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Soil color is easily measured in the field and holds potential to be used as an indirect 

measurement of soil organic carbon (SOC). Such a method would be a powerful tool, building on 

decades of Munsell soil color data recorded in soil surveys. The main limitation to this approach is 

knowledge about the specific color-SOC relationship in a region, which often varies in relation to 

parent material, soil texture, climate, and land use. A secondary limitation is the subjective nature of 

the Munsell color data. The objectives of this study are: 1) to develop and evaluate the accuracy of 

pedotransfer functions (PTFs) for the prediction of SOC based on soil color and texture in the state 

of Nebraska and 2) to evaluate digital based color measurements methods as field predictors of SOC 

in Nebraska. To address the first objective, data were obtained from the National Soil Information 

System (NASIS) database, which included descriptions and characterization data of pedons sampled 

across Nebraska and bordering portions of surrounding states. The dataset was comprised of 1576 

soil pedon descriptions and included samples of various soil textures, Munsell color, and SOC. The 

second objective was addressed using digital color measurements of 50 soil samples from Kellogg 

Soil Survey Laboratory archive. Methods used for digital color measurement included a portable 

color sensor (PCS) and smartphone camera (SPC). Regressions of moist Munsell value versus SOC 

using the NASIS data had R2 values ranging from 0.23 to 0.69 for individual MLRAs. In contrast 

regression developed using the PCS for three selected MLRAs had R2 values ranging from 0.49 to 

0.81. Various PTFs based on the NASIS data resulted in RMSE of prediction ranging from 0.795 to 



2.1.  Digital color measurements using SPCs were found to be of low accuracy and were weakly 

related to SOC.  The results indicate the potential of using soil color as a predictor for SOC, 

especially when PCS are used to measure soil color. 
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CHAPTER 1 

 INTRODUCTION 

Aldi J. Airori 

 

1.1 Soil color and soil organic carbon 

Several characteristics influence the color of soil, including organic matter content, 

moisture state, mineral composition, and land use (Baumann et al., 2016; Evans & Franzmeier, 

1988; Franzmeier et al., 1983; Sanchez-Maranon et al., 2015; Schwertmann, 1993; Wills et al., 

2007). The relationship between soil color and soil organic carbon (SOC) was established more 

than a century ago (Brown & O’Neal, 1923, Robinson & McCaughey, 1911). Soil classification 

systems often recognize soils with thick, dark surface horizons as a distinct class, signifying the 

importance of soil color for understanding the soil resource and making land use decisions 

(Schulze et al., 1993). Examples of such classes are the Mollisols order in U.S. Soil Taxonomy 

and Chernozems in the F.A.O World Reference Base (Veenstra & Burras, 2012).  The special 

status of dark soils stem from the relationship between soil color and SOC, with dark soil colors 

being indicative of high SOC (Schulze et al., 1993).  

The Munsell color system, which describes color by hue (shade), value (lightness), and 

chroma (saturation), was adopted as the official system used by soil scientists to describe soil 

color (Pendleton & Nickerson, 1951; Thompson et al., 2013). The Munsell system continue sot be 

widely used in soil science today. Recently, the study of soil color and SOC has also received 

much attention as new digital tools are poised to expand quantification of soil color and the 

demand for SOC data to support climate change and soil heath research has grown (Ferrando 

Jorge et al., 2021, Schmidt & Ahn, 2021).  
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However, quantitative relationships between soil color and SOC are difficult to 

generalize, as most studies focus on a limited number of samples representing a single geographic 

region (Liles et al., 2013). Generating an adequate dataset to quantitatively measure the 

correlation between soil color and SOC can be challenging, and requires careful consideration 

with regards to the size of the sample set, representative landscapes, time required for sampling 

and analysis, and overall cost.  

 

1.2 Measuring soil organic carbon 

Accurate, high-resolution measurement of SOC is critical for quantifying the global 

carbon pool and mapping its spatial distribution to support climate change mitigation efforts 

based on soil carbon sequestration (Minasny et al., 2013; Powlson et al., 2011). For example, 

farmers and landowners who participate in soil carbon credits programs require carbon data to 

assess the effectiveness of their practices (Mooney, 2004). These data include concentrations of 

SOC, as well as SOC stocks, which is the mass of carbon per land area, calculated using SOC 

concentration, bulk density, and horizon thickness. 

There are many existing laboratory methods for analysis of SOC, including the Walkley-

Black method, dry combustion, loss on ignition, and spectroscopic methods. The Walkley-Black 

method of chemical oxidation was widely used to measure SOC in soil science laboratories from 

1935 until the 1990s (Nelson & Sommers, 1996).  However, the use of potassium dichromate 

(K2Cr2O7) for oxidation generates hazardous waste products that are expensive to dispose of 

safely (Mikhailova et al, 2003). The automated dry combustion method has replaced the Walkley-

Black method in modern soil science labs. While dry combustion is an accurate method for 

determining total soil carbon (i.e., including organic and inorganic), it requires additional 

measurement and corrections for measurement of SOC in calcareous soils, as well as maintenance 
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of expensive laboratory instrumentation (Mikhailova et al, 2003). Other alternative methods to 

measure SOC in the laboratory include visible near infrared (Vis-NIR) spectroscopy, and mid-

infrared (MIR) spectroscopy, and loss on ignition (LOI) methods. The VisNIR and MIR methods 

allow for rapid analysis of many samples, but require spectroscopic instrumentation that is not 

widely available (Viscarra Rossel et al., 2006).  The LOI method is relatively simple to perform, 

uses more widely available equipment (i.e., a muffle furnace), and is routinely performed in soil 

testing labs. However, LOI is a measure of soil organic matter, not just SOC, therefore  the ability 

to use this method for SOC analysis is dependent on the availability and accuracy of conversion 

factors used to predict SOC (Baker, 2022). While there are a variety of laboratory methods for 

analysis of SOC, collection and transport of samples is a fundamentally costly endeavor when a 

large number of samples is required, thus limiting the frequency of sampling in both time and 

space (Chatterjee et al., 2009). Field-based methods, therefore, have the potential to better capture 

the distribution of SOC across landscapes and its dynamic response to changes in management. 

Soil color is an easy property to measure in the field that is strongly related to SOC, creating 

potential for application in field-based SOC predictions (Alexander & Knake, 1968; Steinhard & 

Franzmeier., 1979).  

 

1.3 Pedotransfer functions in soil analysis 

Pedotrasfer functions (PTFs) are equations that express the relationship between soil 

properties. They can be used to estimate missing data (Bouma, 1989; Hamblin, 1991) or to 

replace direct measurement where cost or labor are prohibitive to obtaining the required data 

(Liao et al., 2015). The first PTFs were developed to predict soil hydraulic conductivity (Wösten 

et al., 2001), though previous efforts have also been made to develop PTFs to predict SOC. For 

example, a semi-quantitative relationship between soil color and organic matter was developed by 

Steinhardt and Franzmeier (1979) in Indiana which resulted in up to 90% accuracy. Similarly in 
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1968, a field color chart was developed to predict of soil organic matter for soils of Illinois 

(Alexander & Knake, 1968). This chart is still widely used today, including in the Soil Health 

Test Buckets from USDA-NRCS (USDA-NRCS, 2019). Wills and Burras (2007) studied the 

prediction of SOC using field and laboratory measurements of soil color. They used of the MCCs 

and chromameter (Minolta CR-310) color measurements, with depth as a secondary prediction 

factor. However, PTFs cannot be applied outside of the constraints imposed by the range of 

conditions used to develop the predictive equations. For example, the PTF for SOC developed in 

Indiana only produces reliable predictions when applied to cultivated soils with silt loam textures 

(Steinhardt & Franzmeier, 1979). The relationship between SOC and soil color are also different 

between agricultural field and prairie (Wills & Burras, 2007)  This indicates that sample size, 

geographic range, and land use are all important factors to consider when developing a PTF.  

