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3 Results and Discussion

Multiple Input Single Output (MISO) models were devel-
oped to predict each property separately from the input pa-
rameters (clay content, temperature, pressure and torque). 
These models were computed based on the input and output 
data that were used to train the model. The patterns were 
tuned using a hybrid system that contained a combination of 
the back propagation and least-squares-type methods. An er-
ror tolerance of 0 was used and the number of epochs was 
300. After training and testing, the RMSE became steady, the 
training and testing were regarded as converged [22]. The 
predicted output values from the models were obtained for 
training and testing using the ‘evalfis’ function of Matlab soft-
ware. Models developed were evaluated by the R2 of predic-
tion and RMSE values. Figure 1 shows the ANFIS model struc-
ture of RER which had four inputs and one output. Each input 
was connected to six membership functions, and further net-
worked with six rules. Each rule was connected with one 
membership function and these membership functions gen-
erated the output. Figure 2 shows the rule viewer of RER 
which is a mapping of inputs and output that describes the 
fuzzy inference system. Each row in the figure represents one 
rule and consists of four membership functions correspond-

ing to each of the four inputs (clay, temperature, pressure and 
torque). The membership functions are shown in the first four 
columns which also are known as antecent memberships. The 
last column is the output (RER) also known as consequent 
membership, which represents inputs of each of the six rules. 
The rule viewer shows only one calculation at a time in de-
tail. In this example, the input values for the rule viewer were 
data driven values of 1.59 for clay, 161°C for temperature, 
8618 kPa for pressure and 76.5 Nm for torque. The calcu-
lated value for the model RER was 17.

For each individual membership function, the range of in-
put values was represented by values on the x-axis and mem-
bership value represented on the y-axis. The shaded region 
depicted the visual representation of the resulting member-
ship of input values. In fuzzy modeling, input membership 
functions can be described by different shapes including tri-
angular, sigmoidal, bell-shaped or irregular [23]. In this work, 
the input membership functions were described with Gauss-
ian membership functions. The model used a logical ‘AND’ 
relationship to combine the data space into fuzzy clusters. 
The portion of the bar of the last column represents the 
weighting factor for that rule, and is determined by the min-
imum membership value in each rule. For example, in Rule 1, 
the shaded region of the clay membership function was zero. 

Table 1. R2 and RMSE values for training and testing of ANFIS models for product properties. 

Product property                                   R2                     RMSE                        R2                       RMSE
                                                      (Training)              (Training)                (Testing)                 (Testing)

Radial expansion ratio 	 0.9857	  0.0641 	 0.7682 	 0.8590
Unit density 	 0.9431 	 1.1206 	 0.7128 	 0.4260
Spring index 	 0.9953 	 0.0286	  0.9926 	 0.0317
Bulk compressibility 	 0.9998 	 0.0185 	 0.8821 	 0.5539

Figure 2. Rule viewer for radial expansion ratio.
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Therefore, this rule did not contribute to the firing strength. 
Similarly, Rule 2 did not contribute to the firing strength. 
Rule 3 and 4 contributed to about 15 and 10% of the contri-
bution, respectively. In Rule 5, the shaded regions of the clay 
and torque membership functions were about 90%, showing 
this rule had a strong firing strength. In the Sugeno fuzzy in-
ference system, every rule contributes to predicting the out-
put to a certain degree based on the degree of membership 
of the input values to the input fuzzy sets. A single output 
was defuzzified using the center of gravity or a weighted av-
erage of output from each of the six rules, and is shown in 
the lower right hand corner. Therefore, for the RER model, 
clay content and torque had the greatest impacts on RER. 
Figure 3 shows the surface plot of RER as a function of clay 
content and torque. This surface plot shows that RER had a 
complex and nonlinear nature based on the relationships be-
tween the inputs [24].

Figs. 4 through 7 show the plots of predicted versus ac-
tual values for all properties for testing data using the MIMO 
models. All the plots show relatively good accuracy. Tab. 1 
shows the R2 and RMSE values for testing and training of AN-
FIS for all product property models. For RER, comparison of 
predicted values with the actual values produced R2 values of 
0.9857 and 0.7682 for training and testing data, respectively. 
As can be observed, the R2 values for training for all the prop-
erties were higher than the R2 values of testing suggesting 
that a bigger set of data produced better models. 

RMSE values of 0.0641 and 0.8590 were achieved for train-
ing and testing, respectively, for RER. All models had very low 
RMSE values for both training and testing. Models with the 
highest R2 and minimum RMSE values were considered the 
best models. Once trained and tested, the ANFIS models can 
be used to predict the outputs expected for new levels of in-
put parameters

4 Conclusions

The results obtained indicate that ANFIS is a promising tool 
for modeling extrusion of biodegradable nanocomposite 
foams. ANFIS models were developed for selected mechan-
ical properties of tapioca starch-PLA nanocomposite foams 
using different clay contents and process parameters. Individ-
ual models were developed predicting radial expansion ratio, 

Figure 3. Surface plot of radial expansion ratio mapping the rela-
tionship between clay content and torque.

Figure 4. Relationship between predicted values of radial expansion 
ratio and actual values.

Figure 5. Relationship between predicted values of unit density and 
actual values.

Figure 6. Relationship between predicted values of spring index and 
actual values.
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unit density, spring index and bulk compressibility. The R2 val-
ues for training for all the mechanical properties were higher 
than the R2 values of testing suggesting that a bigger set of 
data produced better prediction of the models. All models 
preformed well with R2 values > 0.71 for testing. All mod-
els had very low RMSE values for both training and testing. 
Models with the highest R2 and minimum RMSE values were 
considered the best models. These models serve as tools 
for predicting the input levels needed to generate a desired 
property.
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