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High-frequency response of atomic-force microscope cantilevers

Joseph A. Turner,? Sigrun Hirsekorn, Ute Rabe,” and Walter Arnold
Fraunhofer Institute for Nondestructive Testing, Building 37, University, D-66123 Sazkbny Germany

(Received 3 February 1997; accepted for publication 21 April 1997

Recent advances in atomic-force microscopy have moved beyond the original quasistatic
implementation into a fully dynamic regime in which the atomic-force microscope cantilever is in
contact with an insonified sample. The resulting dynamical system is complex and highly nonlinear.
Simplification of this problem is often realized by modeling the cantilever as a one degree of
freedom system. This type of first-mode approximat{&WA), or point-mass model, has been
successful in advancing material property measurement techniques. The limits and validity of such
an approximation have not, however, been fully addressed. In this article, the complete flexural
beam equation is examined and compared directly with the FMA using both linear and nonlinear
examples. These comparisons are made using analytical and finite difference numerical techniques.
The two systems are shown to have differences in drive-point impedance and are influenced
differently by the interaction damping. It is shown that the higher modes must be included for
excitations above the first resonance if both the low and high frequency dynamics are to be modeled
accurately. ©1997 American Institute of Physids§0021-897@7)02115-4

I. INTRODUCTION surface—a condition that assures that the measured signal is
not dominated by the cantilever compliari€&Such a model

has also been used to help in further understanding of non-
Ainear tip—force interactions. However, the importance of the

Atomic-force microscope§AFM) were originally devel-
oped to provide surface topography informatfobeflection

of the microscope cantilever as a function of surface location . -
P I_lgher modes and thus the limitations of FMA have not been

is used to generate high-resolution images of surfaces. Cu v i tigated. B h hiah itation f
rent applications using the AFM have moved beyond the"'Y Nvestigated. because these nigher excitation lrequen-

original quasistatic motion into a dynamic range. This workCies can be useful_for_dgtermining material properties, this
has shown that vibrational excitation of the specimen surfacEy pe of u_nder_standmg IS |m_portant. . -

or AFM cantilever can provide a better signal-to-noise ratio In th'? art!cle, t_he elaspc beam equation despnbmg t.he
and offers opportunities for noncontact and intermittent Conjlexural vibrations is examined and compared directly with

tact methods. High-frequency contact techniques also offe'?_MA using both analytical and numerical techniques. The

the potential for high resolution measurement of materiaf1Igher modes are shown to be an important part of higher

properties and surface properties such as adhésfofihe frequency dynamics. For the Imear case, thg drive-point im-
high-frequency motion of an elastic cantilevered beam i edance and the effect of interaction damping are shown to

contact with complex surface forces is, however, not easil e fundamentally different in these two dynamical systems.

described. The tip—sample interaction forces are, in general hese aspects are shown explicitly in the numerical ex-

nonlinear and are the subject of intensive research thenfiPles presented as well. When the boundary condition is

selves. When an elastic beam interacts with these Surfa%onlmear, FMA is also shown to predict a different response

forces, the many flexural modes may also be a part of th an that of the elastic beam. All of these differences are
! hown to be important when the excitation frequency is

dynamics. It is now recognized that these higher modes arg .
often excited in experiments’ above the first flexural natural frequency as expected.
The complexities of the elastic beam vibrations have
given rise to models that simplify the dynamics considerably.
In one such approach the elastic beam equation is approxit. GOVERNING EQUATIONS
mated with a one degree of freedom mass-spring mbdel.
The mass and stiffness of this oscillator are chosen such that Theé atomic-force microscope cantilever here is a canti-
the natural frequency is the same as the natural frequency §vered, rectangular elastic beam as depicted in Fig. 1
the first flexural mode of the beam. All higher modes are!he beam has width, heightb, and lengthL.. The equation
thus neglected. One would then assume that this type of firsfhat governs the flexural vibrations of such an elastic beam is
mode approximatiotFMA) is only valid for surface excita- 9'Vén byt42
tion frequencies well below the second natural frequency of ) )
the beam. Higher frequency vibrations would require inclu-  EIY”(x,t) + yy(x,t) + pAy(x,t) =0, )
sion of the higher modes. This type of model is very effec-
tive when the cantilever is much stiffer than the specimerwhere the primes or dots denote the corresponding deriva-
tives with respect to spacé/dx, or time,d/ ot. Herep is the
dpresent address: Department of Engineering Mechanics, 212 Bancroft Hamaterlal d,enSIty’E is the e|a3$tIC 'modulus,A='ab is the
University of Nebraska-Lincoln, Lincoln, NE 68588-0347. cross-sectional area, are-ab°/12 is the bending moment
PElectronic mail: rabe@izfp.fhg.de of inertia. The material damping is characterized fy
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x E LA Lp sumed here to be a linear, viscous type of damping.
The equation of motion, Edq1), with appropriate initial
conditions and boundary conditions, can be solved analyti-
—l cally provided the shear boundary condition functiegis
K int simple enough and linedt:'? If Fg is nonlinear, as is the
case for most tip—surface interaction modeiSthe solution
of Eqg. (1) is not trivial.
® One approach often used to simplify the equation of mo-
tion is to approximate the motion of the end of the beam by
an equivalent mass-spring syst&m? Such a system is
k.. BFMA shown in Fig. 1b). The natural frequency of this mass-spring
oscillator is chosen to equal the natural frequency of the first
Jd(t) flexural mode. This type of FMA, often referred to as the
point-mass model, is a low-frequency approximation. The
motion of the end of the beard(t) = y(L,t), is in this case
characterized by

Ty(x 1) A,(t). The interaction damping, characterizeddy;, is as-

K Gin Mewad(t) + 2mFMABFMAd(t) +Kemad(t)

® =FJd(t),a,(1)]— o[ d(t) —ax(t)]. 5

FIG. 1. Schematics of the two dynamical systems compared here. Elasti-clz-he mass, spring stifiness, and dampl_ng n Eﬂare related
beam(a) and spring-mass systeth) coupled to a moving surface with a (0 the parameters of the beam and given by
linear dashpot and linear or nonlinear spring.

