of this ferromagnetic layer cannot be changed by a 

small magnetic field (this layer is called the pinned layer).  While the other magnetic 

layer’s moment direction can be easily altered by a small magnetic field (this layer is 

called the free layer).  When the magnetization directions of the two ferromagnetic layers 

are parallel, the GMR has low resistance; otherwise, it has high resistance.  The origin of 
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the GMR can be qualitatively explained by the Mott model [6].  It is proposed that the 

up-spin and down-spin are two independent conducting channels.  Due to the asymmetry 

in the density of states at the Fermi level, the scattering is strong for electrons with spin 

antiparallel to the magnetization direction and weak for electrons with spin parallel to the 

magnetization direction.  In the case of parallel alignment of the magnetization direction 

of two ferromagnetic layers, the up-spin electrons are parallel to the magnetization 

direction and then pass through with less scattering, while the down-spin electrons scatter 

strongly within the ferromagnetic layers.  Since the two conduction channels are in 

parallel, the up-spin channel which has the low resistance, will dominate.  On the 

contrary, when the magnetization directions of the two ferromagnetic layers are 

antiparallel, both the up-spin and down-spin electrons are antiparallel to the 

magnetization direction of one of the ferromagnetic layers and are scattered strongly 

within that ferromagnetic layer.  That results in high resistance.  Therefore, the variation 

of the magnetization direction in the ferromagnetic layers will affect the scattering 

process, change the resistance, and then cause noise.  The factors can change the 

magnetization direction of the free layer could be thermal excitations, defects made 

during film deposition, interface diffusion, etc.   
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Fig. 3.1 (a) Layer structure of a GMR sensor and (b) Magnetoresistance for one 

GMR with layer structure as Si/NiFe/Cu/NiFe/FeMn/Ag as a function of H in the 

film plane at room temperature.  The field is applied parallel to the exchange 

anisotropy field created by FeMn (EA).  The current is perpendicular to this 

direction [5].  

 

3.2 Magnetic tunneling junction (MTJ) 

The MTJ sensor has a similar tri-layer structure as GMR (Fig. 3.2) [7].  The 

differences between the MTJ and GMR heads are that MTJ is a current-out-of-plane 

device and the nonmagnetic spacer layer is replaced by a thin oxide layer (1.0 nm or 

less). When the insulating barrier is very thin, electrons can tunnel through it.  The 

number of tunneling electrons is related to the relative orientation of the magnetization of 

the two ferromagnetic layers.  When the two ferromagnetic layers are magnetized parallel 

to each other, the resistance is low; when the magnetization directions of the two 

ferromagnetic layers are antiparallel, the resistance is high.   

This phenomenon was explained by a simple model proposed by Julliere [8].  It 

assumed the spin of electrons is conserved in the tunneling process.  When the electrons 
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originate from one ferromagnetic layer, they will be accepted by the unfilled states of the 

same spin of the second ferromagnetic layer.  If the two ferromagnetic layers have 

magnetization directions aligned parallel to each other, the minority (majority) spins 

tunnel to the minority (majority) states.  While if the two ferromagnetic layers are 

magnetized antiparallel, the majority (minority) spins of the first ferromagnetic layer will 

tunnel to the minority (majority) state of the second ferromagnetic layer.  Julliere also 

assumed that the conductance for a certain spin orientation is proportional to the product 

of the effective density of states of the two ferromagnetic electrodes.  Therefore the 

resistance for the parallel alignment is low and the resistance for the antiparallel 

alignment is high.   

 

 

 

Fig. 3.2 (a) Layer structure of a MTJ sensor and (b) Magnetoresistance for one MTJ 

with layer structure of CoFe/Al2O3/Co plotted as a function of H in the film plane at 

295 K [7]. 

With the improvement in thin film deposition and barrier oxidation, the TMR value 

increases.  The highest reported MR ratio for MTJ is about 70% using an Al2O3 barrier 
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layer [7] and 200% using MgO barrier layer [ 10-11] at room temperature.  Recently, 

MTJ using MgO barrier with rf-sputtered CoFeB electrodes completely crystallized by 

annealing at 400 °C have shown TMR ratio exceeding 350% [12, 13].  And by adding 

synthetic ferromagnetic pin layer annealed at 425 °C, TMR can get further increases to 

361% [14].  However, the TMR and SNR values are very sensitive to the microstructures 

caused during the head fabrication process.         

 

3.3 Magnetic noise 

In order to use GMR and TMR sensors as recording heads for even higher 

recording densities, higher MR as wells as higher signal-to-noise (SNR) ratio are very 

important.  Therefore, in order to realize the full potential of the GMR and TMR sensor, a 

detailed understanding of noise and magnetic stability characteristics of the sensor are 

essential for the design of high SNR heads.  

From the discussions of the layer structures of GMR and TMR heads, there are 

many mechanisms that can cause resistance change and then increase the noise in a 

submicron scale MR read heads. Some are magnetic in nature and some are purely 

electrical in nature. Examples of those mechanisms include Johnson-Nyquist thermal 

resistance noise, shot noise, random telegraph noise (both can be due to magnetic 

fluctuation or purely nonmagnetoresistive resistance fluctuations), 1/f noise, etc.  

Johnson-Nyquist noise, also called white noise, exists in all resistive devices [15].  

It is due to thermal fluctuations in the electron density within the resistor itself.  The 

noise is measured without applied external bias.  For GMR, the thermal smearing of the 

distribution function of electrons near the Fermi-level will cause resistance change and 
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result in noise.  And for MTJ, for those electrons with energy close to the barrier height, 

the thermal energy may assist these electrons tunnel through the barrier.  This random 

transition of electrons between two electrodes through tunnel barrier results in current 

fluctuation.  Usually this type of current fluctuation is small.  By using the fluctuation-

dissipation theorem (FDT) to thermal equilibrium resistance fluctuations (without 

external bias voltage), the Johnson-Nyquist noise can be expressed as  

                                         fkTRrmsVnoise Δ= 4)(  

where the k is Boltzmann’s constant (1.38 x 10-23 J/K), R is the total tunnel resistance in 

ohms, T is the absolute temperature in Kelvin, and Δf is the bandwidth in Hz.  

Shot noise is due to the finite nature of the charge carriers.  There is always some 

non-uniformity in the electron flow which will generate noise in the current.  Also with a 

bias voltage applied across the barrier of MTJ, the probability of electrons tunneling 

through the barrier is increased. The number of electrons tunneling through the barrier 

per unit time fluctuates.  The shot noise can be expressed as  

fqIrmsI noise Δ= 2)(  

where q is electron charge (1.6 x 10-19 C), I is electrical current and Δf is the bandwidth 

[16].   

A third noise source is 1/f noise, or flicker noise [14,15].  It usually dominates in 

the low frequency range. The power spectral density of this noise follows the well known 

Hooge relation [17], 

2
H

V
VS

Nf γ

α
=

, where αH is the “Hooge constant”, N is the number of 

charge carriers in the sample, f is the frequency, and the exponent γ is usually close to 1.  

If we assume the charge carrier density is constant, then we can replace N by the sample 
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volume, V.  So the 1/f noise is inversely proportional to the sensor size.  Many models 

have been proposed to explain the root causes of 1/f noise. The most plausible and 

generally accepted model for 1/f noise is the two level fluctuation model conceived by 

Dutta and Horn [18]. This two level-fluctuation model can also describe most noises 

caused by magnetic fluctuations.  

Thermal noise and shot noise are intrinsic properties of the sensor. We have very 

little control after the material and structures have been chosen. However, noise caused 

by magnetic instability in the sensor can be controlled by the magnetic properties of the 

relevant magnetic layers and stabilizing methods. Most of the magnetic instabilities are 

caused by the so-called Barkhausen jumps, which arise from sudden and irreversible 

domain wall motion.  The magnetic instabilities are likely due to processing defects, edge 

defects or non uniformities in the magnetic layer.     

From the principle of GMR and MTJ sensors, the output signal is closely related 

to the magnetization states in the free and pinned layer structures.  Magnetic instabilities 

will show up as electrical noise on the output signal.  The origins of these noise sources 

are different. However, they are all related to the microstructure of the heads.  For 

example, the magnetic instabilities caused by the so-called Barkhausen jumps arise from 

sudden and irreversible domain wall motion pinned by the defects.  Those defects can be 

formed during thin film deposition process, defects during the lithography process, 

interface intermixing, etc.  As the size of the magnetic elements shrinks, the thickness of 

the ferromagnetic film and spacer decrease, the chance of having defects becomes higher.  

Therefore, in order to realize the full potential of the GMR and MTJ sensors, a detailed 

understanding of noise and magnetic stability characteristics of the sensor are essential 
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for the design of high signal-to-noise ratio (SNR) sensors. Recently, great efforts have 

been exerted in the study of GMR and MTJ noise and attempt to explain the noise 

mechanisms involved [19-24].   Most of these reports focus on the integrated noise 

behavior of MR heads, but a few concentrate on spatial characterization of the noise 

source. For submicron sized sensors, it is very hard to observe their microstructure.  

In this study, a dynamic magnetic sensitivity mapping (MSM) system was 

designed to investigate the localized noise sources associated with magnetic instabilities 

in GMR and TMR recording heads, and then correlate the information to the 

microstructure of the recording heads.   

 

3.4 MSM mapping  

3.4.1 MSM mapping GMR sensor 

Several selected GMR and MTJ recording heads with known magnetic 

instabilities are measured by the MSM system. For the tested magnetically unstable GMR 

recording heads, the study of the noise spectrum indicates that noise in the low-frequency 

regime is the dominant noise source. This is consistent with random telegraph noise [26, 

27]. Fig. 3.3 shows noise MSM images in the range of 20 kHz to 60 kHz for one of the 

tested unstable GMR sensors under positive (negative z axis) and negative (positive z 

axis) tip magnetization.  It is clear that under a positive excitation field, noise mainly 

originates from the right part of the sensor in a semicircular shaped area [Fig. 3.3 (a)]. 

However, under a negative excitation field, no detectable noise is present in the whole 

sensor, as shown in Fig. 3.3 (b). These results are reproducible for other MFM tips which 

have different magnetic stray fields.  Therefore the stray field from the MFM tip only 
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exaggerates the instability in the head. The location of the instability is not related to the 

tip but intrinsic to the head.   

 

 

 

Fig. 3.3 MSM images (a) under a positive and (b) under a negative 

magnetic field for a magnetically unstable GMR read head.  

