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When consuming a high rate of carbohydrate (> 60 g/h) dur-
ing prolonged exercise, co-ingesting glucose and fructose has 
been purported to increase exogenous carbohydrate utiliza-
tion, reduce gastrointestinal (GI) distress, and enhance per-
formance (Jeukendrup, 2010). Glucose and fructose utilize 
separate transporters for intestinal absorption (SGLT1 and 
GLUT5; Wood & Trayhurn, 2003) and have been referred 
to in the literature as multiple transportable carbohydrates 
(MTC). When glucose is consumed at a rate above 60 g/h, 
SGLT1 may become saturated, providing a plausible mecha-
nism for improvements in exogenous carbohydrate oxidation 
and GI distress (Jeukendrup, 2010). In addition, fructose in-
gestion increases blood lactate through up-regulation of py-
ruvate kinase (Macdonald et al., 1978), and this lactate can 
be oxidized during exercise (Miller et al., 2002). Furthermore, 
concentrated fructose solutions empty faster from the stom-
ach than glucose solutions (Sole & Noakes, 1989) and may 
result in more rapid fluid delivery (Jeukendrup & Moseley, 
2010; Roberts et al., 2014). These mechanisms provide strong 
rationale for use of MTC during prolonged exercise, which is 
supported by studies demonstrating MTC reduce GI distress 
(O’Brien & Rowlands, 2011; O’Brien et al., 2013; Roberts et 
al., 2014) and lead to performance improvements as large as 
8% (Jeukendrup, 2010; Triplett et al., 2010). 

Despite these findings, several limitations to the MTC re-
search need to be addressed. Cycling has been used in all but 
three studies (Pfeiffer et al., 2009; Clarke et al., 2012; Lee et 
al., 2014), which is unfortunate given the popularity of run-
ning and GI distress is more prevalent during running (Pe-
ters et al., 1993). None of the three studies that utilized run-
ning demonstrated clear benefits with MTC, but they may 
have been either too short (Pfeiffer et al., 2009; Lee et al., 
2014) or did not feed a high enough rate of carbohydrate 
(Clarke et al., 2012; Lee et al., 2014). Only two studies pro-
vided information on beverage flavor characteristics, both 
of which reported sweetness differences (Rowlands et al., 
2008; O’Brien et al., 2013). Furthermore, previous investi-
gations (Jeukendrup & Moseley, 2010; Lecoultre et al., 2010; 
Triplett et al., 2010; O’Brien & Rowlands, 2011; Roberts et 
al., 2014) often used fluid volumes (~1000 mL/h) exceed-
ing ad libitum intakes for field events (Pfeiffer et al., 2012), 
which suggests these protocols could be difficult to imple-
ment during “real-life” events. Finally, studies were often 
conducted with participants fasted (Jeukendrup & Moseley, 
2010; Lecoultre et al., 2010; Triplett et al., 2010; O’Brien & 
Rowlands, 2011; Roberts et al., 2014) and only three stud-
ies included women (Pfeiffer et al., 2009; Rowlands et al., 
2012; Lee et al., 2014).  
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Abstract 
This study aimed to determine whether glucose-fructose (GF) ingestion, relative to glucose-only, would alter performance, metabolism, 
gastrointestinal (GI) symptoms, and psychological affect during prolonged running. On two occasions, 20 runners (14 men) completed 
a 120-min submaximal run followed by a 4-mile time trial (TT). Participants consumed glucose-only (G) or GF (1.2:1 ratio) beverages, 
which supplied ~1.3 g/min of carbohydrate. Substrate use, blood lactate, psychological affect [Feeling Scale (FS)], and GI distress were 
measured. Differences between conditions were assessed using magnitude-based inferential statistics. Participants completed the TT 
1.9% (−1.9; −4.2, 0.4) faster with GF, representing a likely benefit. FS ratings were possibly higher and GI symptoms were possibly-to-
likely lower with GF during the submaximal period and TT. Effect sizes for GI distress and FS ratings were relatively small (Cohen’s d = 
~0.2 to 0.4). GF resulted in possibly higher fat oxidation during the submaximal period. No clear differences in lactate were observed. In 
conclusion, GF ingestion – compared with glucose-only – likely improves TT performance after 2 h of submaximal running, and GI dis-
tress and psychological affect are likely mechanisms. These results apply to runners consuming fluid at 500– 600 mL/h and carbohy-
drate at 1.0–1.3 g/min during running at 60–70% VO2peak. 
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This study aimed to determine whether ingestion of a 
glucose-fructose beverage, under fed conditions, would al-
ter performance, metabolism, GI symptoms, and psychologi-
cal affect during prolonged running. Beverages supplied car-
bohydrate at 1.3 g/min in a double-blind, crossover fashion, 
with goals of matching sweetness and providing realistic 
fluid and carbohydrate feeding rates. Beverages supplied 
carbohydrate as glucose-fructose or glucose-only during 120 
min of steady-state running, which was followed by a 4-mile 
time trial (TT). We hypothesized that glucose-fructose in-
gestion would improve performance, improve psychologi-
cal affect, reduce GI distress, increase blood lactate, and in-
crease end-exercise carbohydrate oxidation. 

