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Alkene ozonolysis in the academic lab  

Pat Dussault, University of Nebraska-Lincoln 

pdussault1@unl.edu 

August 1, 2018 

The following information is offered as a guide based upon our experience with 

application of ozone for organic oxidations and hydroperoxide synthesis. Please send 

suggestions, requests, or corrections to pdussault1@unl.edu. 
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Introduction and leading references 
 
The following provides a brief introduction to the application of ozonolysis within 

academic labs. Ozonolysis remains among the most frequently used of methods for 

oxidative cleavage of alkenes.  While best known as a means by which to introduce 

aldehydes and ketones, ozonolysis can also be used to generate other functional 

groups.  An overview of some of the most common ozonolysis transformations 

illustrated in Figure 1; the reader is directed to a recent review for more information and 

leading references.1  A number of useful technical documents are available online.,2 

 

 

 

Figure 1. Overview of typical applications of ozonolysis (see ref. 1 for more detail) 
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Overview of alkene ozonolysis: 
 
Ozone reacts with most alkenes to form short-lived 1,2,3-trioxolanes, aka "primary 

ozonides."1,3 These typically undergo very rapid cycloreversion to generate a pair 

consisting of an aldehyde or ketone and a  short-lived carbonyl oxide.4 The carbonyl 

oxide generally undergoes one of two reactions:  1) cycloaddition with a carbonyl to 

furnish "secondary" ozonides (favored under aprotic conditions); or 2) addition of a 

nucleophile, most often an unhindered alcohol to form hydroperoxyacetals and related 

addition products.1,10  Exceptions to this pattern of reactivity are often encountered with 

enones, allylic alcohols, and silyl/stannyl alkenes.1,3,5  Caution: Ozonides and 

hydroperoxyacetals are typically decomposed to stable products without isolation (see 

"Workup" section). Although these peroxidic intermediates are frequently isolable, they 

are  capable of self-accelerating decomposition reactions and must handled with care.  

The reader is directed to our web-published guide to handling of peroxides.6 

Figure 2.  Mechanism of Alkene Ozonolysis (to initial peroxide products) 
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Substrate reactivity: Electron density is the most significant predictor of rate, with 

bimolecular rate constants increasing by up to 105 in moving from electron-poor 

substrates such as acrylates to enol ethers and highly substituted alkenes.1 However, 

despite this, selective cleavage within polyunsaturated systems or in the presence of an 

electron-rich group can be challenging.1,7 Selectivity can be enhanced by optimizing 

reagent distribution (gas delivery device, rapid stirring, reaction dilution), by use of a 

Sudan dye as an ozone indicator (see below), and/or by reaction in the presence of 

small amounts of pyridine. 8  

Typical Reaction Conditions: Small-scale reactions often employ a pipette or narrow 

tube to deliver a gas solution of O3/O2 onto or into chilled and stirred reaction solutions. 

The more effective dispersion made possible by a gas frit or similar device can be 

useful even on small scale and becomes essential on larger scales. Ozonolysis within 

flow reactors has also been reported.1  Reactions are most often conducted in 

dichloromethane (when ozonides are desired) or mixtures of dichloromethane/methanol 

(to form intermediate hydroperoxyacetals); see reference 1 for discussions of reactions 

in other solvents.  Although most procedures describe reactions in a -78 °C bath, most 

reactions can be run uneventfully up to 0 °C.  Warning: Solution ozonolyses should 

never be attempted at temperatures less than -95 

°C as condensation (-112 °C) or freezing (-193 °C) 

of ozone in the presence of organics almost 

guarantees an explosion.   

Monitoring: A control run against a known substrate 

will often allow one to establish the amount of O3 

delivered per unit time under a given set of 

conditions.  The pale blue of solubilized ozone (Fig. 

3B) has been often used as an indicator for reaction 

completion. However, this tinting is only observed at 

low temperatures and for some solvents. Ozone-

sensitive Sudan dyes (compare 3C to 3D below) 

offer a more reliable indicator of endpoint and can 

Figure 3. Color changes related to 
reaction monitoring:   
A) CH2Cl2 at rt;  
B) O3 in CH2Cl2 at -78 °C (partially 
obscured by condensation).   
C) Sudan III in CH2Cl2  following 
treatment with O3/O2.   
D) Sudan III in CH2Cl2   
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be particularly valuable for selective consumption of an alkene in the presence of 

another reactive group.7, 9,  

Work-up (see Figure 1). Most ozonolysis reactions are followed by a work-up reaction 

that destroys the ozonide or hydroperoxyacetal intermediates.  A brief summary follows.  