3pAL
mFMAFW,
The initial conditions considered here are given by
3ElI v
Fo , . Keva="3"+  2Brma="_1- (6)
y(X,0)=— == X*(x=3L), y(x0=0. 2 P

Equation(5), though much simpler, retains the complication
Thus, the above formula for the initial deformation gives theof a possible nonlineaF;. The FMA is thus a low-
initial deflection due to an end loaH, defined as being frequency approximation of the elastic beam equation. The
positive when it acts in the upward direction. The initial limitations of this approximation in terms of frequency
velocity of the beam is assumed here to always be zero. range, damping, and nonlinear behavior have not been fully
Boundary conditions must also be specified. At the caninvestigated. Here, a number of analytical and numerical ex-
tilevered end, the boundary conditions are amples will be presented for both linear and nonlinear sur-
y(O)=a,(t)=A, sinfQ,t), y'(01)=0, 3) fa_lce interactions that h(_alps sort out these q_ues_tions. The
higher flexural modes will be shown to be quite important

such that the displacement is equal to a harmonic loading/hen the excitation frequency is above the frequency of the
and the slope is equal to zero. Often this end will be assumegst mode.

to be clamped such that; =0.

The other end of the beam=L, is assumed to be in-
teracting with the surface through surface forces. Thus thdl. LINEAR RESPONSE
moment and shear force at this end of the beam are pre-

scribed. These boundary conditions are written An examination of the linear response of the elastic
beam equation in comparison with the first-mode approxima-
y"(L,t)=0, tion is now presented. Two issues are discussed regarding
Ely”(L,t)=—FJy(L,1),a,(t)] the linear response of these_ dynami_cal sy_s;te_ms described by
Egs.(1) and(5). Differences in the drive-point impedance of
+ ol y(L,t)—ay(t)], each system are first examined. It is shown that the FMA

. will always underestimate the total excitation energy of the

32(1) =Ax(1)SIN(Q1). “) beam when the driving frequency is higher than the natural
The functionF ¢ represents any type of elastic force displace-frequency of the first flexural mode. Differences in the effect
ment relation, linear or nonlinear, between the end of theof interaction damping on both systems are then discussed.
beam and the surface. Its dependence on displacement, éer the elastic beam interaction damping has a different ef-
locity, and other parameters will be addressed when needetéct on the higher frequency modes than the internal damp-
This force relation is represented in Fig. 1 as the spring witling of the beam or the damping caused by losses to air.
spring constani which is not necessarily linear. Vibration These differences can not be captured by the FMA. Finally,
of the specimen surface is described by the functgft) numerical examples that highlight both of these differences
assumed here to be harmonic with time dependent amplitudeye given.

J. Appl. Phys., Vol. 82, No. 3, 1 August 1997 Turner et al. 967



A. Drive-point impedance L
. e . f Yn(X)Yn(X)dX=L 6y, (12

One important distinction between the elastic beam 0
equation, Eq(1), and the first-mode approximation, E&),

is the difference in their drive-point impedand@sThe allows the integrations to be easily evaluated. We find that

drive-point impedance, defined as the ratio of the system F Yno(Xo)
velocity at a particular location to the force applied at the ~ Pn=y7 —2— 3. (13
n

same location, characterizes the ability of the forcing to ex-
cite the beam. When examined as a function of frequencyhereM = pAL is the total mass of the beam ang are the
with constant forcing amplitude, it provides a sense of hownatural frequencies of the free beam determined from the
much energy the beam is willing to accept from an excitationrabove dispersion relation and E@0). The motion of the
at a particular frequency. This type of information is impor- beam to the harmonic excitation locatedxatL is thus
tant for understanding the expected amplitude of excitation 0
of the beam. In particular, predictions about the driving am- y(x,t)= D
plitudes necessary to cause the tip—surface separation cannot n=1
be made_ \.N'thOUt accurate know_ledge_of _the amount of “Nerom the definition of the drive-point impedancg(w)
ergy exciting the beam. The drive-point impedance of the . ) .

. . . ) =y(L,t)/F(t), we find that for the elastic beam
elastic beam will now be compared with the impedance cal-
culated using the first-mode approximation. o« [Yn(L)]?

A somewhat simpler equation of motion is considered to  Zpeaf @)=y 2, 7 7 (15
_— S . . . =1 (wh— o)

highlight this difference. The elastic beam, with damping
neglected, is cantilevered at one end and free at the other. Bhe impedance goes to infinity at each of the natural fre-
harmonic load is applied at position= Xq. The equation of quencies which means that the system is very easy to excite
motion is thus given by at these frequencies. In reality, any damping present reduces
these poles to a large finite value. The drive-point impedance
for the first-mode approximation to the same forcing is sim-

Fe'“tY (L)Y n(X)

M(wﬁ—wz)

(14)

Ely””(x,t)+PAy(th):F5(X_XO)ei“’t, (7)

where the generalized functiaf(z) is infinity when its ar- ply

gument is zero and is zero otherwise. Equatidnis solved i 1

by superposition using the natural modes of the unforced Zrma(®)= ( 2)
system. Thus, the displacement is expanded as

(16)

—
Meya | 0]~ @

©

y(x,t>=eiwtn§l PnYn(X), (8)

From the definition of the point mass given by Ef),
we know thatmgya=3M/(1.875f~M/4. Using the defini-
tion of the natural modes, Eq9), at x=L, along with the
condition given by Eg.(10) it can be shown that

where the weighting of the modes, given by the coefficient§ Y, (L)]?=4. Thus, the drive-point impedance for the elastic

P,, is determined from the forcing. The spatial eigenfunc-
tions, Y,(x), determined from the free vibration analysis of
the clamped-free beam, are giventby

B sin(k,L)—sinh(k,L) ) )
Yn(x)_ COS{knL)-l-COSf(knL) [Slmknx)_SInHan)]

+[cod k,x) —coshknx)]. (9)

beam is approximately equakithin 3%) to the input imped-
ance for the FMA plus the impedance resulting from the
higher modes. In other words

- diw
Zoean{ ©) = Zewa(@) + 2, oo (17

Of course the FMA cannot predict the high impedances
that occur at the resonances of the higher modes since these