 

3.4.2 MSM mapping for MTJ sensor 

Fig. 3.4 (a) shows the dc noise measurement in the time domain for two MTJ 

recording heads under an external sweeping magnetic field. One of the heads is 

magnetically stable while the other has a known magnetic instability. For the stable head 

[head 1 in Fig. 3.4 (a)], the baseline noise is small and has no significant change with the 

applied dc magnetic field. For the unstable head [head 2 in Fig. 3.4 (a)] under a negative 

dc field, the baseline noise is about the same as the stable head. When the field increases 

to a bout 5 kA/m, baseline noise increases dramatically. As the field is further increased, 

the noise subsides. When the applied field decreases from a high positive field and then 

reverses back to 3 kA/m, noise again increases but then falls off with further field 

decrease. The MR transfer curve of the stable head is shown in Fig. 3.4 (b).  When no 
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external field is applied, the resistance of the head 1 is about 92.8 Ω.  When magnetic 

field is applied, the resistance changes linearly with field changes and is symmetric about 

the positive and negative field.  Head 2 has resistance about 154.7 Ω with no applied 

field. However the MR transfers curve of head 2 (Fig. 3.4 (c)) is not linear but has a 

hysteresis loop.  In addition, the MR curve is not symmetric about 154.7 Ω for the same 

amplitude applied magnetic field with opposite directions.  The transition between high 

and low resistance states both happened under positive fields.  Also by comparing the 

MR curve to the time domain noise measurement, we find that the fields which cause 

increased noise correspond to the switching field of the sensor between high and low 

resistance states. Magnetic moment fluctuations in the free layer may cause this noise 

increase [20, 21]. 
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Fig. 3.4  (a) Time domain measurement of the noise amplitude under an external 

magnetic field for a stable MTJ head (Head 1) and an unstable MTJ head (Head 2); 

(b) MR loop for MTJ head 1 and (c) MR loop for MTJ head 2.  
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The noise mapping images of stable and unstable MTJ heads with positive and 

negative tip magnetization in the frequency range of 20 kHz to 60 kHz are shown in Fig. 

3.5. For a stable head (head 1), the noise maps [Fig. 3.5 (a) and (b)] show that there is no 

additional noise due to magnetic tip excitation whether under a positive or a negative tip 

magnetization state. However, the noise map for an unstable head (head 2) [Fig. 3.5 (c)] 

shows that there is considerable noise having spatial variation. A magnetic noise increase 

is detected only during tip scanning over the left side of the sensor and a small amount of 

noise is observed in the right part of the sensor. Upon reversing the tip field direction, this 

localized magnetic noise disappears [Fig. 3.5 (d)]. These results agree with the time 

domain measurement results as shown in Fig. 3.4 (a). 

 

 

Fig. 3.5  MSM images for the MTJ head 1 (stable) (a) under a positive 

magnetic field and (b) under a negative field; and for magnetic MTJ head 2 

(unstable) (c) under a positive magnetic field and (d) under a negative field. 
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One possible reason for the noise increase under positive tip field for measured 

recording heads is magnetic defects in some regions of the free layer, such as processing 

defects, edge defects, or non-uniformities in the layer structure. These defect regions may 

weakly couple to the rest of the free layer [22] and cause the magnetic instability. By the 

analysis of the MR loop of the MTJ recording head 2 (unstable), the magnetization of the 

defects in the free layer is not aligned by the CoCrPt hard magnets to the perpendicular 

direction (x axis in Fig. 2.3) to the magnetization direction of the pinned layer.  The 

direction of that defect region favors the parallel alignment to the pinned layer.  It may be 

caused by the exchange coupling from the pinned layer.  A small field in the direction 

antiparallel to the magnetization direction of the pinned layer cannot rotate the 

magnetization of the free layer with it.  Unless the field is high enough to overcome the 

pinning by the defects in the free layer, the free layer is magnetized with the applied field.  

It causes a sudden change in resistance.  Also the magnetic instabilities caused by defects 

in the free layer result in hysteresis.  This makes the loop shift to the positive field side.  

Therefore the resistance changes all happen under positive fields.  When the tip 

magnetization is positive, the activation energies from tip, hard magnet, and current-

induced field form a quasi-equilibrium state in the defect region of the sensor. Thermal 

energy then allows the domain walls to hop between pinning sites [20], causing increased 

noise. The defect region in the TMR sensor is likely located in the center of the circular 

area in the left part of the sensor. With a negative tip magnetization, the TMR sensor is in 

a stable low resistance state and no noise is observed.  Similarly, from the semicircular 

shape of the noise MSM image of the GMR head, it is very likely that the location of the 
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fluctuating magnetic moment is located in the center of the semicircular shaped area of 

the head. 

 

3.5 Summary 

In this chapter, we have presented results of the imaging of the magnetic noise 

sources at low frequency in both GMR and MTJ recording heads.  The developed MSM 

system can locate the magnetic noise sources for the sub-micron sized heads, which is 

hard to be observed by other methods.   The agreement between the image of noise 

sources and other measurement results is good for the investigated magnetic origin noise 

in recording heads.  The field dependent 1/f noise and Barkhausen noise may be the main 

reasons for the noise increase of the unstable recording heads we tested.
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Chapter 4 

Magnetic microstructures of free and pinned layer  

in magnetic tunnel junctions 

 

The temperature and bias voltage dependence of magnetoresistance and the 

resistance of two types of magnetic tunnel junction (MTJ) samples were studied [1]. 

These two types of MTJ samples have different free layer structures, while having the 

same pinned layer structures and with the same materials for the free and reference 

layers. The layer structure for type 1 MTJs [Fig. 4.1 (a)] is 80Ru-8CoFeB-15Al2O3-

50CoFeB-9Ru-54FeCo-350CrMnPt (in Å).  The layer structure for type 2 MTJs [Fig. 4.1 

(b)] is 80Ru-40CoFeB-50RuTa-40CoFeB-15Al2O3-50CoFeB-9Ru-54FeCo-350CrMnPt 

(in Å). Because the material for the free layer is the same for both types, the spin 

polarization should be the same for these two types of samples.  Also the barrier 

preparation process is the same; therefore the barrier quality should be quite similar.  

However, very different experimental tunneling magnetoresistance (TMR) ratios are 

found for these two types of samples.  The TMR ratio is about 26% and 69% at room 

temperature for type 1 and type 2 MTJs, respectively.  A TMR as high as 107% has been 

observed for type 2 MTJ samples at 13 K.  By analysis of the voltage and temperature 

dependence of the resistance and magnetoresistance in these MTJs, we discuss the 

detailed effects of the magnetic microstructures in the free layers and/or the interface 

between the free layer and the barrier layer, barrier qualities, and barrier interfaces on 

TMR behaviors.  We show that for different free layer structures, even the same material 

may have quite different magnetization behaviors, which result in quite different TMR 
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ratios.  The results clearly indicate that the micro-magnetization orientation at the 

interface between the free layer and the barrier layer is one of the important factors that 

determine the TMR ratio. 

Also, the effect of microstructure in the pinned layer on the TMR behavior is 

studied. We applied a magnetic saturation field to tune the magnetization states in the 

pinned layers (The pinned layers are 350CrMnPt-54FeCo-9Ru-50CoFeB, and 50CoFeB 

is the reference layer.) without change the physical structures of the MTJ samples under 

ambient conditions.  After applying different saturation fields, the minor loops are 

measured.  A saturation field larger than the coercivity of the free layer will not change 

the magnetization properties of the free layer and only affect the pinned layers.  Then the 

change in the minor loops will reflect the magnetic microstructures in the reference layer. 

 

 

Fig.  4.1 The layer structures of (a) type 1 and (b) type 2 MTJ samples 
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4.1 Effect of magnetic state in free layer 

4.1. 1 Temperature dependence of magnetoresistance 

The magneto-transport properties of the MTJs have been measured with a 

constant 10 mV bias voltage at various temperatures between 13 K and 300 K.  For the 

MTJs, the minor loops are more interesting for practical applications, where only the 

magnetization of the free layer is switched while the pinned layer remains nearly 

unaffected.  The minor loops were obtained by sweeping an external field of 20 kA/m 

(250 Oe) for type 1 and 8 kA/m (100 Oe) for type 2 devices in the direction along the 

easy axis of the magnetizations.   Fig. 4.2 shows the MR minor loops for type 1 and type 

2 MTJ samples at different temperatures.   The RAP values at parallel (P) and antiparallel 

(AP) states both increase when the temperature decreases for both types of samples. At 

room temperature, the type 1 MTJ’s RAP in the P state (RP) is 120.1 MΩμm2 and the 

RAP in AP state (RAP) is 152.8 MΩμm2; at 13 K, RP and RAP increase to 155.9 MΩμm2 

and 220.7 MΩμm2, respectively. For type 2 MTJ, RP and RAP are 38.7 MΩμm2 and 65.3 

MΩμm2 at 300 K and increase to 43.2 MΩμm2 and 88.7 MΩμm2 at 13K, respectively. 
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Fig. 4.2 Magnetoresistance transverse loops for (a) type 1 and (b) type 2 MTJs at 

temperatures between 13 K and 300 K. 
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For both type 1 and type 2, at room temperature the resistance transition between P 

and AP states happens at about 0.72 kA/m (9 Oe) and the transition is very sharp, but 

their transition behavior is quite different at lower temperatures.  We define the 

squareness (S) of the MR loop as )/()( 0 mAPm RRRRS −−= , where 2/)( PAPm RRR +=  

and R0 is the resistance at zero fields after saturation in the AP state.   From Fig. 4.3, we 

observe that the S values of type 1 MTJs does not have a significant change until the 

temperature decreases to under around 70K and that the S values of type 2 samples stay 

about the same. The low squareness of type 1 samples at lower temperature indicates that 

the magnetization of the free layer of type 1 is not switched with the field as 

homogeneously as that of the type 2.   

The coercivity fields (Hc) of both types of samples increase as temperature 

decreases (Fig. 4.3).  The Hc change with temperature for type 1 MTJ samples is much 

larger than that of the type 2 samples.  At 300 K, the Hc is about 0.72 kA/m (9 Oe) for 

both types. However, the Hc of type 1 rises rapidly to 5.2 kA/m (65 Oe) at 13 K, while 

the Hc of type 2 exhibits no significant change.   

The center of the MR loops shows a shift from zero fields.  This field shift for both 

types of sample is small.  For type 1 MTJ, it is 0.4 kA/m (5 Oe) and for type 2 MTJ, it is 

0.14 kA/m (1.8 Oe).  In both types of samples, a synthetic antiferromagnetic (SAF) 

structure, 54FeCo-9Ru-50CoFeB, has been applied to the pinned layer structures to 

reduce the shift field [2, 3].  However, as the temperature decreases, the coupling field for 

type 1 MTJs increases to about 0.64 kA/m (8 Oe), with no significant change for type 2.  