Materials and methods 

Participants 
Participants were recruited from the Minneapolis-St. Paul area. 
Eligibility criteria included completion of at least one marathon 
within the past year (men < 210 min; women < 225 min), running 
≥ 30 miles/week, and completion of at least two 20-mile runs over 
the past 2 months. Participants went through an informed consent 
process prior to signing a University of Minnesota Institutional 
Review Board approved consent form. A total of 17 men and nine 
women were enrolled in the study. Fourteen men [35.8 ± 2.2 years; 
body mass index (BMI), 22.9 ± 0.5 kg/m; personal record marathon 
time, 182 ± 2 min; VO2peak, 58.7 ± 1.9 mL/kg/min] and six women 
(31.3 ± 2.9 years; BMI, 21.8 ± 0.5 kg/m; PR marathon time, 201 ± 6 
min; VO2peak, 55.0 ± 2.4 mL/kg/min) completed all visits; reasons 
for not completing are presented in Fig. 1. 

Procedures 
Each participant underwent two, ~2.5 h runs during which they 
consumed the beverages. The initial 120 min consisted of submax-
imal running at a constant velocity, after which participants com-
pleted a 4-mile TT to assess performance. Data collection began 
October 2013 and was completed by March 2014. 

Participants were assigned to beverages using a randomized, 
double-blind, counterbalanced, crossover design. Beverages sup-
plied carbohydrate at ~1.3 g/min during the submaximal period, 
since a rate of < 0.8–1.0 g/min has failed to elicit metabolic and 
performance differences in past research (Jeukendrup, 2010). Al-
though we considered standardizing the carbohydrate feeding rate 
to body size, we decided against this since there is little evidence to 
suggest that carbohydrate absorption capacity is significantly in-
fluenced by body size. In addition, fluid volume was not standard-
ized against body size since it would have resulted in different bev-
erage concentrations between participants. 

The glucose-fructose beverage (GF) was a 10.3% carbohydrate 
mixture (103 g per 1 kg tap water) containing maltodextrin (Star- 
Dri® 10, Tate & Lyle, Decatur, Illinois, USA) and crystalline fruc-
tose (Krystar® 300, Tate & Lyle). Glucose and fructose were sup-
plied in a 1.2:1 ratio (5.61% maltodextrin and 4.66% fructose) 
because previous studies have indicated it may be optimal (Row-
lands et al., 2008; O’Brien & Rowlands, 2011; O’Brien et al., 2013). 
The glucose-only beverage (G) supplied carbohydrate as 5.61% 
maltodextrin (Star-Dri® 10, Tate & Lyle) and 4.66% dextrose an-
hydrous (Cerelose®, Ingredion, Westchester, Illinois, USA). Con-
centrations of 10.3% were chosen because fluid intakes for run-
ners during events lasting 1–3 h rarely exceed 600 mL/h (Pfeiffer 
et al., 2012), and 1000 mL/h of a 6% beverage would be necessary 
to supply carbohydrate at ≥ 1.0 g/min. Both beverages contained 
sodium chloride (540 mg/kg water) and lemon juice (9 g/kg wa-
ter), and since fructose is sweeter than glucose, G was treated with 
aspartame (90 mg/kg water). To ensure researcher blinding, one 
investigator mixed beverages in two identical containers, labeled 
them, and left the room. An individual not involved with data col-
lection subsequently chose one of the beverages by drawing as-
signments from sex-specific envelopes. 

Participants reported to the Human and Sport Performance 
Laboratory (HSPL) 1–4 weeks before their first run. Participants 
completed a cardiorespiratory test on a treadmill (Pro XL, Wood-
way USA, Waukesha, Wisconsin, USA). The protocol began with 
a 3-min walk at 5.0 km/h and 0% grade. Subsequently, 1-min 
stages at 1% grade with 0.64 km/h speed increases were used to 
achieve a speed equal to the participant’s 5 km pace by the 11th 

Figure 1. The flow of participants through the study.   
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minute. Grade was increased 1.5% every minute thereafter un-
til volitional exhaustion. 