Here’k” are the f_IexuraI wave numbers which are reIat(_ed modes are neglected from the outset. However, we also see
their corresponding natural frequencies through the dispetg | Eq. (17) that the FMA will underestimate the drive-

sion relationk}=w?2pA/El. The allowable flexural wave
numbers, determined by the boundary conditions, satisfy th
relation'*

cogk,L)coshk,L)=—1. (10
The assumed form for the displacement, E), is sub-
stituted into the equation of motion giving

> [Elk:— pAw?IP,Y(X)=F 8(X—Xq). (11)
n=1

The constantd,, are then determined by multiplying Eq.
(12) by Y,(x) and integrating from 0 th.. The orthogonal-
ity condition,

968 J. Appl. Phys., Vol. 82, No. 3, 1 August 1997

point impedance for all frequencies higher than the lowest
fhode even away from the resonances. This result is illus-
trated in Fig. 2. The drive-point impedances given above
were divided by 4w/M and squared. The logarithm of this
value is shown in Fig. 2, plotted versus excitation frequency
nondimensionalized by the first natural frequency. A small
amount of damping was added to remove the singularities at
the resonances. The drive-point impedance of the elastic
beam, shown as a solid line, has many peaks at the reso-
nances. The lower dashed line is the drive-point impedance
for the FMA. It has a single peak at the first resonance fol-
lowed by a decay proportional tod? [corresponding to the
l/w decay ofZgya(w)]. The smoothed trend of the elastic
beam drive-point impedance is also plotted as the upper

Turner et al.



157 ‘ ‘ ‘ ‘ ' This effect can be seen by solving the elastic beam free
vibration problem[A;=0, A,(t)=0] with attached linear
spring and linear dashpot located at the end of the beam.
This type of boundary condition has been examined
1 previously>® The predicted response was plotted as a func-
tion of frequency for different values of linear spring
stiffness® However, the influence of the linear dashpot con-
stant has not yet been systematically examined.

The equation of motion for this example is

S A Ely™(x,t)+ pAy(x,1)=0, (18)

10} Beam

J Beamsmooth

Log[(Z(w)*M/(4iw))?]

with boundary conditions
y(0t)=0, y'(0t)=0,

6 56 1 (I)O 1 50 260 25‘0 3(I)0 )
Frequency (f/f1) y'(L,t)=0, Ely"(L,t)=«ry(L,t)+ony(L,t), (19

where k is the spring constant of the attached linear spring

FIG. 2. Quantity related to the drive-point impedance plotted vs frequenc F.—— L.1)1 and o+ is the interaction dampina coeffi-
normalized by the first natural frequency. The solid line is the drive-poin%[. s wy(L,1)] int bing

impedance of the elastic beam given by EL7). The upper dashed line is cient. SUbStltUt'_o_n of a general SO|Ut|O_n of HG,B) 'nFO the
the smoothed trend of the elastic beam impedance which passes through th@undary conditions, Eqg19), results in an equation that

inflection points of the unsmoothed impedance. The lower dashed line is thgetermines the allowable values for the wave numbers. This
drive-point impedance for the first-mode approximation given by (E6). equation &6

(kL)3[1+ cogkL)coshKkL)]
dashed line. This smoothed trend, which passes through the _ . 2 . o
inflection points of the nonsmoothed curve, is always higher =Lip(kL)"+ g]fcogkL)sinh(kL) Sm(kL)COSKkL()Z]C’))
than the FMA result. The decay of the smoothed trend is
proportional to 13 [corresponding to the Yk decay of where the above two dimensionless measures of the interac-
Zpeanl @) 123 Thus for low frequencies the FMA has approxi- tion damping,p, and stiffnessq, are
mately the correct impedance as expected. However, when 30 3k
the excitation is above the second resonance, the difference p= (1.875%moyne;’ 9=
in impedance is appreciable. If predictions are to be made ' FMA™L FMA
about effects related to the amplitude, such as when tipFhe solution of the above transcendental equation,(#Q),
surface separation occurs, the amount of energy input inttor dimensionless wave numbegssk, L, for generalp and
the beam must be modeled accurately. This difference i gives a complex value. To understand what meaning these
drive-point impedance will also be seen in the numericalcomplex wave numbers have, the displacement is expanded
examples presented here. as a superposition of modes which have the following form:

(21)

B. Interaction damping effects Y(th):elwtnzl [B1n€" ™+ Byne K+ Bgetn*

The damping of vibrating atomic-force cantilevers is
caused by two very different effects. System damping is the
damping caused by internal losses in the beam as well ashere theBs are again determined from the boundary con-
losses to any surrounding fluid in which the beam vibratesditions. Each mode of the solution given by EB2) is com-
There is also damping caused by the interaction forces whichosed of two harmonic components and two evanescent
act through the contact between the cantilever tip and theomponents. The first two terms are harmonic left and right
specimen surface. This damping is thought to be caused priraveling waves. The other two terms are left and right eva-
marily by adhesion effects. Uncoupled cantilevers vibratingnescent waves that decay exponentially in space. When the
in air have been shown to have very small damping Wth wave number is complex, the harmonic traveling waves are
varying between 90 and 9G0Thus, the interaction damping augmented by a spatial decay. The evanescent waves, in con-
is expected to be the main source of damping in the couplettast, acquire a harmonic component. The real part of the
systems. Understanding how the interaction damping affectoots found from Eq(20) corresponds to the stiffness of the
the beam vibration is therefore important. harmonic modes and thus the wave speed and frequency.