The small difference in the Néel coupling (or orange peel coupling) field in these two 

types of the samples is likely due to the different free layer structures.  The additional 
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50Å RuTa and 40Å CoFeB layers in type 2 MTJs are designed to further control the 

CoFeB free layer next to the barrier so that a linear output can be obtained when 

patterned into certain shapes and processed accordingly.  

 

Fig. 4.3 The squareness (S) and hysteresis field (Hc) of type 1 and type 2 

MTJs. 

 

4.1.2. Voltage dependence of conductance 

J-V curves were measured using a constant voltage source at 13 K (Fig. 4.4).  The 

conductance G (V) curves were obtained by numerically dividing current by voltage.  

Both parallel and antiparallel configurations were measured at ± 20 kA/m for type 1 and 

± 8 kA/m for type 2.  Because the minimum of the G (V) curves has only a small offset 
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from zero bias, we choose the Brinkman-Dynes-Rowell model [4-6]. This model is given 

by  
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barrier thickness in Å and φ is the potential in volts.  By fitting the G (V) curves 

measured at 13 K, we obtained the barrier parameters for two types of samples as shown 

in Table 4.1.  The calculated barrier thickness of type 1 MTJ is larger than that of type 2 

MTJ.  The barrier height of type 2 MTJ is higher than that of the type 1 MTJ. The 

calculated barrier thickness of both types of samples is smaller than the starting Al layer 

thickness, 12 Å.  These results indicate that both types of MTJ samples are likely to be 

either under-oxidized or dominated by thinner regions in the barrier that contribute most 

of the tunneling.  The different values may relate to the different oxygen diffusion 

processes in these two types of MTJ samples when oxidizing the Al layer to the Al2O3 

layer.  And from the fitting, the barrier height indicates that the surface roughness in type 

1 MTJ may be higher than that of type 2 MTJ samples. 

 

Table 4.1 The fitting barrier parameters of type 1 and type 2 MTJ samples. 

 tP (Å) φP (eV) tAP (Å) φAP (eV) 

Type 1 11.3 1.28 12.7 1.03 

Type 2 6.7 3.46 7.2 3.28 
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Fig. 4.4 Conductance versus bias voltage at 13 K for type 1 in the (a) P state 

and (b) AP state and for type 2 in the (c) P state and (d) AP state. 

 

From the fitting curves, it can be seen that the model fits well for type 1 MTJ 

samples and only fits well in the range of -0.2 to -0.5 V and +0.2 to +0.5 V for type 2 

MTJ samples.  As the voltage increases, the conductance of type 2 MTJ samples has a 

rapid increase in the range of about 200 mV, and the increase is more pronounced for the 

AP alignment. The zero bias anomaly phenomena may be explained by hot electrons [7].  

An electron with excess energy above the Fermi level is called a “hot electron”.  With an 

applied bias voltage, those hot electrons will produce collective magnetic excitations of 

local interfaces between the insulating barrier and the ferromagnetic electrodes.  The 



  

 

54

emission of magnons at the interface accounts for the conductance increase as the applied 

voltage increases.  However, we do not have experimental evidence that can clearly 

illustrate the above models. The observed zero bias anomaly in our type 2 MTJ samples 

is still not fully understood.   

 

4.1.3 Temperature Dependence of Resistance 

Fig. 4.5 shows the temperature dependence of RAP results for the two types of 

samples with a constant bias voltage of 10 mV.  For type 1, from 300 K to 13 K, the 

resistance increases 45 % for the antiparallel state and increases 30 % for the parallel 

state. However, for type 2 it changes 31% for the antiparallel state, which is much more 

than the change of 10 % in the parallel state.  The dependence of the resistance on 

temperature is usually explained by elastic and inelastic tunneling [8].  In this simple 

model, the temperature dependence of conductance for antiparallel and parallel states is  

[ ] 1.33
1 21P T

G G PP sT= + + , and [ ] 1.33
1 21AP T

G G PP sT= − + ,                             (4-1) 

where 0 sin( )T
CTG G

CT
= , P1 and P2 are the effective tunneling electron spin polarizations 

of the two ferromagnetic electrodes, and 41.387 10 /C t φ−= × , with the barrier thickness 

(t) in Å and the barrier height (φ) in eV.  G0 is the conductance of the MTJ at zero 

temperature. In equation (4-1), the first part  
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Fig. 4.5 Temperature dependence of the resistance-area product (RAP) in the 

P and AP states for (a) type 1 and (b) type 2 MTJs. 
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represents the elastic tunneling conductance, and the second part represents the inelastic 

one.   It is assumed that the tunneling spin polarization follows the same temperature 

dependence as magnetization, Bloch T3/2 law.  This means the spin polarization at 

temperature T can be written as: 

)1()( 2/3
0 TPTP α−=                                         (4-2). 

The parameter P0 is the polarization of the electrode at zero temperature.  The constant α 

is a material-dependent constant.  It describes the exchange coupling in the direction 

perpendicular to the surface.  The parameter α is generally larger for the surface than the 

bulk due to surface exchange softening [9].   The parameter P0 is sensitive to disorder and 

defects in the FM electrodes and FM/I interface. The disorder and defects could be due to 

interdiffusion at the interface, interface roughness, impurities, and grain boundaries, etc.  

And those nonmagnetic or paramagnetic disorders cause the total spin polarization in the 

free layer to decrease. Therefore with an increase in disorder, the spin polarization is 

reduced.  From Eq. (4-1), as polarization increases, GP increases, whereas GAP decreases. 

Because the free layer and the pinned layer of type 2 MTJ samples are of the same 

material with similar thicknesses, and sputtered under similar conditions, we assumed 

they have same polarization P0 and parameter α for fitting our experimental results.   For 

the type 1 MTJ samples, the free layer and the pinned layers are of the same material, but 

have difference thicknesses, so we used different α and P0 for the free layer and the 

pinned layer. In the fitting process for type 1 MTJ samples, we assumed that the 

polarization P0 and parameter α of the pinned layer are the same as that of type 2 MTJ 

samples, since they are same material, same film thickness, and same fabrication 

conditions.  In the Shang’s model, the TMR increases only with decreasing temperature. 
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Our TMR data for type 1 MTJ samples show a maximum at about 70 K (Fig. 4.6), so we 

fit only the high temperature data using this model.  The values of these parameters from 

the fitting are listed in Table 4.2.   

 

Table 4.2. The fitting transport mechanisms and junction quality parameters. 

 G0 (Ωμm2)-1 P0 α (K-3/2) s (Ωμm2)-1K-4/3 

Type 1 5.1* 10-9 34.5%, 2.1*10-5 1.1*10-12 

Type 2 1.7* 10-8 59.1%, 1.4*10-5 1.5*10-12 

 

By computing the TMR ratio by ((RAP - RP)/RP), we obtained the temperature 

dependence of TMR ratio for type 1 and type 2 MTJs from 13 K to 300 K.  Fig. 6 shows 

that the TMR ratio is around 26.3 % and 69.4% at room temperature for type 1 MTJ and 

type 2 MTJ, respectively.  Before the temperature decreases to about 150 K, the TMR 

ratio of type 1 MTJ increases and follows the fitting curve well.  As the temperature 

decreases more, the increase becomes much slower and gradually reaches a maximum of 

42.7% at about 70 K before decreasing to 41.5 % at 13 K.  This behavior of the TMR 

ratio decrease with decreasing temperature at low temperature was also reported by J. H. 

Lee et. al. on their over-oxidized MTJs [10].  The TMR ratio of the type 2 MTJ samples 

shows a monotonic increase with decreasing temperature. The highest TMR ratio for type 

2 MTJ samples is 106.8% at 13 K.   
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Fig. 4.6 Temperature dependence of TMR for (a) type 1 and (b) type 2 MTJs. 

 



  

 

59

4.1.4. Temperature dependence of bias voltage dependence of magnetoresistance  

Measurement of the voltage dependence of magnetoresistance at different 

temperatures is shown in Fig. 4.7.  The figure shows a decreasing TMR ratio with 

increasing bias voltage for both types.  This drop may be caused by inelastic scattering by 

magnon excitations at the ferromagnet/insulator interface which controls the voltage 

dependence [7]. V1/2 (the bias voltage where the TMR ratio reaches half the zero-bias 

value) is 320 mV at room temperature and 300 mV at 13 K for type 1.  For type 2 it is 

higher than 500 mV at room temperature and 450 mV at 13 K.  Vout (defined 

as TMRVVout ×= ) is related to the highest signal output from a MTJ device, and it is an 

important parameter for device applications.  The highest output which can be achieved, 

Vmax, is 50 mV at 300 K and 70 mV at 13 K for type 1; while for type 2, Vmax is higher 

than 205 mV at 300 K and higher than 256 mV at 18 K.  From Table 1, we have shown 

that the barrier height of type 2 samples is much higher than that of type 1, while the 

barrier thickness of type 2 is much thinner than that of type 1.  These results indicate that 

the samples with a higher barrier height have a higher V1/2, while V1/2 may not relate to 

the barrier thickness.  
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Fig. 4.7 Voltage dependence of TMR at different temperatures for (a) type 1 and (b) 

type 2 samples and voltage dependence of Vout ( defined as V x TMR) for (c) type 1 

and (d) type 2 samples.  The direction of bias voltage is defined with respect to 

upper electrode.  

 

4.1.5 Discussion 

From the MTJ layer structures, the main mechanisms that are responsible for the 

TMR behaviors should be related to the ferromagnetic layers, the barrier layer, and the 

two FM/I interface. We observed very different TMR ratios in the type 1 and type 2 MTJ 

samples.  The TMR ratio is about 26% and 69% at room temperature for type 1 and type 
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2 MTJ, respectively.  Since our two types of sample are different only in the free layer 

structures, the factors contributing to the magnetoresistance behavior changes should 

come mostly from the detailed magnetization orientation of free layer structures and/or 

the interface between the free layer and the insulating layer.  From the analysis of our 

voltage and temperature dependence of resistance and magnetoresistance in these MTJs, 

we discuss the effects of magnetic behavior of the free layers, the interface between the 

free layer and the insulating layer, and barrier qualities.   