Participants recorded training for 5 days prior to each run, 
while diet was recorded with prospective records for 2 days. In-
takes of energy, carbohydrate, fat and protein were calculated 
based on manufacturer information (if available) or the USDA Food 
Database (U.S. Department of Agriculture, 2012). Participants were 
asked to avoid strenuous activity and alcohol for 48 h and caffeine 
for 12 h before visits. For their second run, participants were in-
structed to match training and diet from their first run. To fur-
ther standardize nutrition, participants were supplied meals for 
the night before (between 5–7 p.m.) and morning of runs (2 h be-
fore). The meals provided were between 140–210 and 75–115 g of 
carbohydrate for dinner and breakfast, depending on body mass. 

Physiological outcomes 
A metabolic cart (Ultima, Medical Graphics, St. Paul, Minnesota, 
USA) measured breath-by-breath exchange of oxygen and carbon 
dioxide. Oxygen consumption (VO2) and carbon dioxide expiration 
(VCO2) were calculated automatically by the software Breeze (Med-
ical Graphics). Rates of carbohydrate and fat oxidation were esti-
mated using stoichiometric equations from Jeukendrup and Wal-
lis (2005): (carbohydrate = 4.210 VCO2 – 2.962 VO2 – 2.37 N; fat = 
1.695 VO2 – 1.701 VCO2 – 1.77 N). VCO2 and VO2 were in L/min and 
N (nitrogen excretion) was considered to be negligible. 

Capillary blood lactate was assessed using a handheld analyzer 
(Lactate Plus, Nova Biomedical, Waltham, Massachusetts, USA). 
The finger was cleaned with an alcohol swab, and a damp cotton 
pad removed excess alcohol. The finger was dried for 1 min, after 
which the treadmill was stopped and the participant’s finger was 
pricked with a lancet. Heart rate (HR) was recorded with a chest 
strap monitor (Polar, Kempele, Finland). 

Psychometric outcomes 
The Feeling Scale (FS), an 11-point scale ranging from +5 to −5, as-
sessed pleasure and displeasure (Hardy & Rejeski, 1989). To as-
sess GI distress, a 7-point scale with anchors ranging from “no dis-
comfort” at 1 to “very severe discomfort” at 7 was adapted from 
the validated Gastrointestinal Symptom Rating Scale (Revicki et 
al., 1998). Nausea, belching/regurgitation/reflux, bloating/full-
ness, gas/flatulence, lower abdominal cramps, and urge to defe-
cate were assessed. To assess blinding, participants rated beverage 
sweetness and overall likability on a labeled hedonic scale (LHS; 
Lim et al., 2009). Sweetness scores ranged from 0 to +100 (“neu-
tral” to “most sweet sensation imaginable”) while overall likabil-
ity ranged from −100 to +100 (“most disliked sensation imagin-
able” to “most liked sensation imaginable”). 

Submaximal protocol 
Constant-velocity, 120-min runs were separated by at least 14 
days. A median of 23 (15–33) days elapsed between runs for men, 
while women completed runs within 26–29 days to control for 
menstrual cycle. Participants reported to HSPL between 6 and 9 
a.m. for their first run and within 1 h of that time for their second 
run. Upon arrival, participants voided and were weighed. 

Participants’ GI symptoms, FS ratings, and HR were recorded 25 
min before starting the submaximal protocol. Ten minutes before, 
participants completed a 5-min warm-up, after which they rested for 
5 min. Treadmill velocity for the submaximal protocol was set at 90% 
of the average pace from the participant’s most recent marathon. 

At 25 min before the start, participants consumed their first 
beverage dose supplying 55.4 g of carbohydrate (~600 mL). This 
pre-exercise feeding was given so that modest boluses could be 

used during running, as large boluses (200–250 mL every 15–20 
min) would have been required to supply carbohydrate at 1.3 g/
min with the exclusive use of during-exercise feedings. Notably, 
runners reported during pilot testing that they were not accus-
tomed to consuming large fluid boluses (200–250 mL). Partici-
pants consumed additional doses after 20, 40, 60, 80, and 100 min 
of running, and immediately after the submaximal protocol. Feed-
ings at 20, 40, 60, and 80 min provided 18.4 g of carbohydrate 
(~180 mL) while feedings at 100 min and the finish provided 14.7 
(~140 mL) and 11 g (~110 mL), respectively. Volumes decreased 
over time because it was the most tolerable strategy during pilot 
testing. Treadmill velocity was slowed to 75% of marathon pace for 
up to 2 min while participants consumed boluses. Beverages were 
kept at 2.8–4.0 °C until 15 min before the first bolus. The weight of 
remaining beverage was recorded immediately after the last dose 
was administered, with a consumption goal of 1682 g. 