 

1.4 Digital color sensors 

Recent work has explored the application of digital color sensors in soil science 

(Moritsuka et al., 2019; Stiglitz et al., 2016; Stiglitz et al., 2017). The main limitation to using 

colorimeters more widely in soil science is their cost. Less expensive options for measuring soil 

color include smartphone cameras and low-cost portable color sensors (PCSs) (e.g., NixTM, CS-

10, Cube, and Color Muse) (Moritsuka et al., 2019).  Low-cost PCSs have the potential for wider 

application beyond professional soil science community, reaching individuals such as farmers, 

land-owners, citizen scientists, and K-12 educators. Color measured by PCS compare well with 

laboratory colorimeter measurements (Stiglitz et al., 2016; Moritsuka et al., 2019). Furthermore, 

the PCS measurements may be more accurate that visual color assessments using the MCC, 

although these comparisons may have been biased by the use of aggregated soils with the MCC 

and disaggregated samples for the colorimeter and PCS measurements (Stiglitz et al., 2016). 

Other studies have achieved data comparable to a colorimeter using smartphone cameras (SPCs), 
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although care must be taken to carefully control lighting conditions to achieve reliable results 

(Fan et al., 2017).  

 

 

1.5 Objective of the study 

There is a need for expansion of SOC measurement, to support efforts to improve soil 

health and mitigate climate change. While many sound laboratory methods exist, these are limited 

in the frequency with which analysis can be performed in time and space due to the expense and 

labor involved in collecting, transporting, and analyzing soil samples in the laboratory. Such 

obstacles are frequently overcome in soil science through the establishment of PTFs, which can 

be used to predict properties that are difficult to measure directly. Meanwhile, the long-

established relationship between SOC and color, along with new technologies for the 

measurement of color, present expanding opportunities for the development of PTFs for the 

prediction of SOC. Therefore, the thesis project presented herein was designed with the following 

primary objectives: 

1) To develop a PTF for the prediction of SOC based on soil color and texture in the state of 

Nebraska.  

2) To evaluate the use of PCS and SPC methods of color analysis for the prediction of SOC in 

Nebraska. 
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CHAPTER 2 

QUANTIFYING THE RELATIONSHIP BETWEEN SOIL ORGANIC CARBON 

AND SOIL COLOR IN NEBRASKA 

 

2.1 Abstract 

Soil color is easily measured in the field and holds potential to be used as an indirect 

measurement of soil organic carbon (SOC). The main limitation to this approach is knowledge 

about the specific color-SOC relationship in a region, which often varies in relation to parent 

material, soil texture, climate, and land use. The primary objective of this study is to develop and 

evaluate the accuracy of pedotransfer functions (PTFs) for the prediction of SOC based on soil 

color and texture in the state of Nebraska. Data were obtained from the National Soil Information 

System (NASIS) database, including all pedons sampled across Nebraska and adjoining areas of 

surrounding states. The dataset was comprised of 1576 soil pedon descriptions and included 

samples with various soil textures, Munsell colors, and SOC. The relationship between Munsell 

value and SOC fit best to a logarithmic regression (R2 = 0.547), which shows a rapid decline in 

Munsell value with increasing SOC for samples with less than 1% SOC and a gradual decline in 

Munsell value with increasing SOC for samples with 1 to 6% SOC. Certain MLRAs and texture 

classes were noted to exhibit stronger relationships between color and texture than others. The 

most accurate predictions, with root mean square error (RMSE) of 0.795, includes use of texture-

specific regression equations for selected textures (silt loam, silty clay loam, loamy sand, and 

loamy very fine sand) and a generalized equation for all other textures. This PTF shows potential 

for SOC prediction based on soil color, but also reveals challenges inherent to the development of 

a generalized method for prediction of SOC based on color. 
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2.2 Introduction 

Healthy soils are the foundation of sustainable agriculture and land management. There 

are many parameters that are used to assess soil health, including water holding capacity, 

aeration, bulk density, and soil organic carbon (SOC) (Allen et al, 2011). Of these, SOC is of 

particular interest because it is correlated with many attributes of healthy soils, including soil 

structure, aggregate stability, porosity, and microbial activity (Billings et al, 2021). Furthermore, 

the soil is an immense pool of carbon. There is more carbon in the soil than in the atmosphere and 

all plant life combined (Powlson et al., 2011; Scharlemann et al., 2014). Consequently, managing 

soils to store more carbon in the form of SOC is a widely pursued strategy for climate change 

mitigation (Sommer & Bossio, 2014). Mollisols are the dominant soil type in Nebraska, and are 

considered to be some of the most fertile and high-yielding soils in the world. However, due to 

management practices that fail to return carbon to the soil, it is estimated that 50% of SOC stored 

in Mollisols has been lost gloabally (Xu et al., 2020).  

There is potential for mitigating climate change and improving soil health through land 

management practices that increase SOC. Agricultural management practices, such as cover 

crops, compost, rotational livestock grazing and no-till could improve overall soil health and 

remove carbon from the atmosphere (Blanco-Canqui et al, 2015; Byrnes et al, 2018; Blanco-

Canqui, 2021). The soil health gap concept was developed to address the topic of land 

management effects on soil health by comparing SOC between native and managed lands 

(Maharjan et al., 2020). For example, in Scotts Bluff County, NE, SOC levels of surface soils 

vary greatly between lands under various management practices, such as grassland (4.4% SOC), 

no-till cropland (2.2% SOC), conventionally tilled cropland (1.8% SOC), and exposed subsoil 

(0.7% SOC) (Maharjan et al., 2020). However, there are limitations. In some cases, no-till 

practices increase SOC at the surface (0-20 cm) while decreasing SOC in the subsurface (20-
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35cm) (Olson & Al-Kaisi, 2015). Thus, there is a need for continued SOC monitoring to 

evaluate soil’s response to management practices intended to increase SOC..  

There are many laboratory methods for determining SOC. The automated dry combustion 

method is commonly used to measure total soil carbon because of its accuracy and precision 

(Mikhailova et al, 2003). In soils without carbonates, total soil carbon can be assumed equivalent 

to SOC, but in calcareous soils, inorganic carbon must be accounted for, either by treating the 

sample to remove carbonates before dry combustion (Nelson & Sommers, 1996), or by analyzing 

inorganic carbon separately and calculating SOC as the difference (Sherrod et al., 2002). The 

Walkley-Black method of wet chemical oxidation using potassium dichromate (K2Cr2O7) was 

widely used between 1935 and the 1990s (Nelson & Sommers, 1996), but is rarely used in 

modern laboratories due to the production of hazardous dichromate waste (Mikhailova et al., 

2003). Other methods for SOC analysis include loss on ignition (LOI), visible-near infrared (Vis-

NIR), and mid-infrared (MIR) methods. The LOI method is relatively simple to perform and is 

routinely used in soil testing laboratories as a measure of soil organic matter. However, 

converting soil organic matter to SOC requires knowledge about the chemical composition of the 

organic matter, which often varies between regions and with depth in the soil (Baker, 2022). The 

Vis-NIR and MIR methods are spectroscopic methods that can detect absorption properties 

associated with organic matter and can be used to calculate SOC, but require specialized 

instrumentation (Liu et al., 2019; Seybold et al., 2019). Overall, there are a variety of laboratory 

methods for analysis of SOC which are suitable for various research purposes. However, the main 

drawback to all these methods is their expense and the amount of time required to collect 

samples, transport them to the laboratory, and run the analysis (Chatterjee et al., 2009). Because 

of these constraints, the majority of the SOC analyses are limited to specific experimental sites 

with un-replicated samples (Liles et al., 2013). With the urgent need for SOC data to support 

programs aimed at improving soil health and mitigating climate change, there is a demand for 
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diverse methods of SOC analysis, which can be selected by the user based on the relative 

importance of cost-effectiveness, speed, and accuracy for a particular application. Farmers and 

landowners who participate in soil carbon credits program could benefit from a simple, field-

based method of quantifying SOC (Mooney, 2004). Thus, there is a growing need for an 

effective, practical, and quick method of measuring SOC in the field. 

