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1 Introduction

Poly(lactic acid) (polylactate or polylactide) (PLA) is a polyes-
ter, and is synthesized from l- and d-lactic acids, which are pro-
duced from the fermentation of sugar and (poly)saccharides 
such as sugar feedstocks and corn, wheat and other starches. 
The lactic acid is converted to PLA either by ring-opening po-
lymerization of lactide (formed by condensation of two lactic 
acid entities) or by condensation polymerization. PLA is insol-
uble in water and has good moisture and grease resistance. 
PLA is used widely as a biodegradable and renewable plas-
tic for uses in service ware, grocery, waste-composting bags, 
mulch films, controlled release matrices for fertilizers, pesti-
cides and herbicides [1].

Starch is an inexpensive and readily available resource, and 
is often used as a filler for the replacement of petroleum-de-
rived synthetic polymers to decrease environmental pollution. 
However, starch has severe limitations because of its water sol-
ubility and poor water-resistance, making starch products very 
sensitive to the relative humidity at which they are stored and 
used [2]. Starch-polyester blends are being produced with the 
objective of maintaining the excellent physical properties of 
the polyesters while reducing cost. A process was developed 
at the University of Nebraska–Lincoln to produce starch-
based plastic foam with 70% starch combined with a variety 
of ingredients and plastics [3]. Fang and Hanna [4] found that 
addition of PLA to regular and waxy corn starches improved 

the physical and mechanical properties of the foams. More re-
cently, formation of nanocomposites with the aim of improv-
ing functional properties has become popular.

Polymer nanocomposites are a class of reinforced poly-
mers containing small quantities (1-5%, w/w) of nanometric- 
sized clay particles. The functional properties of the nano-
composites are improved markedly compared to those of the 
unfilled polymer or conventional composites. These improve-
ments include high moduli [5, 6]; increased tensile strength 
[7] and thermal stability [8]; decreased gas permeability [9] 
and flammability [10]; and increased biodegradability of bio-
degradable polymers [11].

Melt intercalation by extrusion is the most common ap-
proach to synthesize nanocomposites because it is an envi-
ronmentally-friendly process that requires no solvent and is 
suitable for industrial uses [12, 13]. Extrusion processing is 
considered to be more of an art than science.

Numerous studies have reported on the complexities of 
the extrusion process and modeling of the process. Extrusion 
cooking can be described as a process whereby moistened 
materials are cooked and worked into viscous, plastic-like 
dough. Cooking is accomplished through the application of 
heat, either directly by steam injection or indirectly through 
jacketed barrels and by dissipation of mechanical energy 
through shearing of the dough [14].

Mathematical modeling of the extrusion process began in 
the fields of plastic and polymer engineering. Because of the 
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Abstract
Tapioca starch, poly(lactic acid) and Cloisite 30B nanocomposites foams, with clay contents of 1, 3, 5 and 7% (w/w), were prepared by a melt-
intercalation method. Multiple inputs single output models were developed to predict radial expansion ratio, unit density, bulk compressibility 
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temperature, pressure and torque as input parameters. All models preformed well with R2 values > 0.71. All models had very low root mean 
squared error values.
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complexity of the extrusion process, complex mathematical 
models have been proposed to describe the process. In re-
cent years, new modeling tools like fuzzy modeling have been 
developed. Fuzzy modeling in extrusion is challenging due to 
the complexity of the process which consists of multiple in-
puts and multiple outputs which are highly non-linear. Fuzzy 
modeling makes it possible to utilize experience, knowledge 
and large amounts of process data. Artificial neural networks 
have been used to model and identify predictive models for 
a food extrusion process [15], control a food extrusion pro-
cess [16] and for polymer extrusion [17].

In this study, we present a novel neuro-fuzzy approach, i.e. 
adaptive network-based fuzzy inference system (ANFIS), to 
model extrusion of nanocomposite foams. ANFIS is a fuzzy 
inference system implemented in the framework of an adap-
tive neural network. By using a hybrid learning procedure, 
ANFIS can construct input-output mapping based on both 
human-knowledge as fuzzy If-Then rules and given input-out-
put data pairs for neural networks training [18]. ANFIS is a 
powerful tool in fuzzy modeling to learn information about 
the given input and output data sets in order to compute the 
membership functions that describe the associated fuzzy in-
ference system.