The free layers of both types are made of the same material, but have different 

thicknesses. The thickness of the free layer is as thin as 8 Å for type 1, which corresponds 

to only a few monolayer.  From previous studies, the films with thicknesses in this range 

may be superparamagnetic, nonmagnetic, or ferromagnetic [11-14].  The thin free layer 

of our type 1 MTJ samples is mostly ferromagnetic, which shows hysteresis.  Since the 

free layer of type 1 is 5 times thinner than that of type 2.  We would then expect there to 

be more defects in the free layer of type 1 than in that of type 2.  The defects could cause 

incoherent nucleation, domain-wall pinning in the free layer and/or the interface between 

the free layer and the insulating layer.  Evidence of the existence more magnetic 

inhomogeneous regions in the free magnetic layer and/or the interface between the free 

layer and the insulating layer of type 1 MTJ samples than in that of type2 can be 

illustrated by the temperature dependence of Hc, the squareness of the loop, the Néel 

coupling field, the temperature dependence of resistance in the P and AP states, the 

polarization of the electrode at the zero temperature P0, and the spin exchange stiffness 

constant α. 
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From Fig. 4.2, we observe the larger temperature variation of Hc and the lower S 

value in type 1 MTJ samples than that of type 2.  This indicates that the magnetization of 

the free layer and/or the interface between the free layer and the insulating layer does not 

switch with the field as homogeneously as type 2 does.  The Néel coupling field at 300 K 

for type 1 and type 2 MTJ are 5 Oe and 1.8 Oe, respectively. The small difference in Néel 

coupling field in these two types of samples is likely due to the different free layer 

structures, since the amplitude of the coupling field is related to the increase in magnetic 

roughness. The increase in the Néel coupling field in type 1 MTJ samples indicates the 

possibility that there is more magnetic roughness in type 1 MTJ samples than in that of 

type 2. 

As shown in Fig. 4.5, the temperature dependence of resistance for type 1 MTJ 

samples in the AP state and in the P state increases 45 % and 30 %, respectively. The 

temperature dependence of resistance for type 2 MTJ samples in the AP state and in the P 

state increases 31 % and 10 %, respectively.  The dependence of the resistance on 

temperature is usually explained by elastic and inelastic tunneling [9]. The increasing 

TMR ratio with decreasing temperature is caused by the fact that the increase in RAP 

occurs more quickly than in RP.  This is because RAP decreases while RP increases with 

increasing temperature when there is magnetic disorder in the MTJ sample. Thermal 

assisted tunneling will decrease both RAP and RP with increasing temperature [15].  Due 

to a combination of these two effects, the increase of resistance in the AP state with 

decreasing temperature is more than that of the P state.   The rate of decreasing TMR 

ratio is larger for type 1 MTJ samples than for type 2. The rate of decrease is calculated 

as follows: From Fig. 4.6, the TMR ratio is 26.3 % at room temperature and 42.7% at 
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about 70 K for type 1 MTJ samples (i.e. the TMR rate of change from 70 K to 300 K is 

38%). The TMR ratio is 69.4% at room temperature and 98.7% at about 70 K for type 2 

MTJ samples (i.e. the TMR ratio rate of change from 70 K to 300 K is 30%). The 

difference in the rate change of the TMR ratio implies that there are more spin disorders 

in the type 1 MTJ samples than in type 2. 

The parameter P0 is the spin polarization of the electrode at zero temperature.   The 

fitting P0 of type 1 MTJ samples is less than that of type 2 MTJ samples.  The parameter 

P0 is sensitive to disorder and defects in the FM electrodes and FM/I interface. A possible 

source of disorder and defects in the free layer is the interdiffusion between the bottom 

Ru and the CoFeB layer. The nonmagnetic Ru may cause a decrease in the spin 

polarization in the free layer. From Table 2, the P0 of the type 2 MTJ samples is about 

59.1 %, which is almost the maximum limit for the 3d magnetic material.  This implies 

the spins in the free layer of type 2 MTJ samples are strongly coupled and well-aligned.  

Since the free layer thicknesses in the type 1 and type 2 MTJ samples are different, the 

type 2 MTJ samples may not be affected by this small interdiffusion at the bottom of the 

free layer. The constant α is a material-dependent constant which relates to the softening 

of the spin exchange coupling. The parameter α is generally larger for the surface than 

the bulk due to surface exchange softening [9]. From Table 4.2, the magnitude of α is 

2.1*10-5 K-3/2 and 1.4*10-5
 K-3/2 for type 1 and type 2 MTJ samples, respectively. The 

values have the same order of magnitude with most amorphous alloys. The fitting 

parameter α of type 1 MTJ samples is larger than that of type 2. This clearly indicates 

that the type 1 MTJ sample has more magnetic inhomogeneous regions than the type 2 

MTJ sample.  Those magnetic inhomogeneous distributions of local spins may be caused 
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by disorder or discontinuity as well as roughness in the thin free layer of type 1 MTJs.  In 

addition, it may also be CoFeB isolated at the interface between the thin free layer of the 

type 1 sample and the Ru layer due to interdifussion and/or Al2O3 layer due to partially 

oxidization.   

From Fig. 4.3, we observe that the squareness (S) values of type 1 MTJ samples 

decrease rapidly at about 70 K while the S values of type 2 samples stay about the same. 

The reduction in S-value indicates that more magnetic pinning sites may exist in the type 

1 MTJ at low temperature.  This pinning may be due to additional magnetic components 

that occur at low temperatures or due to the temperature dependence of the magnetic 

anisotropy.  This makes the whole CoFeB film difficult to align with the external field, 

especially at low temperatures.  This may be explained by an existing spin-glass-like 

phase, which is hardly aligned below the spin freeze temperature.   Incoherent spin 

rotations at low temperature increase the magnetic roughness in the free layer, which 

causes the Hc to increase and the Néel exchange coupling field of type 1 MTJ to increase 

with decreasing temperature.   

Fig. 4.6 shows that there is a maximum at about 70 K in the TMR ratio versus 

temperature curve for type 1 MTJ samples. A possible reason for the maximum may be 

that spin-glass regions or inhomogeneous distribution of local spin in the free layer 

exhibits spin reorientation with changing temperature. When the temperature is higher 

than the spin freeze temperature, those regions act paramagnetically and the 

magnetization will decrease as temperature increases. If the sample is cooled below the 

spin freeze temperature, the magnetization will be frozen randomly and the average 

magnetization will be reduced with decreasing temperature. At low temperature, the total 
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effect of both the spin-glass-like regions and the ferromagnetic regions may result in 

increasing the spin polarization of the whole free layer, P1, with increasing temperature.  

From equation (4-1), we can express the TMR as 

1.33
1 2

1
(1 ) / 1

TMR
sT PP

=
+ −

. 

If the increase in P1 is large enough to make the increase in the product P1P2 larger than 

the increase in 1+sT1.33, then the TMR will increase with a temperature increase.  When 

the temperature is higher than the spin freeze temperature, both magnetic disorder and the 

spin glass cause the decrease in the spin polarization.  This causes the resistance decrease 

in the AP state to be more than in the P state with a temperature increase, resulting in a 

TMR decrease.   

The barrier quality can be revealed by the study of the temperature dependence of 

resistance of both types of samples.  The fitting parameter s (in Eq. (4-1)) describes the 

temperature dependence of the spin-independent conductance.  Some mechanisms may 

cause the spin-independent conductance.  Among them, the most important two are 

hopping conductance due to imperfections in the barrier and pinholes in the barrier layer.  

The two types of samples have similar small value of s [6, 16], which indicates both types 

of samples have a clean interface between FM/I interface.   

 

4.2 Effect of magnetic state in pinned layer 

4.2.1 Major loop change with saturation field 

To study the effect of microstructure in the pinned layer on the TMR behavior, we 

applied a magnetic field to tune the magnetization states in the pinned layer without 

changing the physical structure of the MTJ samples under ambient conditions.  As shown 
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in Fig. 4.8, the magnetoresistnace (MR) loops are measured with applied magnetic field 

from -605 kA/m (-7.6 kOe) to 119 kA/m (1.5 kOe) and back to -605 kA/m (-7.6 kOe).  

The measured major loops show similar behavior for the two types of MTJ samples.  The 

MR results are analysised in three field ranges.   

In the field range from -605 kA/m to -119 kA/m, the MR stays in the low resistance 

state.  The large field overcomes the exchange coupling and causes the reference layer 

(50Å CoFeB) in the SAF structures rotate to align with the applied field.  Therefore the 

magnetization of the free layer and pinned layer are parallel aligned (as shown in inset I 

in Fig 4.8).  

In the field range from -119 kA/m to 24 kA/m (300 Oe), the resistance increases to 

a maximum (430 kΩ) and then decrease sharply to 334 kΩ with field increases.  These 

external fields is not large enough to overcome the antiparallel coupling in the SAF, so 

FeCo and CoFeB layers are antiparallel aligned. Then the change of MR in this range is 

mostly due to the magnetization of the free layer switching with the applied filed (as 

shown in inset II in Fig 4.8).  

In the field range from 24 kA/m to119 kA/m, the resistance of the MTJ reaches a 

local maximum at 44.6 kA/m (560 Oe) and then decreases.  In this field range, the 

magnetization of the free layer is already saturated, so the change in MR indicates that 

the magnetization of the pinned layer changes with applied field.  That may be explained 

by the generated domains in the CoFe layer due to the competition between the external 

field and the coupling with the AFM layer.   Because of the strong coupling with CoFe 

layer, the reference layer has correlated domains.  The change of the total magnetization 

of all these domains with applied field causes the MR changes (as shown in inset III in 
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Fig 4.8).  

` 

Fig. 4.8 The magnetoresistance (MR) loops for (a) type 1 and (b) type 2 MTJ 

samples.  The insets of Fig. 4.8 (a) show the layer structure and magnetization of 

each layer of the MTJ at various magnetic fields.  
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As field is swept down from 119 kA/m, the resistance monotonically increases and 

reaches a maximum (389 kΩ).  But it is smaller than the 430 kΩ obtained at 6.2 kA/m (78 

Oe).  That may be explained by the some regions in the interface of the CrMnPt/CoFe 

being weakly coupled with the bulk AFM layer.  When the field decreases from the 

maximum reversed field, the magnetization of these regions does not totally switch back 

((as shown in inset IV in Fig 4.8).).  That may causes domain walls in the CoFe layer due 

to the exchange coupling with these defect regions.  And then, the exchange coupling 

between the CoFe and CoFeB layer make the reference forms domain walls. Because the 

resistance of the junction dependents on the relative magnetization orientation between 

the free layer and the reference layer.  These domains in the reference layer will decrease 

the RAP.  