At specified intervals, respiratory gases (5, 91, 117 min), HR/FS/
GI symptoms (−25, 10, 30, 50, 70, 90, 110 min), and LHS ratings (−25, 
20, 60, 100 min) were collected. Lactate was taken at 55 and 115 min. 
A fan was placed adjacent to the treadmill and set at medium veloc-
ity. Treadmill velocity was verified every 2 weeks with a tachometer 
(RPM33, Extech Instruments, Nashua, New Hampshire, USA). 

Time trial performance 
After the 120 min submaximal protocol, the treadmill was stopped 
for 2 min to allow participants to consume the last beverage dose, 
allow participants to void, and repeat instructions. Participants 
were instructed to complete 4 miles as fast as possible and were 
told they could change velocity as frequently as desired. As GI 
symptoms are purported to be a mechanism responsible for per-
formance benefits with MTC, participants were told they could use 
the restroom, if necessary, but that it would count toward finish-
ing time (as it would in a race). The restroom was located in prox-
imity to the treadmill (~15 ft). Participants were unable to view 
time elapsed but were able to see distance covered. Investigator 
and participant interactions were limited to soliciting FS and GI 
ratings. FS ratings and HR were recorded at miles 0.5, 1.5, 2.5, 3.5, 
and 4. GI symptoms were solicited at miles 0.5 and 3.5. 

Statistical analyses 
A magnitude-based inferential statistics approach that reports un-
certainty of outcomes as 90% confidence limits (CL) was utilized 
to evaluate treatment effects. This approach calculates effects with 
90% CL and interprets them in relation to the smallest worthwhile 
effect (Batterham & Hopkins, 2006). Interpretation is done using 
probabilities that the true (population) effect is greater, trivial, or 
lower in relation to the smallest worthwhile effect. Effects, 90% CL, 
and chances that effects were positive, trivial, or negative were cal-
culated using a spreadsheet for crossover trials (Hopkins, 2006b). 
The smallest worthwhile effects for performance were set at +0.8% 
and −0.8%, using the recommendation of 0.3 times the coefficient 
of variation (~2.5%) for endurance running performance (Hopkins 
& Hewson, 2001; Hopkins, 2004). For physiological measures, GI 
distress, and FS ratings, differences were interpreted using a Cohen 
effect, with thresholds set at +0.2 and –.02 (Cohen, 1988). Chance 
thresholds for variables were accompanied by qualitative descrip-
tors: < 0.5%, almost certainly not; 0.5–5%, very unlikely; 5–25%, 
unlikely; 25–75%, possibly; 75–95%, likely; 95–99.5%, very likely; 
> 99.5%, almost certain. If chances of positive and negative effects 
were both >5%, the effect was considered unclear. 

Performance times and physiological measures were natural log 
transformed (Hopkins, 2003), and performance times were back 
transformed to obtain percentage differences. Peak GI and LHS 
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ratings were percentile rank transformed because of resistance 
to log transformation. Nadir (low) and change (rest – 110 min) FS 
ratings were used for the submaximal protocol to limit the number 
of inferences. To account for order or learning effects, differences 
in finishing time (G minus GF) were analyzed separately based on 
randomization sequence (G/GF and GF/G). The independent ef-
fects were then combined using a spreadsheet that accounts for 
order effects (Hopkins, 2006a). 

TT data for two participants were excluded. One participant ex-
perienced hip pain preventing running during the latter half of his 
second TT, whereas a treadmill malfunction occurred during an-
other participant’s second TT. Additionally, one participant’s first 
TT value was truncated to a value equal to two standard deviations 
from the mean because it appeared to be a possible outlier, thus 
preserving the order of the data but reducing the influence of the 
data point (Field, 2009). Gas exchange for one participant was un-
available because of a computer malfunction. Lactate values were 
not available for two participants at 55 min and five participants 
at 115 min because of inadequate sample volume, which occurs for 
up to 10% of Lactate Plus readings. To simplify interpretation, un-
transformed means (±standard errors) are presented for variables 
that were transformed for inferences. Normality was assessed via 
the Shapiro-Wilk test. Descriptive statistics were generated using 
SPSS version 22 (IBM, Armonk, New York, USA). 

Results 

Randomization was counterbalanced among study com-
pleters, with 10 participants randomized to G first and 10 
participants to GF first. Intakes of energy (5319 ± 256 vs 
5300 ± 204 kcal), carbohydrate (11 ± 0.5 vs 10.9 ± 0.4 g/kg 

body mass), fat (159 ± 11 vs 155 ± 12 g) and protein (208 
± 14 vs 223 ± 17 g) were similar for G and GF over 2 days 
before the runs. 

Finishing times for the TT ranged from 23:50 to 35:37 
min, and finishing times for G and GF were 28:46 ± 0:44 
and 28:11 ± 0:44 min (Table 1). Participants completed the 
TT 1.9% (−1.9; −4.2, 0.4) faster with GF compared with G, 
and there was 79% chance that the true population effect 
was −0.8% or lower. The effect was similar after account-
ing for order effects (−2.2%; −4.3, −0.1). Effect sizes for men 
and women were −1.6% (−4.2, 1.2) and −2.6% (−8.1, 3.1), 
respectively. 