One of the possible methods to quantify SOC in the field is by utilizing pedotransfer 

functions (PTFs). The purpose of a PTF is to identify a statistical relationship that relates a soil 

property that is difficult to measure, to another property that is quick, easy, and inexpensive to 

measure. This relationship can then be used to estimate the property of interest. Early work on 

PTFs mainly focused on predicting soil hydraulic properties, such as saturated hydraulic 

conductivity (Wösten et al., 2001). Over the years, PTFs have been developed to predict other 

soil properties such as water retention and bulk density (Pachepsky & Rawls, 2003). Prediction of 

soil properties from PTFs is less costly and labor intensive than direct measurement of soil 

properties (Schillaci et al., 2021). While it is not advisable for PTFs to fully replace more 

traditional methods of analysis (Nasta et al., 2020; Yi et al., 2016), they can be a valuable tool 

when the data needed is not readily available or easy to obtain (Bouma, 1989; Hamblin, 1991).  

Previous work has been conducted on the development of PTFs for estimation of SOC, 

most using soil color as the main predictor variable (Liles et al., 2013; Wills et al., 2007). The 

Munsell color charts (MCCs) are the standard field-based method of measuring soil color. The 

MCCs describe color in terms of hue (shade), value (lightness), and chroma (saturation) 

(Pendleton & Nickerson, 1951; Thompson et al., 2013). Existing field descriptions collected 

using the MCCs, such as those contained in the USDA National Soils Information System 

(NASIS), provide a ready-to-use dataset for PTF development. Furthermore, the MCCs are easy 

to use, making it possible to engage a large user base, including citizen scientists, in the 

monitoring of SOC (Ferrando Jorge et al., 2021). However, the accuracy of color measurement 
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using the MCCs is limited by the subjectivity inherent to the method, which depends on correct 

color interpretation by the human eye, and may be challenging to use accurately under less than 

ideal lighting conditions (Stiglitz et al., 2016; Turk & Young, 2020). Digital tools, such as 

Bluetooth-connected color sensors and smartphone applications that uses the phone’s camera to 

measure color, have been used in recent studies as an alternative method to measure soil color in 

the field, which produced comparable results with the MCCs (Stiglitz et al., 2017; Fan et al., 

2017; Moritsuka et al., 2019). These methods overcome some of the limitations of MCC, as they 

do not rely on the interpretation by the human eye, and some digital tools have a built-in light 

source, thus avoiding errors related to poor lighting conditions.  

Nevertheless, color charts as a tool for SOC estimation are appealing due to their 

simplicity and ease of use. A prominent example of this is the color chart for estimating soil 

organic matter content in mineral soils in Illinois (Alexander & Knake, 1968). This chart is still 

widely used today, including in the Soil Health Test Buckets from USDA-NRCS (USDA-NRCS, 

2019). Although such color charts are widely used, regionally-specific versions of the charts have 

yet to be developed, even though it has long been recognized that the relationship between color 

and SOC varies among soil landscapes (Schulze et al., 1993). Differences in parent material, soil 

texture, climate, and land use may all contributed to the variety of relationships between SOC and 

soil color. In the case of soil texture, the same amount of organic matter typically produces a 

darker color in a coarse-textured soils compared to a fine-textured soil (Steinhardt & Franzmeier, 

1979). Steinhardt and Franzmeier (1979) developed a semi-quantitative relationship between soil 

color and organic matter in Indiana with up to 90% accuracy, but this level of accuracy can only 

be achieved when applied to cultivated silt loam soils under conventional tillage conditions. The 

diversity of soil texture and climate across Nebraska suggest that a large amount of data will be 

required to develop PTFs that can accurately predict SOC throughout the state (Elder, 1969). 
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 To quantify the relationship between SOC and color in Nebraska, a localized approach is 

needed. The primary objective of this study is to develop and compare the accuracy of different 

PTF equations to predict SOC based on soil color and texture in the state of Nebraska.  

 

2.3 Materials and methods 

 Analysis of soil databases 

The study area encompasses 13 Major Land Resource Areas (MLRAs) (Fig. 2.1), which 

vary in climate from subhumid to semi-arid and include a wide variety of soil parent material 

(e.g., residuum, loess, eolian sand, pre-Illinoian till, and alluvium) (Elder, 1969). All available 

pedon description and laboratory characterization data for soils within the state of Nebraska, as 

well as areas of surrounding states that share MLRA within Nebraska, were accessed through the 

National Soil Information System (NASIS). A dataset was extracted, which included moist 

Munsell color, SOC, and particle size distribution for 1576 pedons. For 121 pedons, only dry 

color was reported and moist color was assumed to be one value chip lower than dry color. Moist 

color was selected for use in the analysis as it is easier to measure in the field in most situations. 

Organic carbon data in NASIS was determined by either the Walkley-Black method of chemical 

oxidation or calculated as the difference between total carbon (measured by dry combustion) and 

inorganic carbon (measured by calcimeter) (Burt, 2014). Only those horizons with SOC between 

0 and 5.8% were included in the dataset, which mean 107 horizons were removed from the 

dataset prior to analysis. Zero is a logical lower threshold and the upper threshold of 5.8% 

corresponds with the cutoff between mineral soil materials and mucky-modified materials 

(Schoeneberger et al., 2012). Particle size distribution was obtained by pipette method (Burt, 

2014). The dataset included all 12 soil texture classes recognized in the USDA system 

(Schoeneberger et al., 2012).  
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Figure 2.1. Study area included 13 Major Land Resource Areas (MLRAs) in the state of Nebraska and 
portions of surrounding states: Pierre Shale Plains and Badlands (60A), Southern Rolling Pierre Shale Plains 
(63B), Mixed Sandy and Silty Tableland (64), Nebraska Sandhills (65), Dakota-Nebraska Eroded Tableland 
(66), Central High Plains (67), Central Nebraska Loess Hills (71), Central High Tableland (72), Rolling Plains 
and Breaks (73), Central Loess Plains (75), Loess Uplands (102C), Nebraska and Kansas Loess Drift Hills 
(106), Iowa and Missouri Deep Loess Hills (107). 

 

Development of carbon and color models 

The dataset was subdivided such that 70% of data was used for PTF development and 

30% was set aside for validation procedures. Data were assigned for PTF development and 

validation randomly, at the pedon level, resulting in 1103 pedons selected for PTF development 

and 473 set aside for validation. The PTF development dataset was used to fit regression 

equations relating moist Munsell value and SOC. Munsell value was selected for analysis as it is 

a measure of lightness or darkness, and therefore has the strongest relationship to SOC among the 

Sources: ESRI, USGS, and Nebraskamap.gov 
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three components of Munsell color. Preliminary analysis included a modification of the profile 

darkness index, which includes value and chroma, in the analysis (Thompson & Bell, 1996).  

However, incorporating chroma was found to weaken, rather than improve, the relationship to 

SOC. Regressions were developed for the full dataset, for individual MLRAs, and for individual 

texture classes. In the texture-specific family of regressions, some texture classes with limited 

data were combined: sandy clays were combined with sandy clay loams, silts were combined 

with silt loams, and very fine sands were combined with fine sands. Each regression, or family of 

regressions, was used to predict SOC in the validation dataset and evaluated by calculating the 

root mean square error (RMSE) of the prediction.  

 

2.4 Results 

Development of Pedotransfer Functions 

The relationship between Munsell value and SOC fit best to a logarithmic regression (R2 

= 0.547), which shows a rapid decline in Munsell value with increasing SOC for samples with 

less than 1% SOC and a gradual decline in Munsell value with increasing SOC for samples with 1 

to 5.8% SOC (Fig. 2.2). Certain MLRAs and texture classes were noted to exhibit stronger 

relationships between color and SOC than others (Table 2.1 and 2.2). Within the MLRA-specific 

analyses, the best relationships between Munsell value and SOC were found in MLRAs 65 

(Nebraska Sandhills), 75 (Central Loess Plains), 106 (Nebraska and Kansas Loess Drift Hills), 

and 107 (Iowa and Missouri Deep Loess Hills) (Fig. 2.3). While the best relationship for texture 

specific analysis were found in silty clay loam, silt loam, loamy very fine sand, and loamy sand 

(Fig. 2.4). The weakest relationships between Munsell value and SOC were found in MLRA 63B 

(Southern Rolling Pierre Shale Plains), 67 (Central High Plains), 60A (Pierre Shale Plains and 

Badlands), and 66 (Dakota-Nebraska Eroded Tableland) (R2 = 0.23 to 0.42) and the weakest 
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correlation were found in coarse sandy loam, coarse sand, silty clay, and silt loam (R2 =0.17 to 

0.32). 