 
4.2.2 Minor loop change with reversal field 

Minor loop measures the resistance change under a small magnetic field that only 

changes the magnetization of the free layer. The magnetization of the reference layer is 

not changed much under such small magnetic field.  Also the magnetoresistance of the 

MTJs is related to the relative magnetization orientation between the free and the 

reference layer.  Then with the same free layer, the minor loop indicates the 

magnetization in the reference layer.  The minor loops of the MTJs are measured after 

swept the field from -605 kA/m to a reversal field and back to zero fields (Fig. 4.9). The 

reversal field is defined as the large positive field applied.  For example, in Fig. 4.8, the 

reversal field is119 kA/m.  For type 1 samples, with applied the reversal field as 62 kA/m 

(780 Oe), the RAP is 419 kΩ and RP is 337 kΩ.  With the reversal field increases to 119 

kA/m, the minor loop of the type 1 MTJs changes directions from the previous case and 
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the center of the MR loop shift to positive field.  Also the RAP decreases to 391 kΩ and 

RP increases to 348 kΩ.  As the reversal field is further increases to 605 kA/m, the RAP 

increases to 412 kΩ and RP decreases to 339 kΩ.   For type 2, with applied the same 

reversal fields as type 1, the RAP and RP show same trend.  As the reversal field increases 

from 62 kA/m to 119 kA/m, RAP decreases and RP increases.  And RAP increases and RP 

decreases when the saturation field goes up to 605 kA/m.   

 

Fig. 4.9 Minor magnetoresistance loops for (a) type 1 and (b) type 2 MTJs 

for different applied reversal fields. 

Fig. 4.10 shows the RAP and RP of the minor loops as the applied reversal field 
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ranges from 0 kA/m to 605 kA/m.  For type 1 MTJs, RP increases with saturation field, 

reaches a maximum at a reversal field of 98 kA/m (1.23 kOe) and then decreases; RAP 

decreases with increasing reversal field and reaches a minimum at a saturation field of 98 

kA/m) and then increases.  For type 2 MTJs, the RAP (RP) get maximum (minimum) also 

at 98 kA/m. 

 

Fig. 4.10 RAP and RP of the minor loops for (a) type 1 and (b) type 2 

MTJs for different applied reversal fields.   

 

 Fig. 4.11 shows the TMR of the minor loop calculated from RAP and RP in Fig. 

4.10.  The TMR of both types of MTJs gets minimum at 98 kA/m.  While the TMR of 

type 1at 56 kA/m (700 Oe) reversal field is 20% and at 605 kA/m (7.6 kOe) reversal field 

is 19.1%, the difference is 0.9%.  While for type 2 MTJs, the TMR at 56 kA/m is  65% 

and at 605 kA/m is 39.7%.  The difference is 25.3%, which is much higher than type 1 

MTJs.  
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Fig.  4.11 TMR of the minor loops for (a) type 1 and (b) type 2 MTJs 

for different applied reversal fields.   

 

HE of the minor loop after applying a reversal large magnetic field as shown in Fig. 

4.12.  The HE changes from negative field to positive field and reaches zero at about 98 

kA/m.  The coercivity field of the minor loop after applying a reversal magnetic field as 

shown in Fig. 4.13.  The HC shows small variation after applying different reversal fields.  

 

 

Fig. 4.12 HE of the minor loops for (a) type 1 and (b) type 2 MTJs 

for different applied reversal fields.   
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Fig. 4.13 Hc of the minor loops for (a) type 1 and (b) type 2 MTJs for 

different applied reversal fields.   

 

4.2.3 Discussion 

For type 1 MTJs, both the TMR and HE have minimum absolute values after 

applying about 98 kA/m reversal field.  At the point, the two ferromagnetic layers of the 

artificial antiferromagnetic layers may form a lot of domains due to the competence 

between the exchange coupling and the applied field.  The magnetization of these 

domains may be canceled out, which causes the TMR to drop to about zero.  Also, HE is 

usually caused by Neel coupling and/or the stray field that comes out from the pinned 

layer.  Neel coupling is also called “orange peel“ coupling, which is caused by the 

magnetiostatic interactions between the free poles at the two ferromagnetic interface next 

to the nonmagnetic barrier in a MTJ [1, 16].  The Neel coupling is related to the 

roughness of the interface between the two ferromagnetic interface adjecent to the barrier 

layer.  It is larger for the rougher interface. The MTJ we measured has a well defined and 

smooth layer interface, so the change in HE is likely due to the decreasing stray field at 
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the edges.  If the two ferromagnetic layers in the SAF layer structure are perfectly 

coupled, no stray field comes out from the SAF layer structure to affect the free layer.  

However, there is always some small amount of stray field comes out from the SAF layer 

structures due to the imbalanced coupling between the two ferromagnetic layers.  The 

stray field at the edge will be reduced due to the multi-domain formation in the 

ferromagnetic (FM) layers of the SAF structures. 

Under the same applied reversal field, the major loops of the type 2 MTJs show 

minimum and maximum resistance at about same field as type 1 MTJ.  Under large 

magnetic field, magnetization microstructures are generated in the pinned layer structure, 

while the behavior of the free layer is not changed.  Since the pinned layer structures are 

same for type 1 and type 2 samples, similar magnetic state behavior in the pinned layers 

is expected for type 2.    

 
4.3. Summary 

The voltage and temperature dependence of resistance and magnetoresistance of two 

types of MTJs are studied.  These two types of MTJ samples have different free layer 

structures but the same pinned structures and the same material for free and reference 

layers. We observed quite different TMR ratios for these two types of samples.  For type 

2 MTJs, a TMR ratio as high as 107% is detected at 13 K. To our knowledge, this is the 

highest value that has been reported in the MTJ with an Al2O3 barrier.  We discuss the 

effects of magnetic behavior of the free layers, barrier qualities, and barrier interfaces.   

From the analysis of our results, we conclude that: (1) There are more magnetic 

inhomogeneous regions in the free magnetic layer and/or at the interface between the free 

layer and the insulating layer of type 1 MTJ samples than in of type 2 MTJ samples; 
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(2)There are possible additional spin-glass-like states that occurs at the interface between 

the free layer and the insulating layer in the type 1 MTJ sample at low temperature; (3) 

Type 2 MTJ samples have thinner barrier thickness, higher barrier potentials and higher 

output Vmax than the type 1 MTJ samples. These results clearly indicate that the micro-

magnetization orientation in the free layer and the FM/I interface play an important role 

in determining the TMR ratio in these two types of MTJ samples. 

The magnetization of the SAF pinned layer structures is changed by applied field.   For 

both types of samples, the TMR and HE of the minor loops versus applied reversal field 

have a minimum.  The reversal magnetic field corresponds to the minimum is about the 

same for both types of samples.  The change in RP, RAP, TMR, and HE of the minor loops 

after applied different applied reversal fields may be explained by the domains formation 

in the reference layer.  The magnetic inhomogeneity may originate at the interface 

between AFM/FM layers. Due to the exchange coupling, domains are formed in the FM 

layer adjacent to the AFM layer.   And the exchange coupling between the SAF structures 

cause the domain formation in the reference layer.  
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Chapter 5 

Variable temperature and ultra-high vacuum microcantilever torque 

magnetometry (MTM) for studying magnetic nanostructures 

 

As the size of the magnetic sensors shrinks to sub-micrometer size, the study of 

small, defined magnetic structures has attracted much attention due to interest in both 

technological applications and fundamental research in micromagnetism [1-3]. 

Microcantilever torque magnetometry (MTM) is a promising new experimental technique 

for measuring such small magnetic features due to its high sensitivity [4-11]. In this 

work, we develop a variable temperature MTM system that can be operated under an 

ultra-high vacuum for the study of magnetic nanostructures.   

5.1 Microcantilever torque magnetometry (MTM) 

The characterization of thin magnetic films, patterned recording media, and 

nanometer-scale magnetic sensors is challenge for conventional magnetometers.  

Conventional magnetometers are designed for measuring specimens with millimeter 

dimensions.  Therefore they have low signal-to-noise ratio (SNR) for small specimens.  

This is often solved by measuring a collection of small samples, but then the 

measurement gives number of average of a large amount of similar structures.  The ultra-

high sensitive MTM can be good candidate for characterizing single micrometer sized 

element.  

Torque measurements require a magnetic torque on a sample to active the 

cantilever vibration.  The amplitude of this vibration is proportional to the magnetization 

in the sample.  The force resolution achievable for a freely vibration cantilever is limited 
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by the thermomechanical noise in the mechanical system.  The minimum detectable fore 

can be described as  

Q
TB4

0
min ω

Bkk
F =Δ          (5-1) 

where k is the spring constant, kB is the Boltzmann constant, T is the temperature , B is 

the bandwidth, ω0 is the resonance frequency, and Q is the quality factor [12].  So the 

force sensitivity of the MTM can be improved by lowering the spring constant k, 

increasing the resonance frequency ω0, and increasing quality factor.  For a rectangular 

cantilever the resonance frequency ω0 and spring constant k can be expressed as 

20
E

l
t

ρ
ω ∝         and      3
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wEtk ∝  

where E is Young’s module, t, w, and l are thickness, width and length of the cantilever, 

and ρ is the mass density.  So the easy way to reduce the spring constant is to decrease 

the cantilever thickness.  However, due to the practical limitations, the cantilever must be 

of a certain thickness to provide sufficiently sturdy design.  Also the quality factor Q 

decreases proportionally to the cantilever thickness.  As the thickness decreases, the 

surface-to-volume ratio increases, and the surface loss becomes dominant in a thinner 

cantilever.  Then to achieve small k, large ω0, and keep Q, we can decrease all the 

dimensions of the cantilever.  Also the quality factor can be improved by cleaning the 

cantilever and modifying the surface stress by annealing at 1000 ˚C [13]. 

The sensitivity of the MTM is not only dependent on the cantilever itself but also 

dependent on the measurement environment.  From equation (5-1), the minimum 

detectable force is proportional to the temperature.  So the resolution increases as the 

temperature decreases.  Also the measurement done under higher vacuum can help 
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eliminate contaminated adsorption such as water molecules [14-17]. 