Participants exercised, on average, at 65% of VO2peak dur-
ing the submaximal protocols. Mean oxygen uptake during 
G was 2.64 ± 0.1 L/min for all time points, while values dur-
ing GF were 2.68 ± 0.1, 2.67 ± 0.1, and 2.68 ± 0.1 L/min at 
5, 91, and 117 min, respectively. Table 2 presents data for 
physiological variables hypothesized to be different between 
conditions. Median (IQR) lactate concentrations at 55 min 
were 2.3 (1.6–3.4) and 1.9 (1.4–3.3) mmol/L for G and GF. 
Lactate concentrations were 1.9 (1.3–2.7) and 1.7 (1.4– 3.0) 
mmol/L for G and GF at 115 min. Mean HR over the submax-
imal protocol was 145.4 ± 2.3 and 144.8 ± 2.1 b/min for G 
and GF. During the TT, mean HR was 167.9 ± 2.6 and 168.3 
± 2.5 b/min for G and GF. 

Contrary to our hypothesis, carbohydrate oxidation was 
not higher with GF at the end of the submaximal protocol. 
In fact, there was a 32% chance that carbohydrate oxida-
tion was lower with GF. At both 5 and 117 min, GF resulted 

Table 1. Inferential statistics for 4-mile time trial performance

                       Chances of GF being higher, 
         G†   GF†    % Difference (90% CL)‡   trivial, and lower relative to G§   Interpretation

Finishing time* (min:s)    28:46   28:11   −1.9 (−4.2, 0.4)     3%, 18%, 79%       Likely lower

* Excludes two participants because of a treadmill malfunction and hip pain (n = 18).
† Means (min:s) prior to transformation
‡ Based on natural log transformation
§ Based on smallest worthwhile differences of +0.8% and −0.8%
CL, confidence limits; G, glucose-only; GF, glucose-fructose

Table 2. Inferential statistics for substrate use and physiological markers
 
   Difference expressed   Chances of GF being higher,
 G*  GF*  as Cohen (90% CL)†   trivial, and lower relative to G‡   Interpretation

CHO oxidation (g/min)
    5 min  2.41  2.32  −0.19 (−0.44, 0.07)  1%, 52%, 47%  Possibly lower
    91 min  2.05  2.08  0.06 (−0.16, 0.28)  13%, 84%, 3%  Likely trivial
    117 min  1.91  1.83  −0.14 (−0.36, 0.08)  1%, 68%, 32%  Possibly lower
Fat oxidation (g/min)
    5 min  0.34  0.40  0.33 (−0.15, 0.80)  67%, 29%, 4%  Possibly higher
    91 min  0.49  0.49  −0.04 (−0.36, 0.28)  10%, 70%, 20%  Unclear
    117 min  0.54  0.60  0.18 (−0.05, 0.41)  45%, 55%, 0%  Possibly higher
Lactate (mmol/L)
    55 min  2.68  2.39  −0.19 (−0.63, 0.25)  7%, 44%, 49%  Unclear
    115 min  2.07  2.12  −0.02 (−0.50, 0.45)  21%, 53%, 26%  Unclear

* Means prior to transformation
† Based on natural log-transformation
‡ Based on Cohen effect sizes of +0.2 and −0.2. CHO and fat oxidation unavailable for one participant (n = 19). Lactate unavailable for two participants at 
55 min (n = 18) and five participants at 115 min (n = 15)
CHO, carbohydrate; CL, confidence limits; G, glucose-only; GF, glucose-fructose
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in possibly higher fat oxidation relative to G. Lactate effects 
were unclear at both time points. 

GI distress incidence is shown in Table 3, expressed as 
frequencies of experiencing any symptoms (>1) and at least 
mild symptoms (≥ 3). Table 4 shows inferential statistics for 

GI symptoms and other psychometric variables. During the 
submaximal period, belching/regurgitation/reflux, bloat-
ing/fullness, and gas/flatulence were all likely lower with GF 
(Cohen’s ranging from −0.37 to −0.45), while effects for ab-
dominal cramps and urge to defecate were unclear. Similar 

Table 3. Incidence of gastrointestinal distress

                                                                                                 No. reporting > 1 (%)                                                                              No. reporting ≥ 3 (%)