Validation of the Predictions 

Predictions of SOC made using the PTFs described above had varying levels of error, 

with RMSE ranging from 0.795 to 2.1% (Table 2.3). The general regression equation, developed 

using all data in the training dataset, produced a prediction with a RMSE of 1.6%. Predictions 

made using sets of equations sub-divided by MLRA and texture alone did not improve the 

predictions (Table 2.1 and 2.2); the PTF using MLRA-specific equations yielded predictions with 

the same RMSE as the general equation (RMSE = 1.6%), whereas the use of texture-specific 

equations led to an increase in error (RMSE = 2.1%). When the PTFs were modified to use the 

selected equations, for a subset of MLRAs and textures with the strongest relationships between 

SOC and color, some improvement was found. When only MLRAs 75, 106, 65, and 107 were 

included in the analysis, error was reduced, but only slightly (RMSE=1.547%) (Table 2.3). 

However, when only selected textures were included (silty clay loam, silt loam, loamy fine sand, 

and loamy sand), a much greater reduction in error was found, with RMSE reduced to 0.795% 

(Table 2.3).  
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Figure 2.2. Plot of Munsell value (moist) versus soil organic carbon (%), including all data in the training 
dataset. 

 

Table 2.1 Prediction equations subsetted by Major Land Resource Area (MLRA) derived from simple logarithmic 
regression. R2: coefficient of determination. 

MLRA Equation R2  
(64) Mixed Sandy and Silty Tableland y = -0.769In(x) + 3.67 0.48 
(65) Nebraska Sandhills 
(66) Dakota-Nebraska Eroded Tableland 
(67) Central High Plains 
(71) Central Nebraska Loess Hills 
(72) Central High Tableland 
(73) Rolling Plains and Breaks 
(75) Central Loess Plains 
(102) Loess Uplands 
(106) Nebraska and Kansas Loess Drift Hills 
(107) Iowa and Missouri Deep Loess Hills 
(60A) Pierre Shale Plains and Badlands 
(63B) Southern Rolling Pierre Shale Plains 

y = -0.753In(x) + 3.25 
y = -0.657In(x) + 3.37 
y = -0.681In(x) + 3.37 
y = -0.832In(x) + 3.31 
y = -0779In(x) + 3.34 
y = -0.92In(x) + 3.29 
y = -0.966In(x) + 3.11 
y = -0.687In(x) + 3.22 
y = -0.824In(x) + 3.16 
y = -0.824In(x) + 3.38 
y = -0.79In(x) + 3.91 
y = -0.512In(x) + 3.7 

0.58 
0.42 
0.36 
0.56 
0.48 
0.51 
0.69 
0.5 
0.59 
0.59 
0.38 
0.23 
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Table 2.2 Description of prediction equations subsetted by textures derived from simple logarithmic regression. 
R2: coefficient of determination. 

Texture Equation R2  
Clay y = -0.881In(x) + 3.58 0.37 
Clay Loam 
Coarse Sand 
Coarse Sandy loam 
Fine Sand 
Fine Sandy loam 
Loam 
Loamy Coarse Sand 
Loamy Fine Sand 
Loamy Sand 
Loamy Very Fine Sand 
Sand 
Sandy Clay Loam 
Silt Loam 
Silty Clay 
Silty Clay Loam 
Sandy Loam 
Very Fine Sandy Loam 

y = -0.638In(x) + 3.49 
y = -0.491In(x) + 3.69 
y = -0.454In(x) + 3.96 
y = -0.761In(x) + 3.06 
y = -0.719In(x) + 3.26 
y = -0.904In(x) + 3.35 
y = -0.599In(x) + 2.69 
y = -0.765In(x) + 2.92 
y = -0.8In(x) + 3.01 
y = -0.551In(x) + 3.8 
y = -0.681In(x) + 3.15 
y = -0.59In(x) + 3.49 
y = -0.958In(x) + 3.3 
y = -0.714In(x) + 3.20 
y = -0.979In(x) + 3.17 
y = -0.671In(x) + 3.52 
y = -0.88In(x) + 3.36 

0.39 
0.25 
0.17 
0.49 
0.52 
0.51 
0.34 
0.46 
0.54 
0.55 
0.52 
0.46 
0.63 
0.31 
0.64 
0.32 
0.47 
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Figure 2.3. Plots of Munsell value (moist) versus soil organic carbon (%) for the specific Major Land 
Resource Areas (MLRAs) based on the training dataset, including: a) MLRA 65 (Nebraska Sandhills), b) 
MLRA 75 (Central Loess Plains), c) MLRA 106 (Nebraska and Kansas Loess-Drift Hills), and d) MLRA 107 

(Iowa and Missouri Deep Loess Hills). 
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Figure 2.4. Plots of Munsell value (moist) versus soil organic carbon (%) for the specific textures based on the 
trianing dataset, including: a) silty clay loam, b) loamy very fine sand, c) silt loam,and d) loamy sand. 
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Table 2.3 Root mean square error (RMSE) analysis of pedotransfer functions applied to the validation 
dataset. Predictions presented are based on regression derived from the full traning dataset (1), 
regressions subsetted by Major Land Resource Area (MLRA) (2), regressions for selected MLRAs (75, 106, 
65, and 107) (2a), regressions subsetted by soil texture (3), and regression for selected soil textures (silty 
clay loam, silt loam, loamy very fine sand, and loamy sand) (3a). 

Pedotransfer function RMSE 
1. General equation (Fig. 2.2) 1.6 
2. MLRA-specific equations 

(Table 2.1) 
1.6 

       2a.  Selected MLRA-specific 
equations (Figure 2.3) 

1.5 

3. Texture-specific equations 
(Table 2.2) 

2.1 

       3a.  Selected texture-specific 
equations (Figure 2.4) 

0.8 

 

 

 

2.5 Discussion 

Current laboratory methods of measuring SOC are time consuming and costly. A PTF 

that uses color to predict SOC offers a simple, field-based alternative. The results of this study 

show potential for using PTFs to predict SOC from soil color, especially for soils with textures of 

silty clay loam, loamy very fine sand, silt loam, and loamy sand. For other soil textures it is 

recommended to use the generalized equation (Fig. 2.3) as the PTF to estimate SOC. The 

generalized equation has a coefficient of determination (R2) of 0.547 which is within the range of 

R2 values of other SOC-prediction functions presented in the recent scientific literature, including 

those that use Bluetooth color sensors instead of the MCCs (Table 2.4). One notable difference 

between the studies is the choice to utilized only darkness attributes of color (e.g., value, L*), or 

to incorporate additional attributes of color (e.g., chroma, a*). While some studies found 

significant improvements with the inclusion of additional attributes of color (Rubinic et al., 2021; 

Stiglitz et al., 2017), preliminary analysis conducted using the Nebraska dataset found no 

improvement when chroma was incorporated into the analysis. This may be related to differences 

in mineralogy between the regions of study.  For example, the negative correlation of SOC with 
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a* (redness) on the South Carolina Piedmont may be explained because the presence of organic 

matter masks iron oxides that give the soils their red color.  However, this relationship is less 

pronounced or absent in soils with less hematite.  

Table 2.4 Comparison of studies utilizing soil color to predict soil organic carbon (SOC).  

Equation Variables R2  Methods Location Authors 
Piedmont:  
Y=-0.219(x)+1.273 
Coastal plain: 
Y=-0.05(X)+2.061 
 
y=-0.44(x)+40.08 
 
 
 
 
Value/chroma: 
y=-1.586+3.138(x) 
Chroma: 
y=-12.884-2.66(x) 

L* (Upper 30 cm 
sampled by horizon 
in wetlands.) 
 
 
L* (Upper 10 cm.) 
 
 
 
 
Value and Chroma 
for dry soil (0-30 cm 
Ap horizon.) 
 
 

0.05 
(Piedmont) 
0.62 
(Coastal plain) 
 
0.58 
 
 
 
 
0.76 
(value/chroma) 
0.88 
(chroma) 
 

Bluetooth color 
sensor (Nix Pro)    
 
 
 
MCCs 
Spectrophotometer 
 
 
 
MCCs. 
 