In the first-mode approximation the interaction dampingThe imaginary part governs the damping of the mode.
is modeled in the same way as the system damping of the Equation(20) was solved using Mathemati¢afor the
uncoupled beam. The two dashpots are connected in seriesmplex rootsé=k,L corresponding to the eigenmodes of
with one another as shown in Fig(k). The interaction the system. One example is illustrated in Fig. 3. A dimen-
damping for the elastic beam is a boundary condition whichsionless stiffness afj=30 was used. The real and imaginary
affects the motion of the beam very differently than theparts of the first three complex roots of EG0) are plotted
damping in the beam. as a function of interaction damping characterized by the

+By,e 41, (22)

J. Appl. Phys., Vol. 82, No. 3, 1 August 1997 Turner et al. 969



below this special mode are stiffened and those above it are
softened with increasing.
As seen in Fig. 3, each mode has a different sensitivity

8t »——a—t‘.\.ﬁ“‘\‘\ﬁ_‘—‘ not only to the interaction stiffness but also to the tip—sample
71 damping. For given nominal interaction stiffness and damp-

=
(I_I,)
Lo

| - gz}gﬁﬁg ing some modes Wi|| hgve a larger change in natqral fre-

or I —a n=2(Re guency for fluctuations in stiffness caused by moving the
n=2 - Ez%%{{‘g probe to different locations on the specimen. Therefore we
—s— n=3(Im) would like to predict the change in wave number for changes

in interaction stiffness and damping so that the optimum
mode and corresponding excitation frequency can be chosen
for experiments. The slope of the real part curves shown in
Fig. 3 governs the change in stiffness and, therefore, natural
frequency for changes in interaction stiffness and damping.
The slope of the imaginary part curves governs the change in
modal damping expected for changes in interaction stiffness
T 100 and damping. Thus, if nominal interaction stiffness and
Dimensionless interaction damping, p damping properties can be approximated, the mode that
should be most sensitive to changes in stiffness and damping
FIG. 3. Real and imaginary parts of the first three wave numbers calculategls the probe is moved can then be determined. Those modes
from Eq. (20) as a function of the dimensionle;s inte‘raction‘ dampir_wg,With the highest slopes will be most sensitive.
p=30i,/(1.875fmpyaw;. The dimensionless interaction stiffness is . . . . .
g=3«/kgma=30. The real and imaginary parts of the second mode are seen It has been shown in this discussion that each mode is
to converge whermp is about 4.5. They are equal for all higher values of affected very differently by the localized interaction damping
p. because each mode has a very different mode shape. This

. . . damping is in contrast to the damping in the beam in which
dimensionless quantityy. The mode shapes of these threeaII modes have damping proportional foThe type of com-

modes without interaction damping are also shown. The "SSlicated interaction damping shown here for the higher fre-

;ults illustrate the three possible effects the mFeractlon damiﬁuencies cannot be captured by the FMA. It was also shown
ing can have on the modes. We see that the first mode has %1”

increase in the real part as the damping is increased. Thgat the interaction stiffness and interaction damping can

: o . . . both lead to stiffening of the modes. This coupling effect
mode acquires an additional stiffness from the interaction N .
: . . : : may make it difficult experimentally to separate the effects
damping. The imaginary part increases uptis about 4 and

then begins decreasing. This mode becomes more heavi ue to interaction stiffness and interaction damping. The dif-

- ) ; . {rence between the effect of interaction damping and beam
damped below a certain level of interaction damping. The L . : .

. . . . 2 damping is also illustrated in the numerical examples pre-
damping then decreases as the interaction damping is Neonted in Sec. 11l C
creased further. Mode three is affected in the opposite way. ' '
As the interaction damping is increased, it is softened—itst
real part decreases. The damping also increases below a cer-
tain level and then decreases. The effects seen in modes one The differences in the linear response of the elastic beam
and three, caused by the interaction damping, are determinédd the first-mode approximation can be clearly seen by nu-
by the different mode shapes. For moderate levels of intermerical solution of the two differential equations. A finite
action damping, the mode is increasingly damped. Howevedifference solution to both equations is used to illustrate
once the damping becomes too large, the displacement at titleese differences. This numerical method is briefly discussed
end of the beam becomes much smaller, such that the dask the Appendix as well as in a number of teXs® As a
pot cannot cause further damping. The third possible effedirst check on the finite difference solution for the elastic
of damping is illustrated by mode two. This mode is alsobeam, the free vibration response was calculated. Parameters
softened by increased damping. In this case, as the dampirgpical to those found in atomic-force microscopes previ-
is increased, the real and imaginary parts of mode two coreusly examined were uséd’ The elastic modulus and
verge. After a threshold level of interaction damping is sur-density for (100 silicon, E=169 GPa, p= 2330 kg/ni,
passed, the real and imaginary parts are identical. The modespectively, were used. The beam has widik-51
becomes very soft and very heavily damped. This modeum, thicknessb=1.5um, and lengthL =262um. These
passes from a state of normal damped vibration, called avalues yield a first natural frequency of;=30 kHz
underdamped vibration, into an overdamped stat€he (Meya=1.13x10" 1 kg, kpwa=0.404 N/m). The code was
condition of overdamping has the effect that the mode can neun on a Digital VAX workstation. Run times were on the
longer oscillate—it is damped completely away before it canorder of 2500 time steps per second.
complete one period of oscillation. This overdamping effect  For this check, the undamped beam was initially unde-
may possibly be the reason that some modes are very diffflected with zero initial velocity. Ninety beam segments were
cult to detect in experimenfsSimilar results are obtained for used such that the segment size was about 19 times smaller
other values of] as well. One mode was always observed tothan the wavelength of the 10th eigenmode. The time inter-
behave in the same way as mode two in the example. Mode&@l wasAt=2 ns. The beam was excited at the cantilevered

Dimensionless wave number, kL
N

Temporal response

970 J. Appl. Phys., Vol. 82, No. 3, 1 August 1997 Turner et al.
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FIG. 4. Power spectrum of free elastic beam calculated using the finite
difference method. The vertical dashed lines mark the theoretical flexural ‘ ‘ ‘ (b) FMA
natural frequencies.