In this work, we develop a MTM system, which can be operated in the 

temperature range from 10 K to 300K and in vacuums up to 10-8 torr.  Fig. 5.1 shows the 

measurement of the resonance frequency for a cantilever with 95 A/m (1.2 Oe) torque 

field and no applied magnetic field in the sample plane.  The signal amplitude at ambient 

conditions is 0.79 mV.  With temperature decreases to 136 K under vacuum of 1* 10-6 

torr, the signal amplitude further increase to 8.3 mV. The signal increases about 1 order 

with temperature decreases.  At room temperature, with the vacuum to 5 x 10-7 torr, the 

signal amplitude at the resonance frequency increases to 28.1mV.  The signal amplitude 

increases about 2 orders.  We expect the signal amplitude increase at least 3 orders under 

both low temperature at 10 K and high vacuum of 10-8 torr.   
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Fig. 5.1 The resonance frequency measurement of the same cantilever under (a) 

ambient conditions, (b) 136 K and 1 x 10-6 torr and (c) 300 K and 5x 10-7 torr. 
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5.2 Fabrication of the magnetic patterned films on cantilevers 

A new fabrication process is developed to put magnetic patterned films on 

cantilevers as shown in Fig. 5.2.  First, a thick gold layer (about 200 nm) has been 

deposited on clean Si substrates or Si cantilevers.  Then we use the focused ion beam 

(FIB) to pattern the nanostructures on the sample. The magnetic film is deposited on the 

cantilever samples with a well aligned collimator and a slow depositing rate.  Finally, a 

lift-out process that uses a gold enchant is used to remove the gold layer and deposited 

film layers.  Only the pattern is left on the substrate or the cantilever.  The advantage of 

this nanofabrication is that any kinds of patterns can be easily patterned by using FIB 

milling.  This new process avoids the PMMA spin coating step. That prevents to damage 

cantilevers during the patterning process.   

 

Fig. 5.2 Schematic diagram of the fabrication process of sample on the 

microcantilever. 

 

Fig. 5.3 shows some examples of a patterned cantilever with 100 Ni80Fe20 dots using 

the newly developed process. Fig. 5.3 (b) shows the dots with 1 μm diameter and a 
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center-to-center distance of 4 μm.  Fig. 5.3 (c) shows enlarged patterned dots with 

diameter of 500 nm and a center-to-center distance of 2 μm.   

The magnetic hysteresis loops of the patterned dots arrays are measured by MTM at 

ambient conditions.  Fig. 5.4 (a) shows the measured hysteresis loop for dot array with 

diameter of 1 μm and center-to-center distance of 4 μm.  The magnetization of the dots is 

first saturated to form a single domain state at a magnetic field of + 100 kA/m.  When the 

magnetic field decreases to +26 kA/m, the magnetization shows a sharp decrease.  This 

jump corresponds to an irreversible transition to a vortex state.  With decreasing field, the 

magnetization gradually decreases, that relates to the vortex being smoothly pushed out 

until it forms single domain state again at – 43 kA/m.    Fig. 5.4 (b) shows the measured 

hysteresis loop for dot array with diameter of 500 nm and center-to-center distance of 2 

μm.  The vortex state is formed at 26 kA/m, and the single domain state happens at -49 

kA/m.   
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Fig.5.3  SEM image of the cantilever (a) with 100 50nm-thick Ni80Fe20 dots 

array; (b) enlarged patterned dots with a diameter of 500 nm and center-to-

center distance of 2 μm; and (c) enlarged patterned dots with a diameter of 1 

μm  and the center-to-center distance is 4 μm.  
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Fig. 5.4 The hysteresis loops for 100 50nm-thick Ni80Fe20 dots array with (a) 

with a diameter of 1 μm  and the center-to-center distance is 4 μm; and (b) a 

diameter of 500 nm and center-to-center distance of 2 μm. 
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5.3 Single and paired bar measured at ambient conditions 

In order to investigate the magnetic interaction between a pair of bars, a 7 μm × 7 

μm × 30 nm Ni80Fe20 film was put on the top left corner of the cantilever [Fig. 5.5 (a)] 

[18]. A 30 nm thick Al layer was deposited on the top of the Ni80Fe20 film that prevents 

the possible poisoning of the magnetization with the Gallium ions.  An enlarged picture 

of the patterned Ni80Fe20 film is shown in Fig. 5.5 (b). The Ni80Fe20 film was then 

patterned into two single 7 μm × 3.5 μm × 30 nm bars by cutting a 60 nm gap in the 

center of the film using a FIB [Fig. 5.5 (c)]. The cut is made about 200 nm deep to ensure 

the two bars are unconnected.  

 

Fig. 5.5 (a) Microcantilever with a 7 μm × 7 μm × 30 nm Ni80Fe20 film deposited on 

the top left corner. (b) Magnified 7 μm × 7 μm × 30 nm Ni80Fe20 film. (c) Double 7 

μm × 3.5 μm × 30 nm bars patterned with focused ion beam on the 7 μm × 7 μm × 30 

nm Ni80Fe20 film with gap of 50 nm between adjacent bars. (d) Single 7 μm × 3.5 μm 

× 30 nm bar after removing the top bar with focused ion beam.  
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The magnetic hysteresis loop is obtained by sweeping the external field from - 40 

kA/m to + 40 kA/m and back.  Fig. 5.6 shows the results in field range of ± 6 kA/m for 

paired bars (the loop with open circles). The magnetization reversal occurs at -0.75 kA/m 

and -1.7 kA/m. The first jump at a field of -0.75 kA/m corresponds to the reversal of one 

of the paired bars. The second jump at a field of -1.7 kA/m corresponds to the reversal of 

the other one.  

After the MTM measurement of the paired bar, the top bar of the same sample was 

removed with FIB. To make sure that the top bar is completely removed, the depth of the 

cut is about 500 nm which also removes some of the Si substrate. Fig.5.5 (d) shows only 

a single 7 μm × 3.5 μm × 30 nm bar is left on the cantilever. Fig. 5.6 shows the results in 

field range of ± 6kA/m for the single bar (solid squares). The magnetization reversal 

occurs around the coercive field of -1.23 kA/m. It is correlated to the domain wall 

propagating quickly through the bar. The smaller jump in magnetization at - 4 kA/m may 

be caused by the annihilation of the small domain structure at the edge of the film. 
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Fig. 5.6  Magnetic hysteresis loops of the single 7 μm × 3.5 μm × 30 nm Ni80Fe20 

bar (solid squares) and same size double bars (open dots) with a gap of 60 nm 

obtained with a microcantilever torque magnetometer (MTM). 

 

Comparison of the magnetic hysteresis loops of the single and paired bars shows 

that the switching field of single bars is larger than the reversing field of only one of the 

paired bars and less than that of both paired bars. This indicates that magnetostatic 

interaction exists between the closely paired bars.   

It has been shown by a micromagnetic simulation that the hysteresis loop for one 

set of paired Ni80Fe20 bars (300 nm x 1.5 μm x 32 nm) with a gap of 40 nm has two steps 
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during the reversal [11]. The two steps observed in the hysteresis loop are caused by the 

magnetostatic interaction between the paired bars.  In this study, the size of Ni80Fe20 bars 

is much larger than the size of 300 nm x 1.5 μm x 32 nm. The reversal process of larger 

size bar may involve more domain wall motion than the small size sample.    

 

 

Fig. 5.7  Micromagnetic simulations were performed on the paired Ni80Fe20 bars (7 

μm × 3.5 μm × 30 nm) with a gap of 50 nm. The sample was saturated along the long 

axis of the bars and then decreases to (a) –4.77 kA/m; (b) –20.69 kA/m; (c) –26.26 

kA/m; (d) –31.83 kA/m. 
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Micromagnetic simulations were performed by Professor Renat Sabiryanov to 

study the magnetization reversal of 7 µm x 7 µm x 30 nm Ni80Fe20 bars using the 

Landau-Lifshitz-Gilbert solver software package developed by NIST [12]. The distance 

between the edges of two bars was taken to be 50 nm. The magnetization of Ni80Fe20 is 8 

x 105 A/m, and the exchange stiffness constant is 1.3 x 10-13 J/m3. The anisotropy of ideal 

Ni80Fe20 alloy is extremely small; however the measured film may have a substantial 

amount of inhomogeneity. Therefore, the following models of anisotropy are considered: 

(i) no anisotropy K = 0, (ii) random anisotropy with K = 10 x 103 J/m3, and (iii) random 

anisotropy with distribution of anisotropy constants between 10 x 103 J/m3 and 100 x 103 

J/m3. The random anisotropy is chosen to mimic the real thin film medium. 

For the single square Permalloy film (K = 0, and no defects) with side length of 6 

µm, the simulation results show zero remanent magnetization. The film initially 

magnetized along one side of the element relaxes to the vortex state at zero field. The 

reversal starts from the corners by creating vortices and consecutive motion of them.  

Experimental results show small coercivity with some features in the magnetization 

reversal curve. In order to introduce the coercivity, anisotropy should be introduced.  

Uniaxial anisotropy produces a square-like loop. 

Non-uniform switching is characteristic of elements with large sizes and 

containing defects as shown in our experimental results. In order to model these films, we 

used a random anisotropy model with distribution of uniaxial anisotropies in magnitude, 

as well as easy axis. At moderate anisotropies there is still strong reduction of remanence 

magnetization with complex domain structure at zero magnetic fields. A stronger 

anisotropy constant gives a picture similar to the experiment, i.e. there is large remanant 
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magnetization and multiple steps in the hysteresis curve caused by pinning. For the paired 

bars system, the simulation results show that the switching is not independent for the 

ideal Permalloy film. After saturation, two bars form a symmetrically inversed C-state at 

the remanent state (no applied magnetic field). With a negative field applied the 

magnetization reversal proceeds through the formation of two vortexes (end domains). 

Due to the broken symmetry (random anisotropy) the reversal of one of the bar happens 

first. Although the general picture of the reversal of this bar is similar to a single bar case, 

there are some deviations because of the interactions with the second bar. Due to the 

magnetostatic interactions, the system creates a closure for the magnetic field 

(magnetization of two bars is aligned in opposite directions). It is a metastable state for 

the system of two bars. Then at somewhat larger applied field the system is forced out of 

this potential well and the second bar switches as well.  

This picture is substantially different if we assume anisotropy random both in 

magnitude and in direction in the film. The two bars of Permalloy with disorder both in 

the direction of anisotropy and its magnitude are simulated as shown in Fig. 5.7. The 

average magnitude of K is taken to be 50 x 103 J/m3. In this case, the magnetization 

reversal is quasi-independent for two bars. Both of them form a number of domains with 

edge domains to be switched the last. Because of the two additional edges (due to the cut) 

the number of domains near edges is twice the number as in case of one square element. 