Northern 
Virginia, 
USA 
 
 
London, 
UK and 
Chantilly, 
France 
 
Zagreb, 
Croatia 

Schmidt 
and Ahn 
(2021) 
 
 
Ferrando 
Jorge et 
al. 
(2021) 
 
Rubinic 
et al. 
(2021) 

Dry soil: 
soc=8.509-
0.011(depth)-
0.101(l*)-0.113(a*) 
Moist soil: 
soc=5.703-
0.011(depth)-
0.055(l*)-0.083(a*) 

Depth, L*, a*; 
(Whole pedon.) 
 

0.80 
(dry) 
0.72 
(moist) 

Bluetooth color 
sensor (Nix Pro)  

Piedmont 
region of 
South 
Carolina, 
USA. 

Stiglitz et 
al., 
(2017) 
 

      
 

The relationship between SOC and color is strong for some soil textures and weak for 

others. The weakest correlations between SOC and color were among the textures containing 

coarse sand (coarse sand, loamy coarse sand, and coarse sandy loam), which yielded R2
 values 

ranging from 0.17 to 0.34. Perhaps in these soils, color is primarily controlled by the color of the 

sand grains themself, rather than the coating around them. Interestingly, the correlations are also 

weak on the other extreme, with the next weakest correlations occurring among soils that are high 

in clay (clays, clay loams, and silty clays), which had R2 values ranging from 0.31 to 0.39. 

Among these soils, the extremely high surface area may be leading to mineral-bound organic 
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forms that are not as strongly reflected in the soil color. The best correlations between SOC and 

color seems to occur among the loamy and silty textures. This is similar to the findings of past 

studies, which also found strong relationships between SOC and color specifically among soils 

with silt loam texture (Steinhardt and Franzmeier, 1979). 

Among the MLRAs, the weakest correlations between SOC and color were found in 

regions dominated by residual parent material. This includes MLRA 63B (Southern Rolling 

Pierre Shale Plains) (R2 = 0.23) and MLRA 67 (Central High Plains) (R2 = 0.36). This may be 

related to soil texture, as the relationship between SOC and color was found to be weakest among 

textures with high percentages of clay and coarse sand. Soils derived from shales in MLRA 63B 

are rich in clay, while sandstone-derived soils in MLRA 67 may weather to form soils with coarse 

sandy textures. Interestingly, research in Virginia also found that soils on the residuum-dominated 

Piedmont showed no correlation between color (L*) and SOC (R2 = 0.05), while soils on the 

Coastal Plain had significant correlation between these variables (R2 = 0.62) (Schmidt and Ahn, 

2021). The authors attribute this to the clay and iron-oxide rich nature of these soils. Other studies 

of piedmont soils achieved better predictions of SOC when additional variables, such as depth 

and redness (a*) are incorporated into the model (Stiglitz et al., 2017).  

When applied to the validation dataset, the lowest error (RMSE = 0.8%) was found when 

the analysis was narrowed to focus on four specific texture classes: silt loams, silty clay loams, 

loamy sands, and loamy very find sands.  For other texture, the generalized model works best, 

and the RMSE is 1.6%. Considering that the overall range of SOC considered in this study is 0 to 

5.8%, errors ranging from 0.8 to 1.6% will present a significant degree of uncertainty. Therefore, 

some caution is warranted in application of the PTF. While it may be able to discern soils with 

low (0-1.9%), moderate (2-3.9%), or high SOC (4-5.8%), small differences hold little meaning 

considering the degree of error inherent in the color-based estimates.  Much lower error rates can 

be achieved through technologies such as mid- (MIR) spectroscopy, which is a lower cost 
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alternative to traditional lab methods such as dry combustion. Using MIR, it is possible to 

achieved predictions with RMSE below 0.1% SOC (Dorantes et al., 2022). While higher error 

rates may be acceptable for some applications, a RMSE of 0.4% SOC or lower is desirable for 

applications within the context of climate change mitigation, based on initiatives such as 4 per 

1000, which advocates for regenerative agriculture with the aim of increasing SOC by 0.4% per 

year (Soussana et al., 2019).  

 

2.6 Conclusion 

The results of this study that a predictive equation for SOC from soil color can be used 

mainly on specific soil textures in Nebraska: silty clay loam, loamy very fine sand, silt loam, and 

loamy sand. Meanwhile, the generalized equation should be used for other soil textures in the 

database. Textures with coarse sands and high clay percentages are particularly problematic for 

develop color-based SOC prediction functions. This finding highlights the importance of soil 

texture in developing color based PTFs for SOC. 

Similar to other studies, these results also indicate a correlation between SOC and the 

attribute of color that measures darkness/lightness (i.e., Munsell value, CIELab L*). There is a 

rapid decline in Munsell value with increasing SOC in the low range (<1% SOC), and a gradual 

decline in Munsell value with increasing SOC up to 5.8%. Overall, there is a potential to use soil 

color as a predictor of SOC, however, users of such PTFs are cautioned to be aware of the 

limitations and errors. Certain soils, including those with coarse sands, high clay, and residual 

soils, are poorly fit in the PTFs presented here. Furthermore, even the textures identified as best 

suited for PTF still yield predictions with significant error rates (RMSE = 0.8), such that minor 

changes in SOC are unlikely to be detected. 
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There are many variables to take into account when developing a color-based PTF for 

prediction of SOC, including regional-specificity, color space (e.g., CIE Lab or Munsell), method 

of color measurement (e.g., MCC or digital tools), color attributes to include (e.g., value, chroma, 

or both), moist vs. dry color, and inclusions of other variables (e.g., texture, depth, land use). This 

study presents PTFs for the state of Nebraska, using the Munsell color system, measured by 

visual matching with the MCC in the moist state, with texture as the main extraneous variable. 

These are predictors that are easily measured in the field, which is the main advantage of this 

approach. However, the study also highlights that immense range of analyses possible given the 

large amount of Munsell color data available in soil databases such as NASIS. Continued use of 

legacy data, as well as new datasets exploring the use of digital tools, will surely continue to 

improve and expand upon the PTFs presented here. 
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CHAPTER 3 

USE OF SMARTPHONE CAMERAS AND PORTABLE COLOR SENSORS TO 

PREDICT ORGANIC CARBON IN NEBRASKA SOILS 

 

3.1 Abstract 

The Munsell color charts (MCCs) are the predominant method for field description of 

soil color in most soil survey applications. The main limitation to this method is the subjective 

nature of the data and the environmental condition which affects illumination during 

measurement. Recently, the availability of low-cost, digital portable color sensors (PCS) and 

smartphone cameras (SPCs) has been a promising alternative, albeit their effectiveness is still 

poorly understood. The primary objective of this study was to evaluate PCS and SPC-based color 

measurements as field predictors of soil organic carbon (SOC) in Nebraska. This study makes use 

of pedon description data from the National Soil Information System (NASIS) database, as well 

as 50 samples requested from the archive of the Kellogg National Soil Survey Laboratory. The R2 

for moist Munsell value and SOC for both PCS and MCC were0.52 and 0.54, respectively. The 

SPCs however, shows a weak correlation with R2 value of 0.36 (SPC1-iPhone) and 0.32 (SPC2-

Google Pixel). These results indicates that there is a potential of using alternative digital methods 

of measuring soil color and SOC compared to the MCCs. The use of a Nix Mini 2 portable color 

sensor, in particular, produced a comparable result with the MCCs. 
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3.2 Introduction 

Soil color is determined by various soil properties and conditions, including soil texture, 

soil organic matter, soil moisture, soil mineral composition, and land use (Baumann et al., 2016; 

Evans & Franzmeier, 1988; Franzmeier et al., 1983; Sanchez-Maranon et al., 2015; 

Schwertmann, 1993; Wills et al., 2007). Measurable quantitative relationships have been 

identified between soil color and soil organic carbon (SOC) (Steinhardt & Franzmeier, 1979; 

Liles et al., 2013). As an important indicator of soil health and fertility, the measurement of SOC 

is of interest to farmers, researchers, and government officials. However, the current methods of 

measuring SOC can be costly and time-consuming (Schillaci et al., 2021). Furthermore, not 

everyone seeking SOC data has access to laboratory equipment (Ferrando Jorge et al., 2021). Due 

to its dynamic nature, SOC is best captured through frequent measurements across time and 

space, creating a need for simple, low-cost methods of analysis. Indirect measurement of SOC, 

using soil color as a predictor, presents an alternative solution to this challenge.  