The objectives of this study were to prepare tapioca 
starch/PLA/Cloisite 30B nanocomposite foams of different 
clay contents via extrusion, to investigate the influence of clay 
content on the mechanical properties of the foams and to 
use ANFIS to model the clay content, temperature, pressure 
and torque on the mechanical properties of the foams.

2 Materials and Methods

2.1 Materials

Semicrystalline poly(lactic) acid (PLA) resin of MWn 85,000 
was produced by Cargill, Inc. (Minneapolis, MN, USA). It 
contained ~93% l-lactide, 2% d-lactide and 5% meso-lactide. 
Commercially available tapioca starch (17% amylose and 83% 
amylopectin) was purchased from Starch Tech, Inc. (Golden 
Valley, MN, USA). Tapioca starch was agglomerated into 
spherical granules of 2–4 mm diameter to facilitate feed-
ing into the extruder. The moisture content of the tapioca 
starch was adjusted to 18%, dry basis, with distilled water 
prior to extrusion. Tapioca starch, PLA, sodium bicarbonate, 
citric acid and clay were blended in a Hobart mixer (Model 
C-100, Horbart Corp., Troy, OH, USA) and stored in plastic 
jars prior to extrusion. A PLA content of 10% was selected 
based on preliminary experiments. Fang and Hanna [19] 
used three levels of polymer content (10, 25 and 40%) in 
their study of mechanical properties of starch-based foams. 
They found that, at 10% PLA content, the foams possessed 

the highest spring index and intermediate compressibility 
and Young’s modulus. Sodium bicarbonate (0.5%) and citric 
acid (0.5%) were added to degrade the biodegradable poly-
mer into chains of between 1,000 and 100,000 Da or ap-
proximately 500 to 50,000 monosaccharide groups to pro-
mote expansion [3]. Organically modified montmorillonite 
under the trade name of Cloisite 30B (methyl-tallow-bis-2-
hydroxyethyl ammonium) (MT2EtOH) was purchased from 
Southern Clay Products Inc. (Gonzalez, TX, USA). The par-
ticle size range of the nanoclay was 2-13 μm. Four differ-
ent relative contents of Cloisite 30B (1, 3, 5 and 7%, w/w) 
were added to the formulation. The PLA and the nanoclay 
were dried at 70°C for at least 24 h before preparing the 
formulations.

2.2 Extrusion

A twin-screw extruder (Model DR-2027-K13, C. W. Bra-
bender, Inc., S. Hackensack, NJ, USA) with corotating mix-
ing screws (Model CTSE-V, C. W. Brabender, Inc., S. Hacken-
sack, NJ, USA) was used to conduct extrusions. The conical 
screws had diameters decreasing from 43 mm to 28 mm 
along their length of 365 mm from the feed end to the exit 
end. On each screw, there was a mixing section, in which 
small portions of the screw flights were cut away. The mixing 
section enhanced mixing and also increased the residence 
time of the sample in the barrel. A 150-rpm screw speed 
was used for all extrusions. The temperature at the feed-
ing section was maintained at 50°C, the second barrel sec-
tion at 120°C, the third barrel section at 150°C and the die 
section at 170°C. A 3 mm diameter die nozzle was used to 
produce continuous cylindrical rope-like extrudates, which 
were cut by a rotary cutter. The extruder was controlled by 
a Plasti-Corder (Type FE 2000, C. W. Brabender, Inc. S. Hack-
ensack, NJ, USA).

Temperature profiles, pressure profiles and torque read-
ings were recorded for fuzzy modeling. Extrusion conditions 
selected were based on preliminary studies and previous 
experiments.

2.3 Radial expansion ratio (RER)

RERs of the extruded foams were calculated by dividing the 
mean cross-sectional areas of the extrudates by the cross-
sectional area of the die nozzle. Each calculated value was a 
mean of 20 observations.