  G  GF  G  GF

Submaximal (n = 20)
 Nausea  3 (15%)  1 (5%)  1 (5%)  1 (5%)
 Belching/regurgitation/reflux  13 (65%)  9 (45%)  2 (10%)  1 (5%)
 Fullness/bloating  14 (70%)  10 (50%)  6 (30%)  3 (15%)
 Lower abdominal cramps  9 (45%)  8 (40%)  3 (15%)  1 (5%)
 Gas/flatulence  7 (35%)  4 (20%)  3 (15%)  0 (0%)
 Urge to defecate  4 (20%)  3 (15%)  3 (15%)  0 (0%)
Time trial (n = 18)
 Nausea 4 (22%)  1 (6%)  1 (6%)  1 (6%)
 Belching/regurgitation/reflux  4 (22%)  4 (22%)  0 (0%)  0 (0%)
 Fullness/bloating  5 (28%)  4 (22%)  3 (17%)  1 (6%)
 Lower abdominal cramps  7 (39%)  5 (28%)  3 (17%)  3 (17%)
 Gas/flatulence  5 (28%)  4 (22%)  2 (11%)  1 (6%)
 Urge to defecate  4 (22%)  2 (11%)  3 (17%)  1 (6%)

GI symptoms rated from “no discomfort” = 1 to “very severe discomfort” = 7. Based on peak values reported.
G, glucose-only; GF, glucose-fructose.

Table 4. Inferential statistics for psychometric scales

   Difference expressed  Chances of GF being higher,
  G*  GF*  as Cohen (90% CL)† trivial, and lower relative to G‡ Interpretation

FS (−5 to +5)
    Submax nadir  2.15  2.55  0.22 (−0.05, 0.49)  55%, 44%, 1%  Possibly higher
    Change (rest – 110 min)  2.35  1.90  −0.25 (−0.49, −0.01)  0%, 35%, 65%  Possibly lower
    TT average  −0.06  0.32  0.15 (−0.17, 0.48)  40%, 56%, 4%  Possibly higher
Submaximal GI symptoms§ (1 to 7)
    Belching/regurgitation/reflux  1.75  1.50  −0.38 (−0.81, 0.04)  1%, 22%, 77%  Likely lower
    Bloating/fullness  2.20  1.70  −0.45 (−0.79, −0.10)  0%, 11%, 89%  Likely lower
    Abdominal cramps  1.60  1.50  −0.16 (−0.55, 0.23)  6%, 50%, 43%  Unclear
    Gas/flatulence  1.50  1.20  −0.37 (−0.78, 0.04)  1%, 22%, 76%  Likely lower
    Urge to defecate  1.35  1.15 −0.16 (−0.54, 0.21)  6%, 51%, 43%  Unclear
Time trial GI symptoms (1 to 7)
    Nausea  1.28  1.11  −0.44 (−1.01, 0.14)  4%, 21%, 76%  Likely lower
    Belching/regurgitation/reflux  1.22  1.22  0.00 (−0.55, 0.55)  27%, 46%, 27%  Unclear
    Bloating/fullness  1.67  1.33  −0.16 (−0.52, 0.20)  5%, 52%, 43%  Possibly lower
    Abdominal cramps  1.72  1.56  −0.20 (−0.56, 0.16)  4%, 47%, 50%  Possibly lower
    Gas/flatulence  1.50  1.33  −0.14 (−0.60, 0.33)  11%, 48%, 41%  Unclear
    Urge to defecate  1.67  1.22  −0.29 (−0.78, 0.19)  5%, 32%, 63%  Possibly lower
LHS ratings (0 to 100)
    Sweet rest  25.1  24.0  −0.08 (−0.48, 0.31)  12%, 58%, 30%  Unclear
    Sweet 20 min  22.8  27.1  0.23 (−0.16, 0.63)  56%, 41%, 4%  Possibly higher
    Sweet 60 min  26.4  24.3 −0.12 (−0.44, 0.21)  6%, 62%, 33%  Unclear
    Sweet 100 min  21.8  22.4  0.07 (−0.39, 0.53)  32%, 52%, 16%  Unclear
    Likability rest  12.0  10.8  −0.11 (−0.46, 0.24)  7%, 59%, 33%  Unclear
    Likability 20 min  16.0  15.1  −0.04 (−0.33, 0.25)  8%, 74%, 18%  Unclear
    Likability 60 min  16.3  18.6  0.04 (−0.32, 0.39)  22%, 65%, 13%  Unclear
    Likability 100 min  13.7  21.3  0.30 (−0.02, 0.61)  69%, 30%, 1%  Possibly higher