The Munsell color charts (MCCs) have been utilized to measure soil color in the field for 

more than half a century (Pendleton & Nickerson, 1951; Thompson et al., 2013). The MCCs 

describes soil color by hue, value, and chroma. Hue describes shade, value indicates lightness, 

and chroma is a measure of saturation (Pendleton & Nickerson, 1951). However, the MCCs are 

subjective to the individual performing the analysis and results may vary depending on the 

environment and lighting conditions, which makes this method inconsistent and prone to human 

error (Turk & Young. 2020; Stiglitz et al., 2016). Lastly, the three color dimensions (hue, value, 

and chroma) used in MCCs are challenging to enter into statistical analyses (Ibanez-Asensio et 

al., 2013; Kirillova et al., 2015; Fan et al., 2017).  

There are current alternatives offered to measure soil color in the field by utilizing 

inexpensive portable color sensors (PCS) or smartphone cameras (SPCs) (Stiglitz et al., 2016; 

Fan et al., 2017; Moritsuka et al., 2019). Both technologies are able to produce results that 
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compare well against a standard, such as MCCs or laboratory colorimeter measurements (Stiglitz 

et al., 2016; Fan et al., 2017). Thus, PCS and SPC-based measurements of color are useful 

alternative for measuring soil color in the field that are accessible, accurate, and have the 

potential for prediction of SOC (Schimit & Ahn, 2021; Stiglitz et al., 2017). Such predictions 

could help determine best management practices or soil reclamation methods and help to preserve 

and restore farmland or native habitats. (Stiglitz et al., 2017). The objectives of this study are to: 

1) compare PCS and SPC-based color measurements as field predictors of SOC in Nebraska 2) 

analyze the difference between color space models used in measuring soil color, and 3) analyze 

the effect of soil moisture state on color prediction.     

 

3.3 Materials and methods 

Samples used in the study 

The soil samples used in this study were obtained from the Kellogg Soil Survey 

Laboratory (KSSL) sample archive. The soil samples were selected from pedon description 

accessed through the National Soil Information System (NASIS) database, which represent the 

complete range of textures and SOC within three selected Major Land Resource Areas (MLRAs) 

across Nebraska. Nebraska MLRAs included in this study were MLRA 67 (Central High Plains), 

MLRA 75 (Central Loess Plains), and MLRA 106 (Nebraska and Kansas Loess Drift Hills). 

Samples in the archive are stored in an air-dried and disaggregated state. A total of 50 10-g 

subsamples were obtained for the project, which is the maximum number of subsamples and 

subsample size allowed for a single project by the KSSL. The soil textures collected include 

loam, clay, silty clay loam, silt loam, clay loam, and silty clay. The SOC range from 0.08 – 3.91% 

from the available subsamples. 
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Color analysis using PCS 

The color of each sample was evaluated using a low-cost ($99) PCS (Mini 2, Nix Sensor 

Ltd), which can be operated using a free application for Android or Apple smartphones. The Nix 

sensor is pocket-sized, rechargeable, and has a built-in light emitting diode (LED), which allows 

consistent illumination of the samples regardless of lighting conditions. The Nix sensor records 

the output of scan results in various color space including XYZ (y = luminance, x and z = virtual 

primary spectra), RGB (red, green, and blue), CMYK (cyan, magenta, yellow, and black), and 

CIEL*a*b* (Lightness (L*), redness (a*), and yellowness (b*)). However, the sensor does not 

give Munsell color space. 

A small amount of each sample was spread (diameter ± 2.5 cm) and flattened on an 

aluminum dish. The samples were moistened using a spray bottle until the color no longer 

changed as more water was added. The base of the sensor (diameter 1.5 cm) was placed directly 

on the flat surface of the moist sample, such that no external light entered the scanning area. The 

Nix Toolkit smartphone application was used to collected data from the sensor. The procedure 

was also repeated with dry samples to obtain the dry color of the soils. 

Color analysis using SPC 

The SPCs used in this study are the Apple iPhone XS Max with Dual 12 Megapixel wide-

angle and telephoto camera (SPC1), and Google Pixel 4A with 12.2 Megapixel tele-lens camera 

(SPC2). The Land Potential Knowledge System (LandPKS) application was used to capture the 

soil color (Herrick et al., 2016). The LandPKS application allows users to learn about the land 

and produce site-specific data on any specific location in the world (Herrick et al., 2013). One of 

the features in the application is the soil color measurement tool which allows users to measure 

soil color using the smartphone camera and a reference card. 

LandPKS color measurements were collected for each of the 50 sub-samples from the 

KSSL archive. Measurements using PCS and SPCs were collected on the same prepared and 
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moistened samples. The smartphone was held 30 cm above the soil surface, which as placed next 

to the reference card (G7 White Balance Pocket Card, WhiBal). Two desk lamps using 5000K 

“natural daylight” bulbs were positioned side by side on a 45-degree angle facing the samples to 

minimize shadows. Overhead fluorescent lighting was turned off so that all light reaching the 

samples was from the lamps. Within the LandPKS application, the soil color option was selected, 

which prompts the user to the camera. Both the soil sample and the reference card need to be in 

the photograph. The user selects areas within the photograph that are to be used for analysis, 

including the soil sample and the reference card. The LandPKS application reports the color in 

the Munsell color space, rounded to the nearest chip within the MCC, as well as the CIEL*a*b* 

and RGB colors. Dry colors were also obtained by repeating the procedure with dry samples.  

Munsell chips analysis 

The procedure was initially tested on MCCs chips using both PCS and SPCs to evaluate 

overall accuracy of the color measurements. The MCCs chips were measured to evaluate the error 

associated with each of the measurement method. Nineteen unique samples from the subset of 50 

was chosen to represent the widest range of color from the subsamples. The hue, value, and 

chroma were recorded for each of the method and subtracted by the original values from field 

description. The hue was converted into an absolute value by assigning number to each of the 

page from MCCs: 10R = 1, 2.5YR = 2, 5YR = 3, 7.5YR = 4, 10YR = 5, 2.5Y = 6, and 5Y = 7 

(Post et al., 1993). 

Data analysis 

Analyses were performed for both moist and dry samples using two color space systems: 

Munsell and CIEL*a*b. Because the PCS used in the study does not report Munsell color, a color 

analysis software (CT&A Version 6.0.7, BabelColor) was used to transform the colors from 

CIEL*a*b* to Munsell. The color analysis software was also used to transform NASIS pedon 

descriptions using MCCs to CIEL*a*b*. Regression analysis was performed between metrics of 
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soil lightness-darkness (Munsell value, CIEL*a*b* L*) and SOC for each set of measurements 

(PCS, SPC1, and SPC2). Regressions were performed using the full dataset of 50 samples, as 

well a subset of samples within an individual MLRA.  

3.4 Results 

Accuracy of color measurement obtained by PCS and SPCs 

Through direct measurement of color chips on the MCC, different levels of accuracy 

were found to be associated with the PCS and both SPCs (Table. 3.1). The PCS was found to be 

accurate when evaluating hues of low chroma color but reported hues that were slightly too red in 

the mid-chromas, and nearly a page too red for high chroma colors.  The PCS error was low for 

Munsell value and chroma. The SPC1 showed a high level of error for all components of Munsell 

color. Hues averaged 4.5 pages too yellow for low-chroma color, 1.5 pages too yellow for mid-

chroma colors, and 1.3 pages too red for high-chroma colors.  Values averaged nearly one unit 

higher than the chip measured and chromas averaged nearly one unit too low. Compared to SPC1, 

SPC2 was more accurate for hue, but less accurate for value and chroma.  The average hue was 

close to the actual page for low and mid chroma colors, but was an average of 1.3 pages too red 

for high-chroma colors.  Values were on average 1.1 units higher than the chip measured and 

chroma averaged 2 units lower than that of the chip measured. 
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Table 3.1. Average difference between the measured color and corresponding chip color for three 
methods: portable color sensor (PCS), smart phone camera (SPC) using iPhone (SPC1), and Google Pixel 
(SPC2). Hue was transformed to a linear scale by assigning a number value to each page of the Munsell 
color charts: 10R = 1, 2.5YR = 2, 5YR = 3, 7.5YR = 4, 10YR = 5, 2.5Y = 6, and 5Y = 7 (Post et al., 1993). 
Standard deviation (±). Positive value indicates lower estimation, negative value indicates higher 
estimation. 