2.4 Unit density (UD)

Unit density of the extrudates were determined using a glass 
bead displacement method [20]. The glass beads had 0.1 mm 
diameter. Mean values of UD were obtained by averaging five 
replicates.
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2.5 Bulk spring index (SI)

BSI measurements were made using an Instron universal test-
ing machine (Model 5566, Instron Engineering Corp., Canton, 
MA, USA). A cylindrical aluminum container with a volume of 
365 cm3 (6.93 cm in diameter and 9.68 cm in depth) was used 
to confine the bulk samples. The forces required to initially 
compress the samples to 80% of their original volumes and 
the forces required to recompress the same samples 1 min 
after releasing the initial load were recorded. BSI was calcu-
lated by dividing the recompression force by the initial com-
pression force and has an ideal value of 1. A mean value was 
obtained by averaging five replicates.

2.6 Bulk compressibility (BC)

Bulk compressibility was calculated using the same data col-
lected in the BSI test. It was calculated by dividing the peak 
force required to compress (deform) the sample by 80% [to 
20% of their original dimension (diameter)] by the initial axial 
cross-sectional area of the foams [19]. A mean value was ob-
tained by averaging five replicates.

2.7 ANFIS modeling

Modeling was performed using Matlab 7.2. ANFIS and Sug-
eno-type fuzzy inference systems were used in the modeling 
of properties of the nanocomposite foams. Multiple Input Sin-
gle Output (MISO) models consisting of four inputs including 
clay content, temperature, pressure and torque were devel-
oped to predict outputs. Figure 1 shows the ANFIS structure 

of clay content and process parameters as four input parame-
ters and four mechanical properties as output parameters. The 
outputs were RER, UD, SI and BC. Sugeno-type fuzzy inference 
systems were generated by using Genfis2 (Matlab fuzzy logic 
toolbox) which utilized subtractive clustering to compute the 
models for the product properties. The purpose of clustering 
was to identify natural groupings of data to produce a concise 
representation of the behavior of the system [21].

The fuzzy models generated from the membership func-
tions and rules were data-driven by the process data for 
each mechanical property. Each set of process data col-
lected from the extrusions consisted of 80 data points from 
which 70% and 30% were selected randomly for training and 
testing, respectively. The models were developed and imple-
mented using 300 epochs and a radius of 0.5. The input data 
were the process data acquired by the computer consist-
ing of temperature, pressure and torque readings from ex-
trusion. The input data also consisted of the clay contents. 
The output data were the properties consisting of RER, UD, 
SI and BC.

The input and output data sets contained four inputs [clay 
content (%), melt temperature (°C), pressure (kPa), torque 
(Nm)] and one output (RER). The same data sets were used 
for each mechanical property, namely UD, SI and BC. Tab. 1 
gives the experiment results of clay content and process pa-
rameters as four input parameters and four properties as out-
put parameters. Predicted values for each model were pro-
duced using the ‘evalfis’ function of Matlab software. Models 
developed were evaluated by the R2 of prediction and root 
mean squared error (RMSE).

Figure 1. ANFIS model structure for radial expansion ratio.
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3 Results and Discussion

Multiple Input Single Output (MISO) models were devel-
oped to predict each property separately from the input pa-
rameters (clay content, temperature, pressure and torque). 
These models were computed based on the input and output 
data that were used to train the model. The patterns were 
tuned using a hybrid system that contained a combination of 
the back propagation and least-squares-type methods. An er-
ror tolerance of 0 was used and the number of epochs was 
300. After training and testing, the RMSE became steady, the 
training and testing were regarded as converged [22]. The 
predicted output values from the models were obtained for 
training and testing using the ‘evalfis’ function of Matlab soft-
ware. Models developed were evaluated by the R2 of predic-
tion and RMSE values. Figure 1 shows the ANFIS model struc-
ture of RER which had four inputs and one output. Each input 
was connected to six membership functions, and further net-
worked with six rules. Each rule was connected with one 
membership function and these membership functions gen-
erated the output. Figure 2 shows the rule viewer of RER 
which is a mapping of inputs and output that describes the 
fuzzy inference system. Each row in the figure represents one 
rule and consists of four membership functions correspond-

ing to each of the four inputs (clay, temperature, pressure and 
torque). The membership functions are shown in the first four 
columns which also are known as antecent memberships. The 
last column is the output (RER) also known as consequent 
membership, which represents inputs of each of the six rules. 
The rule viewer shows only one calculation at a time in de-
tail. In this example, the input values for the rule viewer were 
data driven values of 1.59 for clay, 161°C for temperature, 
8618 kPa for pressure and 76.5 Nm for torque. The calcu-
lated value for the model RER was 17.