0.10 -

end with a pulse of); =500 kHz, duration of 1 cycl€ us),
and amplitudeA;=2 nm. The beam was then allowed to
vibrate for 500us. The time trace of the deflection of the end
of the beam was then fast Fourier transformed and squarec
giving a quantity proportional to the power spectrum. The
result is shown in Fig. 4, up to a frequency of 8 MHz. The
frequency resolution is 1900 Hz. The vertical dashed lines
are the theoretical values of the natural frequencies calcu-
lated from the above material parameters. The agreement is ‘ ‘ ‘ ‘
very good. The error in frequency of the 10th moge6 0 50 100 150 200 250
MHz) is 1.1%. Thus for the frequency range considered here, Time (us)
below 5 MHz, the results should be quite good. Although the
linear response of the FMA was also examined, the resultg!G- 5._ Tin_we response for b_oth elasti_c beam soluti@hand first-mode
are not presented here. The FMA spectrum consists of onl§PProximaton(b) with interaction damping onlyg(=0.4).
the single peak associated with the first natural frequency.
Satisfied that the numerical model accurately captures the
high-frequency motion, the linear effects discussed abovéeng was equal to zeroy=0) and the interaction damping
were then examined. was chosen such that=0.4. The FMA solution, shown in
The above discussion of drive-point impedance and inFig. 5b), damps out very quickly because of the high level
teraction damping are demonstrated with a simple numericalf damping. The elastic beam solution, shown in Fig)5
example using a linear spring with stiffness ©f 79ya has a component still remaining at the end of the time win-
(linear approximation of the nonlinear function discussed indow shown. The remaining modes feel the effects of the
Sec. IV) and linear dashpot. The specimen surface was exnteraction damping much less than the first flexural mode as
cited atQ),=1.6 MHz harmonically. This frequency is cen- was seen in Fig. 3. Because the interaction damping is typi-
tered roughly between the neighboring resonances of 1.38ally much larger than the system damping, this effect is
and 1.99 MHz. The amplitude was ramped up from zero tdndeed important.
0.1 nm in 10 cycleg6.25 us) and held constant for 10 more The different effects of the two types of damping are
cycles. The forcing was then stopped and the system waseen more dramatically in another example. In the first case,
allowed to vibrate for 25Qus. These time domain solutions the system damping in each system was set equal with
of both the elastic beam and the FMA, shown in Figg)5 v/pAw;=0.4 and the interaction damping was set to zero.
and 3b), highlight the difference in drive-point impedance. The second case corresponds to the results given in Fig. 5 in
As discussed above, the FMA will always underestimate thevhich the interaction damping was chosen such gva0.4
amount of energy input into the system for excitation fre-and the system damping was set to zero. The results for both
guencies greater than the first natural frequency. This has @ses are shown in Fig. 6 which is a plot of the log square
profound influence on the coefficient of restitution, discussecamplitude versus time. Figuregab and Gb) are, respec-
previously’ when the tip impacts the surface. The vibrationtively, the solutions of the FMA and elastic beam for system
amplitude calculated from the FMA is always lower than thatdamping only. The expected exponential decay of both solu-
found from the elastic beam solution. tions is apparent. The elastic beam solution has more high-
The different effects from the interaction damping arefrequency components, but all modes are seen to be damped
also seen in Fig. 5. For the results shown, the system damproportionally. The solution for the interaction damping

0.05

0.0

<

nm
-

Amplitude (nm)

-0.05

-0.10
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FMA Beam ences between these two very different dynamical systems.

N Here the finite difference method will be used again to in-
» W ' vestigate the importance of the higher modes of vibration
S W\W \]f | when the interaction forces are nonlinear. In order for a com-
— § mw JN‘ ‘ parison to be made between the elastic beam equation and
3 2 WWWM the FMA, an appropriate nonlinear interaction force-
— () “ 1 (b) mﬂmw displacement model is needed. This force-displacement
Nﬁ model is discussed briefly in the next section. Numerical
= E 1{ results for the temporal response and frequency response are
33‘3 ‘ g W m‘ﬂl‘r\) w W W then presented.
8 | 1 | ” N Wm A. Interaction force curve
§ In order to examine the effects of the higher modes on
(©) T ) the nonlinear response in detail, a suitable nonlinear interac-

0 50 100 150 200 250 a 50 100 150 200 250

tion force curve is needed. The goal here is to determine the
degree to which nonlinear effects are not captured by the
FIG. 6. Square of amplitude plotted vs time for four cadesFirst-mode f"St'mOd_e approxmatlon. Therefore a numb_er Of nonlinear
approximation with system damping only §2ya/w,=0.4), (b) elastc ~ Models is suitable. The model used here is discussed at
beam solution with system damping only/pAw,=0.4), (c) FMA with length elsewheré: but is briefly outlined here. The inter-
i_nteraction_ damping onlyg=0.4), (d) elastic beam solution with interac- ested reader is referred to the original work for a more com-
tion damping only p=0.4). plete discussion.

The vibrating cantilevers considered here typically have
a tip at or near the end of the beam. It is through this tip that

Z:%noestlsthsg Zg;énalzslgbse.gg)reantﬂg g)iff;—rr;('::eMréerI?iaonfrirf ththe surface interaction forces act. However, the point of the
L ' g Tom My is not necessarily the center of action of the interaction
fact that the excitation has acted through the dashpot in thf%grces. Some of the interaction forces have rather long range
f

second case. The decay in both cases is exponential an : . C ;
. . : ects such that there is some point, or distribution of points,
identical as expected. The beats seen in both FMA responsebs

e

Figs. 6a) and &c), occur at the frequency of the first-mode €low the end of the beam thro_ugh which the mteractlop
. . .~ forces are presumed to act. Here it is assumed that the action
resonance. The decay of the elastic beam solution for inter- : .
action damping alone is very different. The decay beginsOf the forces takes place Fhrough a single poyft.t)
' —Yq, such thaty, is the location below the end of the beam

exponenualz but thgn becomes nonexponen tial after a Certal{ﬂat is the center of action of the forces. The center of action
amount of time. This type of nonexponential decay is char-

. . 20 of the forces will be called the sensor tip here although it is
acteristic of nonproportionally damped modés?® Each recognized that it is not necessarily the tip itself
mode has a different responsexat L where the dashpot is 9 y P :

. . . Four different interaction force functions are used to

located and is therefore damped in a different way. The . . : .
. . . model the four different regions of interaction forces as-
modes with large amplitude motion near the end of the beam ; .
) : . sumed by this model. When the center of action of the forces
are damped most heavily and last for only a short time. This_". . : o :
N . IS in contact with the specimen surface, a modified Hertzian
aspect of the dynamics, important for understanding surfacé . : S
. ) . contact model is used. In the region where the tip is interact-
damping properties, cannot be appropriately modeled by thé