This results in somewhat smaller remanent magnetization. There are multiple steps in the 

hysteresis loop. In the two-bar case it is more pronounced. It can be probably attributed to 

the magnetostatic interaction between bars because it forms a domain structure which 

reduces the stray fields in the free space around the sample.  Simulations show that a 
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large number of domains near the edges of the feature are hard to push out. This energy 

barrier comes because of the closure of stray fields due to these domains. The formation 

of these domains is sensitive to the details of the reversal and should be strongly affected 

by the temperature. As a result, the reversal is not symmetric, especially if complete 

saturation was not achieved.  

 The above analysis shows that the reversal of the films in Fig. 5.6 can be 

understood, if a random anisotropy model with distribution of uniaxial anisotropies in 

magnitude, as well as easy axis is assumed.  

 

5. 4 The magnetization reversal behavior of two bars with magnetostatic interactions 

There are a few methods that reduce magnetic noise and improve reversibility. 

The key is to have a better control of the magnetic domain structure of the magnetic layer 

in the magnetic sensors. It has been shown by incorporating a synthetic antiferromagnetic 

(SAF) structure for a pinned layer reduces stray field from the pinned layer by a factor of 

>10 and enhances the pinning effect of the pinning layer. The effects of demagnetizing 

fields within the soft layer can be reduced by thinning the layer itself, and by increasing 

the distance from the edge of the tunnel junction for a few micrometers. Figure 5.8 shows 

several different hysteresis loops measured under the same conditions for two 30 μm × 15 

μm × 50 nm Ni80Fe20 bars with a gap about 60 nm.  When sweeping from an initially 

large applied magnetic field, the first jump happens at about 0.64 kA/m.  The field 

corresponding to the first jump is different for each loop. As the applied field increases, 

the second jump happens at about 1.11 kA/m.  This field is also different for each 

measured loop.  By comparison the distributions of the first jump and second jump, it is 
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clearly seen that the thermal magnetic switching distribution is much smaller for the first 

jump. .  That is, the magnetic interactions between paired bars results in a reduced 

thermal magnetic switching distribution when the first bar reverses its magnetization. 

This more reversible behavior in the magnetic behavior will allow us to design a better 

magnetic sensor. 

 

 

Fig. 5.8   Magnetic interaction in a single paired bars and its magnetic switching 

behavior shows a reduced thermal magnetic switching distribution when the first 

bar reverses its magnetization. (The six hysteresis curves are obtained by continuous 

measurement of the single paired bars using ultra-sensitive microcantilever torque 

magnetometer.)  The inset shows the SEM picture of a microcantilever with single 

paired bars. 
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5.5 The magnetization reversal behavior of two bars at various temperatures  

We have investigated the magnetic reversal behavior of a pair of bars at various 

temperatures. Fig. 5.9 shows the hysteresis loop in the field range of ± 10 kA/m a paired 

bar with dimension of 30 μm × 10 μm × 30 nm bars and the gap is 60 nm [inset of Fig. 

5.9(a)] measured at 300 K and 5 x 10-7 torr, and 136 K and 1 x 10-6 torr.   

 When measured at 300K, the magnetization reversal occurs at -1.34 kA/m and -1.79 

kA/m. The first jump at a field of -1.34 kA/m corresponds to the reversal of one of the 

paired bars. The second jump at a field of -1.79 kA/m corresponds to the reversal of the 

other one. When measured at 136 K, the magnetization reversal occurs at -1.85 kA/m and 

-2.2 kA/m.  

From the comparison of the magnetic hysteresis loops measure at 300 K and 136 K, 

the field corresponding to the magnetization reversal is larger for the 136 K measurement 

than the room temperature measurement.   Also, the magnetization change between the 

first jump and second jump at 300K is not as flat as that at 136 K.   The domain wall may 

be pinned by defects in the film.  At higher temperature, the thermal energy may push the 

domain wall through the pinning sites, and shows as a gradually change in magnetization.   
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Fig. 5.9 The hysteresis loop of single paired bar with dimension of 30 μm × 10 

μm × 30 nm and the gap is 60 nm [inset of (a)]  measured at (a) 300 K and 5 x 

10-7
 torr and (b) 136 K and 1 x 10-6 torr by MTM.   
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5.6 Summary 

A new process is developed to pattern magnetic films on MTM cantilevers.  By using 

MTM, the magnetic interaction in a single pair of micrometer-sized magnetic samples is 

studied at various temperatures.  The switching field of a single bar is larger than the 

reversing field of only one of the paired bars and less than that of both paired bars, which 

indicates that there exists magnetostatic interactions between the closely paired bars. This 

is correlated to a metastable state where the magnetization directions of the two bars are 

antiparallel to each other. The experimental results are consistent with micromagnetic 

simulations, if a random anisotropy model with a distribution of uniaxial anisotropies in 

magnitude, as well as of the easy axis is assumed. We show that MTM is a highly 

sensitive method that can be used for the study of magnetic nanostructures with high 

resolution.   
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Chapter 6  

Conclusions and the future 

 

In this thesis, the magnetic inhomogeneities in the thin and small magnetic films of 

magnetic sensors are characterized and studied.  The magnetic inhomogeneities are 

located by using our newly developed sensitivity mapping (MSM) system.  The effect of 

magnetic microstructures in the free layer and the pinned layers of MTJs are studied by 

the analysis of the temperature and voltage dependence of magnetoresistance of MTJs.  

An ultra-sensitive microcantilever torque magnetometer (MTM) system is developed to 

characterize of magnetic nanostructures.   

We have presented results of the imaging of the magnetic noise sources at low 

frequency in both GMR and TMR recording heads.  The developed MSM system can 

locate the magnetic noise sources for the sub-micron sized heads, which is hard to be 

observed by other methods.   The agreement between the image of noise sources and 

other measurement results is good for the investigated the origin of magnetic noise in 

recording heads.  The field dependent 1/f noise and Barkhausen noise may be the main 

reasons for the noise increase of the unstable recording heads we tested.   Future 

improvements of the system should include reducing the tip end dimension and 

increasing the tip’s magnetic field by using magnetic particles with high magnetic 

moment, thus increasing the resolution of the image.  Better correlation to 

microstructures should provide more information about the reason to cause the noise 

increase.    
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  We studied the voltage and temperature dependence of resistance and MR of two 

types of MTJs.  These two types of MTJ samples have different free layer structures but 

the same pinned structures and the same material for free and reference layers. For type 2 

MTJs, a TMR ratio was detected as high as 107% at 13 K.  From the analysis of the 

minor MR loops, we learned that: (1) There are more magnetic inhomogeneous regions in 

the free magnetic layer and/or at the interface between the free layer and the insulating 

layer of type 1 MTJ samples than in that of type 2 MTJ samples; (2) There are possible 

additional spin-glass-like states that occurs at the interface between the free layer and the 

insulating layer in the type 1 MTJ sample at low temperature. These results clearly 

indicate that the micro-magnetization orientation in the free layer and the FM/I interface 

play an important role in determining the TMR ratio in these two types of MTJ samples.   

We also investigate the magnetization of the SAF structures on the MR behavior by 

appplying field.   It is demonstrated that exchange coupling field are affected by domian 

stuctures in the free and pinned layers.  The domain may be caused by the inhomogeneity 

in the interface between AFM/FM layer.    

An ultra-sensitive MTM system is developed to characterize the magnetic 

properties of one or few magnetic structure with single or multi-layer in sub-micron sized 

in the temperature range from 10 K to 300K and under vacuum up to 1 x 10-8 torr.  

Sensitivity of the developed variable temperature and vacuum MTM system is improved 

than that at ambient conditions.  We also develop a new process to fabricate the 

submicron sized single or array patterns on the cantilever for studying their magnetic 

behavior. 

By using MTM, the magnetic interaction in a single pair of micrometer-sized 
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magnetic samples is studied.  The switching field of a single bar is larger than the 

reversing field of only one of the paired bars and less than that of both paired bars, which 

indicates that there exists magnetostatic interactions between the closely paired bars. This 

is correlated to a metastable state where the magnetization direction of the two bars is 

antiparallel to each other. The experimental results are consistent with micromagnetic 

simulations, if a random anisotropy model with distribution of uniaxial anisotropies in 

magnitude, as well as of the easy axis is assumed.  

The MTM measurement of single paired bar clearly show that magnetic 

interactions in a paired bar and its magnetic switching behavior shows a reduced thermal 

magnetic switching distribution when the first bar reverse its magnetization. This 

indicates that the magnetic behavior can be better controlled by the magnetic interactions 

that may allow us to design a better magnetic sensor in the future. 

 



  

 

103

Publication lists: 
 

 
Patent: 
Bernard Doudin, Cheol-Soo Yang, Andrei Sokolov, Sy-Hwang Liou, Lu Yuan, “A new 
type of magnetic memory using chromium oxide junctions”, Pattern # 6657888, 
12/2/2003. 
 
Invited Talk: 

1. L. Yuan, S. H. Liou, J. X. Shen, B. B. Pant, “Imaging of magnetic noise sources 
in recording heads”, SPIE Conferences on Fluctuations and Noise in Materials II, 
Austin, Texas, May 24-25, 2005. 

2. Chih-Haung Lai, Sheng-Huang Huang, C. C. Chiang, S. H. Liou, D. J. Sellmyer 
M. L. Yan, L. Yuan and T. Yokata, “ Effects of ion-beam irradiation on the L10  
phase transformation and their magnetic properties of FePt and PtMn films” 2005 
MRS Fall Meeting at Boston MA, Symposium Q : Degradation Processes in 
Nanostructured Materials, Nov. 28-Dec. 1, 2005 

 
Publications: 

1. A. Baruth, L. Yuan, J.D. Burton, K. Janicka, E.Y. Tsymbal, S.H. Liou, S. 
Adenwalla, “Domain overlap in exchange-coupled [Co/Pt]/NiO/[Co/Pt] 
multilayers” submitted to Appl. Phys. Lett., (2006) 

2. A. Baruth, D.J. Keavney*, J.D. Burton, K. Janicka, E.Y. Tsymbal, S.S. Jaswal, L. 
Yuan, S.H. Liou, S. Adenwalla, “Coupling mechanism in oscillatory coupled 
[Co/Pt]/NiO/[Co/Pt] multilayers”, Phys. Rev. B,  (2006). 

3. Brett Barwich, Glen Gronniger, L. Yuan, Sy-Hwang Liou, and Herman Batelaan, 
“A measurement of electron-wall interactions using transmission diffraction from 
nano-fabricated gratings”, J. Appl. Phys.,  (2006). 

4. L. Yuan, L. Gao, R. Sabirianov, S. H. Liou, M. D. Chabot, D. H. Min, J. 
Moreland, and Bao Shan Han, “Microcantilever torque magnetometry study of 
patterned magnetic films”, accepted by IEEE Trans. Magn. (2006). 