Method Hue Value Chroma 

PCS 
low = 0 (±0)   
mid = -0.3 (±0.4) 0.2 (±0.14) 0.1 (±0.3) 
high = -0.9 (±0.5)   

SPC1  
low = 4.5 (±0.5) 

  

mid = 1.5 (±1.8) 0.9 (±0) -0.6 (±1.1) 
high = -1.9 (±1.3)   

SPC2 
low = N/A 

  

mid = -0.2 (±0.4) 1.1 (±0.64) -2 (±1.15) 
high = -1.3 (1.5)     

 

 

Relationship of Munsell Value and SOC 

Using Munsell value of moist samples, the PCS used in this study produced data that 

shows a similar relationship to SOC compared to data collected in the field using the MCCs (Fig. 

3.1a,b). The PCS (R2 = 0.52) and MCCs (R2=0.54) both show that slightly more than 50% of 

variance in Munsell value was explained by SOC. One difference between the methods is that the 

PCS can interpolate between chips on the MCC page (Fig. 3.1a). In contrast, the discrete nature of 

data collected using the MCCs is a major source of residuals in the Munsell dataset, as the position 

of data points are restricted to whole numbers on the Munsell-value axis (Fig. 3.1b). Much less of 

the variation in Munsell value measured with the SPCs could be explained by SOC (Fig. 3.1c,d). 

The SPCs produced regressions with low R2 values for both SPC1 (R2 = 0.36) and SPC2 (R2 = 

0.32). The Munsell Value comparison between the two significant methods of MCCs and PCS 

shows a comparable variance that can be explained by SOC. Linear regression model using MCCs 

in the Munsell Value system reveal the R2 = 0.42, meanwhile the PCS has a similar R2 = 0.46 (Fig 

3.2)  For all methods, the relationship between dry Munsell value and SOC was weaker than that 

of the moist color (R2 = 0.14-0.4) (Appendix). 
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Relationship of L* and SOC 

Using the CIEL*a*b* color space produced similar results to those obtained using the 

Munsell color space (Fig. 3.2). While Munsell value and L* are numerically different, both show 

a similar relationship to SOC in terms of the amount of variance that could be explained by SOC.  

Using moist L*, the PCS used in this study produced data that shows a similar relationship to 

SOC compared to data collected in the field using the MCC and converted into the CIEL*a*b* 

color space (Fig. 3.3a,b). The PCS (R2 = 0.52) and MCC (R2=0.54) both show that slightly more 

than 50% of variance in L* was explained by SOC.  The discrete nature of data from collected 

using the MCC is still an apparent source of residuals, even when the data is converted into the 

CIEL*a*b* color space (Fig. 3.3a).  Much less of the variation in L* measured with the SPCs 

could be explained by SOC (Fig. 3.3c,d). The SPCs produced regressions with low R2 values for 

both SPC1 (R2 = 0.4) and SPC2 (R2 = 0.29).  Dry color L*, similar to dry Munsell value, showed 

a weak relationship to SOC regardless of the method of analysis (R2 = 0.19 – 0.42) (Appendix). 

Influence of MLRA and textures on variance of SOC 

Further analyses of the data by examining the MLRAs and texture produces relationships 

in which more variances can be explained by SOC. Regressions using PCS measurement in the 

CIEL*a*b color space reveal different relationships between L* and SOC for each MLRA, such 

that the residuals are lower when the regions are analyzed separately (R2 = 0.47 to 0.81) (Fig 

.3.4). This is also true for the subset of texture data, although the residuals have a wider range (R2 

= 0.22 to 0.79) (Fig. 3.5). Overall, more variance in color can be explained by SOC when 

MLRAs and textures are considered separately.  
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Figure 3.1. Plots of Munsell value (moist) versus soil organic carbon (%) for a) portable color sensor (PCS) 
of Nix Mini 2, b) Munsell color charts (MCCs), c) Smartphone Camera 1: iPhone XS Max (SPC1), and d) 

Smartphone Camera 2: Google Pixel 4A (SPC2). 
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Figure 3.2. Plots of Munsell value (moist) versus soil organic carbon (%) showing comparison betweenr a) 
Munsell color charts (MCCs), b) portable color sensor (PCS) of Nix Mini 2. 
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Figure 3.3. Plots of CIELab*L (moist) versus soil organic carbon (%) for a) portable color sensor (PCS) of Nix 
Mini 2, b) Munsell color charts (MCCs), c) Smartphone Camera 1: iPhone XS Max (SPC1), and d) 

Smartphone Camera 2: Google Pixel 4A (SPC2). 
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Figure 3.4. CELab*L of moist samples measured using a PCS plotted versus SOC (%) for each MLRA 
included in the study: a) Central High Plains (MLRA 67), b) Central Loess Plains (MLRA 75), and c) Nebraska 

and Kansas Loess-Drift Hills (MLRA 106). 
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Figure 3.5. CELab*L of moist samples measured using a PCS plotted versus SOC (%) for each soil textures 
included in the study: a) silty clay, b) loam, c) silt loam, d) silty clay loam. 
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3.5 Discussion 

Digital devices for measuring soil color, including PCSs and SPCs, are compelling 

alternatives to the MCC. The PCS used in this study was the most accurate for measuring 

Munsell value, and was the best predictor of SOC. When data from all MLRAs was combined, 

regressions of measurements collected by PCS and MCCs showed similar levels of residuals, 

however, PCS measurements showed greater reduction in residuals when MLRAs were 

considered separately. This suggests that there are differences in the SOC-color relationship 

between the regions, which become more apparent with the higher resolution measurement 

collected with the PCS compared to the MCCs. The PCS used in this study is approximately half 

the cost of a new MCC and can interpolate between the chips. One disadvantage is that the 

application for the PCS does not directly report data in the Munsell color space, so if data needs 

to be expressed in this form, additional steps are required to convert the data.  

Compared to the PCS, the inaccuracy of SPCs at measuring value limits their potential 

application for predicting SOC. While past studies found that colors determined using SPCs 

compare well with MCCs (Fan et al., 2017), our SPC results show a high level of inaccuracy 

(Table 3.1). This may be because the previous study used dry soil color (Fan et al., 2017), while 

our work focused on moist colors and instead found that moist colors are better for predicting 

SOC. The darker colors of soils in their moist state may be less accurately measured by the SPC.  

Munsell value and CIEL*a*b* both work well for measuring the relationship between the 

lightness value and SOC. This gives the option for the user to choose the method that works best 

for them based on the available instrument and their budget. Other studies have suggested that dry 

color work best, if not better, in measuring soil color and SOC (Rubinic et al., 2021; Stiglitz et al, 

2017). However, there seems to be no advantage of incorporating dry color in this study. This 

could be caused by the different sampling depth and whether subsoil samples are included in the 

analysis. 
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3.6 Conclusion 

Soil color, measured with a PCS, can be used to predict SOC. Overall, the relationship 

between color and SOC is similar, regardless of whether measurements are taken with the PCS or 

manually with the MCCs. However, SPC measurements were found to be less accurate, which 

limits their potential application for prediction SOC. Munsell value and CIEL*a*b* both show 

strong relationships to SOC and are suitable for development of predictive functions. Functions 

are provided here in both color spaces. Each of the three Nebraska MLRAs show a unique 

function, therefore the equations presented here are best suited to use on soils from these MLRAs. 

Moist color was found to be a better predictor of SOC compared to dry color. However, the result 

is limited to some factors including the range of soil textures, lighting conditions for the SPCs 

(which only used one type of artificial lightning), and the total number of samples (n=50) used in 

the study. Larger sample set will allow the validation of the dataset using subset of the samples. 