FMA. Although a linear, viscous type of damping was used 9 only W'th the thin water layer, thg fprce IS r_no_deled using
: . - an adhesion model. If the sensor tip is not within the water
in this example, the outcome was a result of the dampin

being local. This difference in the damping is expected to bﬁ’ayer, the force is assumed to be zero. The transition zone

resent for anv tvbe of nonlinear interaction dampin a:oetween the contact region and the adhesion layer is modeled
P y p ping using an interpolation that is based upon metallic adhesion

Time (us)

We”;rhus far we have shown how important the highereffects. These different force relations are summed @b as
modes of vibration are for excitations above the first natural Feonf2) z<0

frequency. Accurate determination of the energy input into Finted 2) 0=sz=<z,

the system and for modeling the interaction damping are Fs[Z]= Fwe(2) [ when z,<z=2d|" @3
very much dependent upon the higher modes. The impor- 0 7=2d

tance of these modes has, at this point, been discussed for the _
linear case only. In Sec. IV, the nonlinear aspects of théVheréFcony Finer, andF e are the contact force, the inter-
higher frequency modes will be shown to be equally as im®olating force, and the force of the waterfilm, respectively:

portant to the dynamics of a vibrating elastic beam.

Feonl2) = g E* VR(—2)3— 27 ysoE* (—R2)¥+Fy,
IV. NONLINEAR RESPONSE
. , . Finted2)=—C18”**—C,,
In Sec. I, the differences in the linear response of the
elastic beam and the first-mode approximation were dis- = (Z):_4WR7’W (24)
cussed. Those results highlighted the fundamental differ- = F 1+z/d”
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Initial Contact 2 Fs (108 N) rameters for the interaction forces, E¢®6), and the param-
eters for the beam given above along with a measured initial
‘ ‘ ‘ beam deflection ofy(L, t=0)=8.63 nm we find thaty,

DO 01 02 03 04 05 —8.9404 nm.

The above interaction force model is used in the follow-
ing section to demonstrate the nonlinear vibrations of the
elastic cantilever. When the specimen surface is vibrated, the
forcing is given byFJy(L,t) —yo—as(t)].

z (nm)

\Nonlinear

B. Frequency response

The nonlinear response of the vibrating cantilever was
calculated using the finite difference method discussed in the
Appendix. Solutions for both the elastic beam and the first-
mode approximation are presented for comparison. The in-
FIG. 7. Interaction force curves used for calculations. Both the linear and€raction force curve discussed in Sec. IV A changes very
nonlinear curves are shown. The straight line is tangent to the nonlineaguickly nearz=0. Therefore, the change in displacement at
curve at the point of initial contact between the tip and surface. each time step was monitored to insure that the Change in

displacement was small compared to the length scale over

which the interaction force curve changes quickly. For
In Egs.(24), the reduced elastic modulus?, is written in  the examples presented here, the maximum change in ampli-
terms of the elastic moduli of the tip and surfags;, and tude at any time stepAt=0.01 ns) was always less than
Es, and Poisson’s ratio of the tip and surfacg,andvg, as  1.13X 10~ * nm which was judged suitable for the interaction

1—p2 1-,2 force curve shown in Fig. 7. The numerical stability of the
1 _rT, VS_ (25  solutions presented here was also checked.
E* Er Es The same values of damping were used for all examples

Ris the tip radiusyso, is the adhesion constant between thePresented here. The system damping was chosen such that
tip and the sample surface, is the inverse of the shielding the first mode of the uncoupled beam ha@ @f 10. Thus,
length of the metallic adhesion,, is the adhesion constant

between two water films, andl is the thickness of the water X _ ZBFMA:ﬂ. (28)

film. The constantsC,; and C, as well as the poing, are PA 10

determined by enforcing continuity of the position and slope
between the functionBne(2), Fwr(2), andF,n(z). How-
ever, the derivative is not continuouszt 0. The forceF
characterizes all forces not explicitly described by the modi- Tint
fied Hertzian model. The following parameters, correspond- AL
ing to a (100 single crystal silicon tip interacting with a P
chromium SUrfaCé:,L were used in the numerical results that The frequency response of the Vibrating beam with the

The interaction damping was chosen to be 10 times this
value of damping or

follow: nonlinear boundary condition is first examined so that sev-
R=20 nm, y50=0.167 N/M, a=15 nni}, eral relevant frequencies can be chosen for the time depen-
dent examination. The beam was initially in contact with the
Fo=—0.456 nN, specimen surface and deflected according to the force bal-

ance governed by E@2) above. The specimen surface was
excited with),=1.6 MHz, a frequency that lies between
vs=0.26, the two resonances of the linear response of 1.33 and 1.99
MHz. The amplitude was ramped from zero to 0.5 nm in 20
Yw=0.072 N/m, d=2.83 nm. (26) cycles and then held constant for 508. The time domain
The region near the transition between the above forcgesponse of the end of the beam was then fast Fourier trans-
models is shown in Fig. 7. The straight line is a linear ap-formed and squared. The power spectra from this steady-
proximation which is tangent at the equilibrium position. Thestate excitation for the elastic beam solution and the first-
slope of this line is the value of the linear spring stiffnessmode approximation are shown in Fig. 8. The vertical dashed
which is used for comparison with the nonlinear results.  lines correspond to the natural frequencies of the beam vi-
In the following simulations, the beam is assumed to bebrations when attached to a linear spring with appropriate
initially in contact with the specimen surface. In this case,stiffness calculated from the slope of the interaction force
the initial beam deflection, which can be measured expericurve at the equilibrium positiofsee Fig. 7.
mentally, must balance with the interaction forces such that  The power spectra for the two solutions are extremely
different. The spectrum calculated from the FMA does have
Kemay(L, 1=0)=Fdy(L, t=0)=yol. 27) distinct nonlinear traits as expected. There are peaks, or
Equation(27) can be solved iteratively for the quantity strong responses, at multiples and subharmonics of the exci-
yo defining the center of action of the forces. Using the pa+tation frequency as has been observed in experiniéfits.