* Means prior to transformation
† LHS ratings and peak GI symptoms were based on percentile rank transformation.
‡ Based on smallest worthwhile Cohen effect sizes of +0.2 and −0.2
§ Submaximal nausea was not examined because of low overall incidence. Submaximal, n = 20; TT, n = 18
CL, confidence limits; FS, Feeling Scale; G, glucose-only; GF, glucose-fructose; GI, gastrointestinal; LHS, labeled hedonic scale; TT, time trial
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patterns for GI distress emerged during the TT, but effect 
sizes were generally smaller. Relative to a Cohen thresh-
old of 0.2, nadir FS ratings during the submaximal proto-
col were possibly higher with GF (55% chance), and FS rat-
ings possibly showed a smaller reduction from rest to 110 
min (65% chance). FS ratings averaged over the TT were 
possibly higher with GF (40% chance). Effects for beverage 
sweetness and likability were unclear, with the exception of 
possibly higher sweetness with GF at 20 min (Cohen = 0.23; 
−0.16, 0.63) and higher likability with GF at 100 min (Co-
hen = 0.30; −0.02, 0.61). 

Weights of beverage consumed for G and GF were 1660 
± 2 g and 1659 ± 2 g, respectively. Body weight decreased 
by 1.8 ± 0.1 kg for both conditions. 

Discussion 

The primary finding of this investigation was that inges-
tion of a glucose-fructose beverage (ratio of 1.2:1) likely im-
proved 4-mile TT performance after 2 h of submaximal run-
ning. This finding should be interpreted within the context 
of the study design, with factors including a carbohydrate 
feeding rate of 1.3 g/min, a carbohydrate concentration of 
10%, and exercise intensity of 60–70% VO2peak. In addition, 
participants completed trials in a fed state, which increases 
the generalizability of findings relative to previous studies 
(Jeukendrup & Moseley, 2010; Lecoultre et al., 2010; Triplett 
et al., 2010; O’Brien & Rowlands, 2011; Roberts et al., 2014). 
The direction and magnitude of performance benefits were 
similar for men and women, with magnitudes ranging from 
1.6% to 2.6%. 

Notably, this is the first study to find a likely performance 
benefit with MTC during running. Previously, Pfeiffer et al. 
(2009) and Lee et al. (2014) examined the effects of glucose-
only or glucose-fructose ingestion on endurance running 
performance. In Pfeiffer et al. (2009), gels supplied carbo-
hydrate at 1.4 g/min during 16 km outdoor running, and fin-
ishing times were not different between conditions (1:14:25 
for glucose vs 1:14:41 for glucose-fructose). Lee et al. (2014) 
utilized half-marathon treadmill running, and carbohydrate 
was supplied at roughly 1.0 g/min in three forms (6% glu-
cose-only beverage, glucose-only gels, and glucose-fructose 
gels). No significant perceptual or performance differences 
were found, although effect sizes between the conditions 
were modest (glucose-fructose gel resulted in 2.7–3.0% 
slower finishing times). The fact that our study used a pro-
tocol of sustainably longer duration may partly explain the 
discrepant findings with these two studies. The other run-
ning-based study had 11 men complete a 90-min soccer pro-
tocol while ingesting carbohydrate at 1.0 g/min from glu-
cose or a 2:1 glucose-fructose mix (Clarke et al., 2012). After 
the protocol, participants ran to exhaustion on a treadmill 
at 12.8 km/h and 20% grade. Time-to-exhaustion (83 ± 3 
vs 77 ± 7.2 s) was not significantly different, but there was 
a trend for longer time-to-exhaustion with glucose-fructose 

(P = 0.06). Given the inconsistencies between studies, fur-
ther research is needed to delineate the effects of MTC for a 
range of running-based tasks. 

The GI effects of fructose may partly explain the perfor-
mance benefit in this study, as previous investigations in-
dicate that GI distress can negatively impact performance. 
Rowlands et al. (2012) and O’Brien et al. (2013) used sta-
tistical modeling to assess the magnitude of performance 
benefit attributable to reductions in GI symptoms and found 
that abdominal cramps significantly mediated cycling per-
formance outcomes. Moreover, one of the only MTC studies 
to utilize a pure TT clearly showed that GI distress can sub-
stantially impair performance. Specifically, participants fin-
ished a 100-km cycle TT 8% faster when consuming a glu-
cose-fructose beverage compared with glucose-only, and of 
nine participants, two experienced diarrhea and one expe-
rienced vomiting with glucose-only (Triplett et al., 2010). 
These observations seem to be supported by our data, as 
GI distress was possibly-to-likely lower with GF for most 
symptoms. 

Several mechanisms may be responsible for the observed 
GI effects. Under resting conditions, concentrated fructose-
containing solutions empty faster from the stomach than 
glucose solutions (Sole & Noakes, 1989), and these differ-
ences are best explained by the inhibitory feedback effects 
of glucose on intestinal afferents (Zittel et al., 1994). Inhi-
bition of gastric emptying with glucose would explain the 
likely higher ratings of bloating/fullness observed with G 
during the present study. Additionally, SGLT1 transporters 
may become saturated with large, rapid glucose feedings, 
which could cause carbohydrate malabsorption and osmotic 
fluid shifts into the intestine (Jeukendrup, 2010). These ef-
fects could explain the possibly higher ratings of abdominal 
cramping and gas in this and previous studies. 