For more detailed information, the reader is directed to leading references:1,10    

Reduction to ketones and aldehydes:  Selective reduction to generate aldehydes and 

ketones has been accomplished with a variety of reagents.11 Hydroperoxyacetals are far 

more reactive than ozonides, and reduction is often accomplished with 

triphenylphosphine,12 thiourea, 13 dimethyl sulfide.14  Ozonides can sometimes be 

reduced using these same reagents but reactions are much slower, and removal of the 

ozonide should be verified (see "Monitoring") before solutions are concentrated.15,   

Ozonides are nearly always susceptible to rapid reduction by zinc/acetic acid or similar 

"dissolving metal" systems.15, 16  

Reduction of ozonides or hydroperoxyacetals to alcohols is possible with many common 

metal hydrides, most often NaBH4.1, 17 

"Reduction" via base-promoted fragmentation:  Ozonides derived from terminal and 1,1-

disubstituted alkenes undergo base-promoted fragmentation under mild conditions (e.g., 

Et3N) to directly furnish aldehydes or ketones.18 

Reductive ozonolysis (no work-up): Aprotic ozonolyses conducted in the presence of N-

oxides or pyridine directly output anhydrous solutions of ketones and aldehydes without 

formation of peroxide intermediates;19,20, the products can be directly applied as 

substrates for C-C bond-forming processes.21   Ozonolysis in the presence of 

solubilized water also provides moderate to good yields of ketones and aldehydes. 22  

Oxidation:  The direct conversion of terminal and 1,2-disubstituted alkenes to carboxylic 

acids, sometimes described as "oxidative ozonolysis", can through treatment of initial 

ozonolysis products with hydrogen peroxide or other oxidants.1,10,23 

Heterolytic fragmentations and rearrangements:1,24 Acylation or sulfonation of 

hydroperoxyacetals containing an adjacent C-H results in dehydration to esters.25 
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Hydroperoxyacetals lacking an adjacent C-H can undergo  C-to-O skeletal 

rearrangements upon acylation (Criegee rearrangement). 26  

Homolytic fragmentation: Hydroperoxyacetals and ozonides are both decomposed by 

Iron salts (typically Fe+2 but sometimes Fe+3) to give "c-1" products through 

decarbonylation of an initially generated alkoxyl radical.1, 27  Depending upon conditions, 

chlorides, bromides, alkenes, or dimeric products can be generated.   

 

Safety issues. 
 
Prior to performing an ozonolysis, experimenters must consider the reactivity and 

toxicity of ozone, the exothermicity of the reaction, and the  potential of the 

intermediates and products to undergo self-accelerating and dangerously exothermic 

decomposition reactions. 28  

Ozone is highly toxic and negative effects have been associated with long-term 

exposure to levels of 80 ppb; concentrations in the low ppm range are considered 

immediately dangerous to life and health. 29,  As a consequence, most chemistry 

involving ozone is conducted in an exhaust cabinet or with reaction gases vented 

through some form of scrubber. Fortunately, most individuals can detect  the odor of O3, 

sometimes described as "sharp" or "clean", at a concentration of 20 ppb.30   An earlier 

section of this document warns against conditions that would result in condensation of 

liquid or solid ozone.   

Ozonolyses, which are often highly exothermic reactions conducted in organic solvents 

under an oxygen-rich atmosphere, are inherently hazardous.28,31 The danger of fire has 

been addressed by removal of headspace oxygen,32 reaction in flow/microchannel 

systems,33 or reaction in nonflammable media. 34 For reactions on a small scale and 

conducted in low boiling solvents (e.g. CH2Cl2 or CH3OH/CH2Cl2) generated heat is 

typically is cancelled out by rapid evaporative cooling.  However, reactions at scale 

and/or in higher-boiling solvents must be careful to avoid temperature rise and the 

associated self-accelerating decomposition of peroxide intermediates. 1135   As 

discussed above, it is imperative to avoid formation of liquid or solid ozone.  
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The potential of the peroxide intermediates or products to undergo self-accelerating 

decomposition,28, 36combined with the exothermicity of typical work-ups,31, 37 makes 

thermal analysis of reactions and intermediates essential for reactions at even medium 

scales. For example, differential scanning calorimetry (DSC) has found ∆H for 

decomposition of a terminal ozonide to be 70-80 kcal/mol, with maximum heat release 

occurring around 131 °C.38 The use of tools to predict the latent energy of unstable 

organic compounds has been described.37 The undesired isolation of difficult-to-reduce 

ozonides be mitigated by reaction inn the presence of methanol to steer reactions 

towards formation of easily reduced hydroperoxyacetals,15b, 39 or by use of a reductive" 

ozonolyses (described earlier).    
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