E;=130 Gpa, »;=0.181, E¢=204 GPa,
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109 - ; ; ; 3 3 b) FMA FIG. 9. Surface amplitudea,(t), used for comparing the two dynamical
10-10 § § § § : § (b) i systems. The amplitude is ramped from 0 to 1 nm in 20 cycles, held constant
ond for 20 cycles, and ramped to zero in 20 cycles. The excitation frequency
10124 & § § ‘ ; ; shown here i€2,=1.6 MHz.
TISER I T N | | :
10-14 ;%1 P ' The spread in frequencies however, is caused not only by the
— ' ' ' . . .
S LS [ | \ | “ ; damping, but also by the nonlinearity. The temporal response
£ 1016 'I‘WW 1 J\‘ i i | 3 i of these systems is now examined at several different fre-
i il H H | i .
10174 ;“"lww L L : guencies.
10-184 ¢ | N AN !
: : Wv»vw-"iwww|‘ v‘.«»mw\ [ S—_— il
10-19 P ‘ § ‘ l Tl C. Temporal response
' B | '
10-20 1 : . .
18_21 1 ‘ The temporal response of the elastic beam and the first-
02 L 1‘ ‘ L | mode approximation can now be compared for a variety of
0 1 2 3 4 5 frequencies based upon the results shown in Fig. 8. The re-
Frequency (MHz) sponses at 1.6, 2.0, and 2.32 MHz indicated by arrows in Fig.

8(a), are presented here. As seen from Fi¢p) 8these fre-
FIG. 8. Spectral response of the two dynamical systems considered he@uencies correspond to a nonresonameederate responge
when the interaction forces are modeled nonlinea@@y:spectrum of the | d ti ©
motion of the end of the elastic beaifly) spectrum of the first-mode ap- a resonance arge responée an ar_'_an iresonandtow re-
proximation. The arrows ifg) indicate the frequencies at which the tempo- SPONS respectively. Thus, the ability of the FMA to model
ral response of both systems is examined. The vertical dashed lines are thle elastic beam response for excitations above the first reso-
natural frequencies of the beam calculated from the linear approximation of,5nce will be fully tested
the interaction force curve at the initial contdsee Fig. 7. . ) . . .

The specimen surface was first excited by a variable am-
plitude harmonic wave witf),=1.6 MHz. The excitation
was ramped linearly in 20 cycldé42.5 us), held at constant

These responses are clearly seen(st2, Q,, 3Q,/2, amplitude of 1 nm for 20 cycles, and linearly ramped back to
2Q,, 50,/2, and 3),. The oscillations seen in Fig.(l®  zero in 20 cycles. Total excitation time was 37%5. The
have a period corresponding to the first-mode resonancepecimen excitation functiom,(t), is shown in Fig. 9. The
Thus, nonlinear mixing between the first resonance and theesults are shown in Figs. (@ and 1Qb) for the elastic
excitation frequency is observed. However, aside from thesbeam solution and the first-mode approximation, respec-
responses the frequency response has no other noticealbleely. The responses are qualitatively as well as quantita-
features. The power spectrum for the elastic beam solutiotively different. The elastic beam solution has many more
is, on the other hand, very complex and covers a wide frehigh-frequency components at higher amplitudes than the
guency range even though the excitation was at a single fr&«kMA result. This result is not such a surprise since the
guency. We see a large degree of mixing between the variodigher modes are neglected by the FMA. The different re-
modes and the excitation frequency. A similar type of fre-sponse caused by the interaction damping is also observed in
quency response has been observed in experifiéhguch  Fig. 10. Certain higher frequency modes are not damped to
behavior is not captured by the FMA. the same extent as other modes.

The nonlinearity also acts to shift the natural frequen-  The mean response from both solutions can also be com-
cies. The peaks in the power spectrum are near the peaksred. The above time domain responses were low-pass fil-
calculated from the linear spring, but some have been shiftetered to give the mean response. This result is shown in Fig.
higher and some have been shifted lower in frequency. Thé&l. Here it is clear that the FMA has also a different response
nonlinear effects act to stiffen some modes while softeninghan that of the elastic beam solution. The FMA solution is
others. This may help explain the failure of linear models tovery symmetric in time, reaching its maximum in phase with
predict the natural frequencies measured in experinentsthe excitation. The elastic beam solution has a slight time lag
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FIG. 10. Time domain response of the two models to the surface excitatiofr|G. 12. Time domain response of the two models to the surface excitation
shown in Fig. 9 at the nonresonant frequencylef=1.6 MHz. The system  Similar to that shown in Fig. 9 at a resonance frequencf)gf 2.0 MHz.
damping and interaction damping are given pypA=2Bsya= /10 and  The damping is the same as in Fig. 10. The inset shows the comparison of
oint/ pPAL=w,, respectively. the low-pass filtered results of the two models.

before reaching its maximum and is not as symmetric as thfy e also been obtained using a different solution
FMA solution. Both of these characteristics have been Obtechniquez.l

. ) i . _ The low-frequency response is seen to be influ-
served in experiments with high-frequency excitations ofgnceq by the complex mixing of the higher modes as well as
atomic-force microscope cantilever&1%1"22Similar results

by the interaction damping.
The resonant frequency 6i,=2.0 MHz was examined
next. The excitation was ramped linearly in 20 cyci(é®
©9), held at a constant amplitude of 1 nm for 20 cycles, and
linearly ramped back to zero in 20 cycles. Total excitation
time was 30us. The results are shown in Fig. 12 for the
elastic beam solution and the first-mode approximation. As
expected, the FMA solution is worse than the previous non-
resonant case, although not tremendously so. The high level
of damping prevents the elastic beam resonance from having
an extremely high response. The inset shows the comparison
of the low-pass filtered results of both solutions.
Finally, the antiresonant frequency 6i,=2.32 MHz
was examined. The excitation was ramped linearly in 30
cycles(13 us), held at a constant amplitude of 1 nm for 30
cycles, and linearly ramped back to zero in 30 cycles. Total
excitation time was 3%s. The results are shown in Fig. 13
for the elastic beam solution and the first-mode approxima-
_ o o _ _tion. As expected, the FMA does a better job of matching
FIG. 11. Time domain signals shown in Fig. 10 after being low-pass fil-yig rasponse, especially the low-frequency behavior. The
tered. The solution from the first-mode approximation is very symmetric an . . . .
rises to a much higher amplitude than the more asymmetric solution of théOW-pass filtered responses are again shown in the inset. As
elastic beam. seen in Fig. 8, the response at this frequency is expected to