In terms of psychological affect, it is possible the GF re-
sulted in higher FS ratings. These positive effects were ap-
parent when expressing FS ratings as nadir and change val-
ues, as well as average values during the TT. In light of the 
multiple physiological effects of fructose, we are not able to 
delineate precisely which mechanisms were responsible for 
the possible differences. Interestingly, a recent blinded study 
found that glucose and fructose activate different brain re-
gions and may have differential effects on reward and moti-
vational processing (Page et al., 2013). Others have argued 
that sweetness partially mediates the performance bene-
fit of glucose-fructose ingestion (O’Brien et al., 2013), but 
sweetness differences were not generally apparent in this 
study (with the exception of a small possible difference at 
20 min). Beverage likability was similar between condi-
tions, but ratings for GF were likely higher at 100 min de-
spite no differences in sweetness. It will be important for 
future studies to assess beverage sensory characteristics in 
order to help delineate whether metabolic or psychometric 
properties of fructose are primarily responsible for perfor-
mance benefits with MTC ingestion. 
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Despite the apparent confirmation of performance, GI, 
and psychological benefits, our hypotheses that glucose-
fructose would result in higher lactate and carbohydrate ox-
idation were not supported. Previous studies found higher 
lactate concentrations with fructose feeding compared 
with glucose, but timing of ingestion may mediate this ef-
fect. Fructose ingestion prior to exercise elevates blood lac-
tate during the postprandial period, but lactate falls with the 
onset of exercise, at least in comparison to glucose (Harg-
reaves et al., 1985). Thus, feeding a substantial amount of 
fructose 25 min prior to exercise possibly minimized eleva-
tions in lactate 80 min later. In regards to carbohydrate oxi-
dation, some (Lecoultre et al., 2010; Roberts et al., 2014) but 
not all studies (Jeukendrup & Moseley, 2010) have found dif-
ferences in total carbohydrate oxidation with MTC. Interest-
ingly, fat oxidation was possibly higher for GF at 5 and 117 
min. Lower fat oxidation with G, especially at 5 min, could 
have been due to a greater insulin release, leading to insulin-
associated fat oxidation suppression (Koivisto et al., 1981). 
Given the lack of support for our hypotheses related to car-
bohydrate and lactate metabolism, it would seem the per-
formance benefits were more likely a result of GI and psy-
chological effects. 

There are several novel approaches and strengths to this 
study. Unlike much of the previous literature, this investiga-
tion was double-blinded with data on participant blinding. 
The majority of previous studies were conducted with par-
ticipants fasted, but participants in our study received two 
meals to ensure nutrition was similar between participants 
and trials. Furthermore, the beverage volume was similar to 
intakes observed in the field (Pfeiffer et al., 2012), and since 
many of the previous investigations used volumes (~1000 
mL/h) exceeding ad libitum intakes, generalizability of pre-
vious data may be limited. 

Despite this study’s strengths, limitations need to be ac-
knowledged. We did not use a non-carbohydrate control, 
mainly because participant burden would have been in-
creased to three runs. Recruitment was likely enhanced, 
however, by requiring only two runs, which was evidenced 
by the relatively large sample size. Another limitation is the 
lack of data on exogenous carbohydrate oxidation, which 
requires tracers; the use of invasive and time-consuming 
testing was avoided to maximize recruitment. Finally, the 
amount of fluid and carbohydrate ingested were not accord-
ing to participant preference. Competitors that experience 
GI distress often adjust intake to mitigate symptoms, but 
our participants were required to drink a prescribed rate 
regardless of symptoms experienced. 

Perspectives 

This study showed that ingestion of glucose-fructose in 
a ratio of 1.2:1 – compared with glucose-only – likely im-
proved performance, possibly reduced GI distress, and pos-
sibly improved psychological affect during prolonged run-
ning. The performance benefits observed were most likely 

attributable to GI and psychological effects of glucose-fruc-
tose co-ingestion. These results apply to competitive run-
ners consuming fluid and carbohydrate at relatively ag-
gressive rates (500–600 mL/h and 1.0–1.3 g/min) during 
running at an intensity of 60–70% VO2peak. Performance 
benefits were similar for men and women alike, and thus, 
this study provides evidence – albeit tentative – that inges-
tion of MTC can be useful for female athletes. To build upon 
these findings, additional studies are needed to determine 
whether MTC improve performance, GI distress, and psycho-
logical affect for a wide range of running-based activities.    
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