5. L. Yuan, S. H. Liou, Dexin Wang, “Temperature dependence of 
magnetoresistance in magnetic tunnel junctions with different free layer 
structures”,  Phys. Rev. B, 73, 134403 (2006). 

6. L. Yuan, J. X. Shen, Bharat B. Pant and S. H. Liou, “Imaging magnetic noise 
sources in magnetic recording heads(invited)”, Proceeding of SPIE- Fluctuations 
and Noise in Materials, 5843, 1 (2005).  

7. T. Yokota, M. Yan, Y. Xu, L. Gao, R. Zhang, L. Nicholl, L. Yuan, R. Skomski, 
D. J. Sellmyer, S. H. Liou, C. Lai, and C. Yang, “Magnetic properties and L10 
phase formation of FePt films prepared by high current-density ion-beam 
irradiation and rapid-thermal annealing methods”, J. Appl. Phys., 97, 10H306 
(2005). 

8. L. Yuan, J. X. Shen, and Bharat B. Pant, “Locating magnetic noise sources in 
TMR and GMR recording heads using scanning probe microscopy”, IEEE Trans. 
Magn., 40, 2233, ( 2004). 



  

 

104

9. L. Gao, D. Q. Feng, L. Yuan, T. Yokota, R. Sabirianov, and S. H. Liou, “A study 
of magnetic interactions of Ni80Fe20 arrays using ultra-sensitive microcantilever 
torque magnetometry”, J. Appl. Phys., 95, 7010, (2004) . 

10. L. Gao, L. Yuan, L. Nicholl, R. Sabiryanov, Z. Y. Liu, S. Adenwalla and  S. H. 
Liou,  “Domain structure and magnetoresistance in Ni81Fe19 zigzag wires” J. 
Magn. Magn. Mater. 272-276, e1301-e1303 (2004). 

11. L. Yuan, Y. Ovchenkov, A. Sokolov, C. –S. Yang, B. Doudin and S. H. Liou, 
“Magnetotransport properties of CrO2 films down to single grain sizes”, J. Appl. 
Phys. 93, 6850 (2003). 

12. Ruihua Cheng, A.N. Caruso, L.Yuan, S. H. Liou, and P.A. Dowben, “Magnetic 
coupling in Co/Cr2O3/CrO2 “trilayer” films”, Appl. Phys. Lett., 82, 1443 (2003). 

13. S. H. Liou, L.Yuan, L Gao, C.D.Chen, S. F. Lee, and Y. D. Yao, “Switching 
behavior of patterned Ni80Fe20 islands”, Trans. Magn. Soc. Japan, 3, 51(2003) 

14. Sokolov, C.-S. Yang, L.Yuan, S.H. Liou, Ruihua Cheng, B. Xu, C.N. Borca, P.A. 
Dowben, B.Doudin, “ Spin blockade effects in chromium oxide intergrain 
magnetoresistance”, J. Appl. Phys. 91, 8801 (2002). 

15. Sokolov, C.-S. Yang, L.Yuan, S.H. Liou, R.Cheng, H. –K, Jeong, T. Komesu, B. 
Xu, C.N. Borca, P.A. Dowben, B.Doudin, “ Zero bias anomaly magnetoresistance 
of CrO2 junctions”,  Europhys. Lett. 58, 448 (2002).  

16. Ruihua Cheng, C. N. Borca, N. Pilet, Bo Xu, L. Yuan, B. Doudin, S. H. Liou, 
and P. A. Dowben,  “ Oxidation of metals at the chromium oxide interface”, Appl. 
Phys. Lett. 81, 2109 (2002). 

17. Ruihua Cheng, Takashi Komesu, Hae-Kyung Jeong, L. Yuan, S. H. Liou, B. 
Doudin, P. A. Dowben and Ya. B. Losovyj, “Temperature dependent induced spin 
polarization in Cr2O3 overlayers on epitaxial CrO2 films”, Phys. Lett. A 302, 211 
(2002). 

18. Ruihua Cheng, Z. Y. Liu, Xu Bo, S. Adenwalla, L. Yuan, S. H. Liou and P. A. 
Dowben,  “ Magnetic anisotropy in epitaxial CrO2 (100) thin films”, Matt. Lett. 
56, 295 (2002). 

19. Ruihua Cheng, B.Xu, C. N. Borca, A. Sokolov, C.-S. Yang, L.Yuan, S. H. Liou, 
B. Doudin, and P.A. Dowben, “Characterization of the native Cr2O3 oxide surface 
of CrO2”, Appl. Phys. Lett. 79, 3122 (2001). 

20. L. Yuan, Wen-xia Yang, “The real-time CVSD implementation on one 
TMS320C31 chip”, Audio Engineering (China), 12, 30 (2000). 

21. L. Yuan, Wen-xia Yang, “Measurement of sub-circuit’s S parameters at 
microwave frequencies”, Acta Scientiarum Naturalium Universitatis Nankaiensis 
(China), 33, No. 2, 119 (2000). 

 
Presentation: 

1. L. Yuan, L. Gao, L. Nicholl, SH. H. Liou, M. Zheng, E. N. Abarra, B. R. 
Acharya, G. Choe, and Bao Shan Han, “Magnetic Force Microscopy Study of 
CoPtCrO Perpendicular Mdeia with Superparamagnetic and Permanent Magnet 
Tips”, Intermag conference, San Diego, May 8-12, 2006. 

2. L. Yuan, L. Gao, R. Sabirianov, S. H. Liou, M. D. Chabot, D. H. Min, J. 
Moreland and Bao Shan Han, “Microcantilever Torque Magnetometry Study of 
Patterned Magnetic Films”, Intermag conference, San Diego, May 8-12, 2006. 



  

 

105

3. Lan Gao, L. Yuan, K. H. P. Kim, S. H. Liou, M. D. Chabot, D. H. Min,  and J. 
Moreland, “A study of the Magnetic Hysteresis of a Single Magnetic Elements 
using a Sensitive Microcantilever magnetometer” Bull.of American Physical 
Society, Vol. 50, 1492, 2005. 

4. T. Yokota, M. Yan, Y. Xu, L. Gao, R. Zhang, L. Nicholl, L. Yuan, R. Skomski, 
D. J. Sellmyer, S. H. Liou, C. Lai, and C. Yang, “Magnetic Properties and L10 
Phase formation of FePt films prepared by high current-density ion-beam 
irradiation and rapid-thermal annealing methods”, Presented at 49th Annual 
Conference on Magnetism and Magnetic Materials, Jacksonville, Florida, 
November 7-11, 2004. 

5. L. Yuan, J. X. Shen, “ Locating Magnetic Noise Sources in TMR and GMR 
Recording Heads Using Scanning Probe Microscopy”, 9th Joint MMM/Intermag 
Conference, Anaheim, California, 2004. 

6. L. Gao, D. Q. Feng, L. Yuan, T. Yokota, R. Sabirianov, and S. H. Liou, “A Study 
of Magnetic Interactions of Ni80Fe20 Arrays Using Ultra-sensitive Microcantilever 
Torque Magnetometry”, 9th Joint MMM/Intermag Conference, Anaheim, 
California, 2004. 

7. L. Gao, L. Yuan, L. Nicholl, Z. Y. Liu, S. Adenwalla and S. H. Liou, “Domain 
Structure and Magnetoresistance in Ni81Fe19 Zigzag Wires” Bull.of American 
Physical Society, Vol. 48, 1108 (2003). 

8. S. H. Liou, L. Gao, L. Yuan, L. Nicholl, Z. Y. Liu, S. Adenwalla and R. 
Sabiryanov, “Domain Structructure and Magnetoresistance in Ni81Fe19 Zigzag 
Wires”, ICM '03, Rome. 

9. R. Cheng A. N. Caruso, L. Yuan, S. H. Liou, P.A. Dowben, “MOKE Studies of 
Magnetic Coping in Co/Cr2O3/CrO2” Presented at American Vacuum Societies 
49th International Symposium , November 3-8, 2002 Denver, Colorado. 

10. C. S. Yang, A. Sokolov, L. Yuan, S. H. Liou, and B. Doudin; “Chromium Oxide 
Bistable Memory Device” MRS Fall, 2002 

11. L. Yuan, Y. Ovchenkov, A. Sokolov, C. –S. Yang, B. Doudin and S. H. Liou; 
“Magnetotransport Properties of CrO2 films down to single grain sizes” Presented 
at 47th Annual Conference on Magnetism and Magnetic Materials, Tampa, 
Florida, November 11-15,  2002. 

12. L. Yuan, L. Gao, S. H. Liou,  C. D. Chen, S. F. Lee, and  Y. D. Yao; “Magnetic 
Domain Structure in Patterned Ni80Fe20 Islands”, Bull.of American Physical 
Society, Vol. 47, 260 (2002). 

13. L. Yuan, Y. Liu, P. A. Dowben, and S. H. Liou, “TEM study of epitaxial growth 
of La0.65Pb0.35MnO3 on LaAlO3 and its relation to electronic structure and spin 
polarization”, Microscopy and Microanalysis, Quebec city, Canada, August 2002.  

14. A. Sokolov, C. S. Yang, L. Yuan, S. H. Liou, Ruihua Cheng, B. Xu, C. N. Borca, 
P. A. Dowben, and B. Doudin; “ Spin Blockade Effects in Chromium Oxide 
Intergrain Magnetoresistance”, Presented at 46th Annual Conference on 
Magnetism and Magnetic Materials, Seattle, Washington, November 12-16,  
2001. 

15. R. Cheng, B. Xu, , A. Sokolov, C. Yang, L. Yuan, S. H. Liou, B. Doudin, and P. 
A. Dowben; “ Characterization of the Native Cr2O3 Oxide Surface of CrO2”, 



  

 

106

Presented at 46th Annual Conference on Magnetism and Magnetic Materials, 
Seattle, Washington, November 12-16,  2001.  

16. A. Sokolov, C. S. Yang, L. Yuan, S. H. Liou, Ruihua Cheng, B. Xu, C. N. Borca, 
P. A. Dowben, and B. Doudin; “ Spin Blockade Effects in Chromium Oxide 
Intergrain Magnetoresistance”, Presented at 46th Annual Conference on 
Magnetism and Magnetic Materials, Seattle, Washington, November 12-16,  
2001. 


	STUDY OF MAGNETIC LAYERS IN MAGNETIC SENSORS
	

	Microsoft Word - thesis-part0.doc