For each individual membership function, the range of in-
put values was represented by values on the x-axis and mem-
bership value represented on the y-axis. The shaded region 
depicted the visual representation of the resulting member-
ship of input values. In fuzzy modeling, input membership 
functions can be described by different shapes including tri-
angular, sigmoidal, bell-shaped or irregular [23]. In this work, 
the input membership functions were described with Gauss-
ian membership functions. The model used a logical ‘AND’ 
relationship to combine the data space into fuzzy clusters. 
The portion of the bar of the last column represents the 
weighting factor for that rule, and is determined by the min-
imum membership value in each rule. For example, in Rule 1, 
the shaded region of the clay membership function was zero. 

Table 1. R2 and RMSE values for training and testing of ANFIS models for product properties. 

Product property                                   R2                     RMSE                        R2                       RMSE
                                                      (Training)              (Training)                (Testing)                 (Testing)

Radial expansion ratio  0.9857  0.0641  0.7682  0.8590
Unit density  0.9431  1.1206  0.7128  0.4260
Spring index  0.9953  0.0286  0.9926  0.0317
Bulk compressibility  0.9998  0.0185  0.8821  0.5539

Figure 2. Rule viewer for radial expansion ratio.
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Therefore, this rule did not contribute to the firing strength. 
Similarly, Rule 2 did not contribute to the firing strength. 
Rule 3 and 4 contributed to about 15 and 10% of the contri-
bution, respectively. In Rule 5, the shaded regions of the clay 
and torque membership functions were about 90%, showing 
this rule had a strong firing strength. In the Sugeno fuzzy in-
ference system, every rule contributes to predicting the out-
put to a certain degree based on the degree of membership 
of the input values to the input fuzzy sets. A single output 
was defuzzified using the center of gravity or a weighted av-
erage of output from each of the six rules, and is shown in 
the lower right hand corner. Therefore, for the RER model, 
clay content and torque had the greatest impacts on RER. 
Figure 3 shows the surface plot of RER as a function of clay 
content and torque. This surface plot shows that RER had a 
complex and nonlinear nature based on the relationships be-
tween the inputs [24].

Figs. 4 through 7 show the plots of predicted versus ac-
tual values for all properties for testing data using the MIMO 
models. All the plots show relatively good accuracy. Tab. 1 
shows the R2 and RMSE values for testing and training of AN-
FIS for all product property models. For RER, comparison of 
predicted values with the actual values produced R2 values of 
0.9857 and 0.7682 for training and testing data, respectively. 
As can be observed, the R2 values for training for all the prop-
erties were higher than the R2 values of testing suggesting 
that a bigger set of data produced better models. 

RMSE values of 0.0641 and 0.8590 were achieved for train-
ing and testing, respectively, for RER. All models had very low 
RMSE values for both training and testing. Models with the 
highest R2 and minimum RMSE values were considered the 
best models. Once trained and tested, the ANFIS models can 
be used to predict the outputs expected for new levels of in-
put parameters

4 Conclusions

The results obtained indicate that ANFIS is a promising tool 
for modeling extrusion of biodegradable nanocomposite 
foams. ANFIS models were developed for selected mechan-
ical properties of tapioca starch-PLA nanocomposite foams 
using different clay contents and process parameters. Individ-
ual models were developed predicting radial expansion ratio, 

Figure 3. Surface plot of radial expansion ratio mapping the rela-
tionship between clay content and torque.

Figure 4. Relationship between predicted values of radial expansion 
ratio and actual values.

Figure 5. Relationship between predicted values of unit density and 
actual values.

Figure 6. Relationship between predicted values of spring index and 
actual values.
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unit density, spring index and bulk compressibility. The R2 val-
ues for training for all the mechanical properties were higher 
than the R2 values of testing suggesting that a bigger set of 
data produced better prediction of the models. All models 
preformed well with R2 values > 0.71 for testing. All mod-
els had very low RMSE values for both training and testing. 
Models with the highest R2 and minimum RMSE values were 
considered the best models. These models serve as tools 
for predicting the input levels needed to generate a desired 
property.
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