Another limitation is the aggregation state of the soil samples that varied between lab samples 

(disaggregated) and the field sample data (aggregated) which can affect the color measured in the 

analysis. Therefore, further studies are needed to investigate the relationship between SOC and 

soil color with broader range of samples under different soil type and textures, aggregation state, 

moisture state, and different natural lighting conditions.  
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3.8 Appendix 

 

Figure 3.6. CELab*L of dry samples plotted versus SOC (%) measured using different methods included in 
the study: a) Portable Color Sensor (PCS,) b) Smartphone Camera 1: iPhone XS Max (SPC1), and c) 

Smartphone Camera 2: Google Pixel 4A (SPC2). 
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Figure 3.7. Munsell Value of dry samples plotted versus SOC (%) measured using different methods 
included in the study: a) Portable Color Sensor (PCS,) b) Smartphone Camera 1: iPhone XS Max (SPC1), c) 

Smartphone Camera 2: Google Pixel 4A (SPC2). 
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CHAPTER 4 

SUMMARY AND RECOMMENDATIONS 

4.1 Key Findings 

• Predictive equation for SOC from soil color can be used mainly on specific soil textures: 

silty clay loam, loamy very fine sand, silt loam, and loamy sand. Meanwhile, the 

generalized equation should be used for other soil textures in the database. Textures with 

coarse sands and high clay percentages are particularly problematic for development of 

color-based SOC prediction functions. This finding highlights the importance of soil 

texture in developing color based PTFs for SOC. 

• Digital devices for measuring soil color, including PCSs and SPCs, are compelling 

alternatives to the MCC. The PCS used in this study was the most accurate for measuring 

moist Munsell value, and was the best predictor of SOC. 

• The color space system of Munsell and CIELa*b* work similarly on measuring the 

relationship between the moist lightness value and SOC. This gives the option for the 

user to choose the method that works best for them based on the available instrument and 

their budget 

• There is no significant advantage of incorporating dry color in this study. The dry color 

shows a weak relationship to SOC for both color space systems (Munsell and CIELa*b) 

regardless of the method of analysis.  

4.2 Summary 

This project aimed to evaluate and quantify the relationship between SOC and soil color 

in the state of Nebraska, while testing alternative digital methods in measuring soil color and their 

relationships with SOC.  
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The primary objectives of this work were to: 

3) Develop a PTF for the prediction of SOC based on soil color and texture in the state of 

Nebraska, and  

4) Evaluate the use of a low-cost color sensor and a mobile application using that uses the 

smartphone camera for color analysis for the prediction of SOC in Nebraska. 

Chapter 2 of this thesis addressed objective number one. The pedon data was collected 

from the National Soil Information System (NASIS) database, which included soil 

characterization data within the state of Nebraska, as well as portions of surrounding states that 

share Major Land Resource Areas (MLRAs) with Nebraska. The study area encompassed 13 

MLRAs with only those horizons with SOC between 0 and 5.8% included in the dataset. The 

dataset was subdivided, such that 70% of data was used for PTF development and 30% was set 

aside for validation procedures. The PTF development dataset was used to fit regression 

equations relating moist Munsell value and SOC. Regressions were developed for the full dataset, 

for individual MLRAs, and for individual texture classes. The results showed the relationship 

between Munsell value and SOC fit best to a logarithmic regression (R2 = 0.547), which had a 

rapid decline in Munsell value with increasing SOC for samples with less than 1% SOC, and a 

gradual decline in Munsell value with increasing SOC for samples with 1 to 5.8% SOC. Among 

the MLRAs, the best relationships between Munsell value and SOC were found in MLRAs 65 

(Nebraska Sandhills), 75 (Central Loess Plains), 106 (Nebraska and Kansas Loess Drift Hills), 

and 107 (Iowa and Missouri Deep Loess Hills). Meanwhile the weakest correlations between 

SOC and color were found in regions dominated by residual parent materials. This includes 

MLRA 63B (Southern Rolling Pierre Shale Plains) and MLRA 67 (Central High Plains).  Some 

of the textures in the study yielded a good relationship between SOC and soil color, while others 

resulted in poor relationships. The best relationship for texture-specific analysis were found in 
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silty clay loams, silt loams, loamy very fine sands, and loamy sands while the weakest 

correlations between SOC and color were amount the textures containing coarse sand (coarse 

sands, loamy coarse sands, and coarse sandy loams). These result indicates that a predictive 

equation for SOC from soil color can be utilized for specific soil textures. Meanwhile, the 

generalized equation shoul be used for other soil textures in the database. Textures with coarse 

sands and high clay percentages are particularly problematic for develop color-based SOC 

prediction functions. This finding highlights the importance of soil texture in the development of 

PTFs relating to soil color and SOC. 

Chapter 3 of this thesis addressed objective number two. The soil samples used in this 

study were obtained from the Kellogg Soil Survey Laboratory (KSSL) sample archive. The soil 

samples were selected from pedon descriptions accessed through the National Soil Information 

System (NASIS) database, which represent the complete range of textures and SOC within three 

selected Major Land Resource Areas (MLRAs) across Nebraska. MLRA 67 (Central High 

Plains), MLRA 75 (Central Loess Plains), and MLRA 106 (Nebraska and Kansas Loess Drift 

Hills). Two main methods of using PCS and SPCs to determine soil color were compared against 

the MCCs. The color of each sample was evaluated using a PCS (Mini 2, Nix Sensor Ltd), with is 

low-cost ($99) and can be operated using a free application for Android or Apple smartphones. 

Soil color was also determined with SPCs of Apple iPhone XS Max (SPC1) and Google Pixel 4A 

(SPC2), which utilized the LandPKS mobile application available within both operating systems. 

Both moist and dry color of the samples was measured. The study also compared the Munsell 

value against the CIELa*b* color space system. The results showed that the PCS used in this 

study produced SOC data that shows a similar relationship to the data collected in the field using 

the MCCs. The PCS (R2 = 0.52) and MCCs (R2=0.54) both show that slightly more than 50% of 

variance in Munsell value was explained by SOC. Meanwhile the SPCs produced regressions 

with low R2 values for both SPC1 (R2 = 0.36) and SPC2 (R2 = 0.32). In all analyses, dry samples 
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produced a weaker correlation between soil color and SOC regardless of the methods used. 

Overall, these results indicate that there is a potential of using alternative digital methods of 

measuring soil color and SOC compared to the MCCs. The use of PCS of Nix Mini 2 sensor 

especially produced a comparable similar result with MCCs. Meanwhile, the SPCs yielded a 

weaker result and had different variances depending on the specific phone and camera type. The 

comparison between color space systems of Munsell and CIELa*b* showed a similar result 

which offers a flexibility and choice in selecting the methods used in predicting SOC from soil 

color. Furthermore, moisture conditions affected the measurement of the relationship between 

soil color and SOC which favor moist soil conditions over dry soil in this study. 

 

4.3 Limitations and recommendation for future research 

There are many variables to take into account when developing a color-based PTF for 

prediction of SOC, including regional-specificity, color space (e.g., CIELa*b* or Munsell), 

method of color measurement (e.g., MCC or digital tools), color attributes to include (e.g., value, 

chroma, or both), moist vs. dry color, and inclusions of other soil variables (e.g., texture, depth, 

land use). This study presents PTFs for the state of Nebraska, using the Munsell color system, 

measured by visual matching with the MCC in the moist state, with texture as the main 

extraneous variable. These are predictors that are easily measured in the field, which is the main 

advantage of this approach. However, this study also highlights the immense range of analyses 

possible given the large amount of Munsell color data available in soil databases, such as NASIS. 

For future research direction, the continued use of legacy data, as well as new datasets exploring 

the use of newer digital tools, will surely continue to improve and expand upon the PTFs 

presented in here.  Furthermore, the results presented from comparison of PCS and SPCs to 

MCCs was limited by a variety of factors including the range of soil textures included, lighting 

conditions for some analyses, and the limited amounts of samples (n=50) used in the study. 
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Larger sample set will allow the validation of the dataset using subset of the samples. Another 

limitation is the aggregation state of the soil samples that varied between lab samples 

(disaggregated) and the field sample data (aggregated) which can affect the color measured in the 

analysis. Therefore, further studies are needed to investigate the relationship between SOC and 

soil color with broader range of samples under different soil type and textures, aggregation state, 

moisture state, and different natural lighting conditions. 
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