9.8 T
Q2=1.6 MHz

Mean Response

Deflection (nm)

8.2 0 10 20 30 40 50

Time (us)
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‘ ’ ' ‘ tant differences in the linear behavior of these two dynamical
102 Beam Q2 =232 MHz | systems were discussed. The drive-point impedance and the
effects of interaction damping are distinctly different in these
981 1 two systems. These differences were shown to be important
whenever the excitation frequency is above the natural fre-
9.4 ] 1 guency of the first flexural mode. Therefore, caution must be
exercised when using low-frequency approximations such as
90} the FMA to model the high-frequency dynamics of these
beams.
— 86 A direct numerical simulation of the elastic beam equa-
= tion using a finite difference approximation was also pre-
RS 82 . ‘ ‘ . sented. These simulations provided insight into the impor-
g ¢ 10 20 30 40 0 tance of the higher-order modes. It was shown that the higher
8 020 FM A ' Mean Re'sponsei frequency modes are very important when an accurate view
é ) _FMA of the dynamics is needed.' It was also show'n that the Ipw-
3] ) frequency response to a high-frequency excitation required
Qo8 Beam ] the inclusion of the higher modes. Although inclusion of
these higher order modes complicates the problem consider-
941 1 ably, it is indeed a necessity governed by the complex dy-
namics. Numerical solutions are often the final step in solv-
9.0t 1 ing these types of nonlinear problems. Therefore inclusion of
all modes should not be prohibitive. The finite difference
8.6 i method used here is very efficient and provides the high
level of accuracy needed for comparisons with experimental
82 ‘ : : : results. The deflection of all points along the beam are cal-
0 10 2 % “ % lated simultaneously which may also be useful for com-
Time (Ls) cu y y

parison with experimental results. It is anticipated that nu-
merical simulation techniques will allow further progress to
be made in understanding the complex nonlinear interaction
FIG. 13. Time domain response of the two models to the surface excitatiofiorces that affect the motion of atomic-force microscope can-
similar to that shown in Fig. 9 at an antiresonance frequencf)gf  tjlavers, Differences in expected vibrational response can
2.32 MHz. The damping is the same as in Fig. 10. The low-pass filtered . .
responses of the two models are shown in the inset. _eaS'Iy F’e calculated for_ a number  of Q|ﬁerent fo.rce—
interaction models, as for instance, those with hysteretic be-
havior, for comparison.
be much smaller than at other frequencies. This fact helps the One other note should be also made about the calcula-
FMA better match the low-frequency response. However, asions and nonlinear responses observed. A chaotic type of
before, the two results are quantitatively different. motion was observed in various simulations when the exci-
As expected the FMA performed better at nonresonantation amplitude was large. The beam was observed to jump
frequencies than at resonant frequencies. The resonances &tm contact mode to free vibration mode in a chaotic fash-
generally not known before an experiment is made and theijon. The numerical stability of these solutions is still being
can be difficult to find experimentally. Therefore, the non-examined. Such chaotic responses, which have also been ob-
resonant result shown in Fig. 10 is probably most represerserved experimental’*”2% are highly sensitive to slight
tative of the ability of the FMA to model the response of changes in initial conditions and boundary conditions. There-
atomic-force microscope cantilevers which are excited abovéore, experimental repeatability, which is important for mea-
the first resonance frequency. The high-frequency responsgirement of material properties or surface properties, is
of the beam was underestimated by the FMA for all frequennearly impossible for this type of motion. Although the cha-
cies observed. The low-frequency response predicted by thetic behavior is interesting from a nonlinear dynamics point
FMA was qualitatively similar to the low-frequency responseof view, its use for quantitative measurements is, for this
of the elastic beam. However, the two solutions had quantireason, questioned.
tative differences that may be important when comparison
with experiments is made. Because the FMA is a low-
frequency approximation, its use for modeling excitation fre-
quencies above the first natural frequency must be made withCKNOWLEDGMENTS
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V. DISCUSSION
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APPENDIX

A
_ o _ ZM (yiP1-y{Pp) + (p—t)z (yj?1—2y{"+y{")=0.

Solutions of the partial differential equations, Eq$)
and(5), with nonlinear boundary conditions are not trivial. A (A3)
numerical approach is used in many of the examples preequation (A3) can be rearranged to yield a time-stepping
sented above. A direct numerical simulation, such as the figquation
nite difference approximation discussed here, has a number
of advantages. An efficient numerical solution allows the
problem to be solved for a large parameter range so that the+1~ 1+C
vibration dependence can be observed. It is then possible for
new experiments to be suggested in which certain interaction - D[y(n+2) y(n+1 +6y(n) y(n Y y(n 213,
parameters can be better observed. (A4)

The finite difference approximation is a standard nu-
merical technique used to solve differential equations. Thigvhere the constant® andC are given by
technique is discussed in a number of excellent texts and will
not be discussed in detail hefe'® The derivatives in the 5
governing equations are, in essence, approximated by a Tay- p— E (A _r E (A5)
lor series expansion. The beam is divided into a number of pA (AX)*’ pA 2
finite segments of sizAx such thatx=nAx. The motion of
each segment is related to the motion of the neighborin
segments. Time is also discretized such thvajAt. In the
following discussion, the subscripts yaefer to the temporal
step and the superscripts refer to the spatial nodes.

The second order, centered finite difference approxima-
tions for spatial derivatives are given by

{2y"-(1=Cyyj%

q‘hus, the motion at the next step in time is determined by the
two previous time steps. Discretized versions of the bound-
ary conditions, Egs(3) and(4), are given by

yj”=Aq sin(Q,jAt),

(n+1)_ ,,(n—1)
e Y (M_yi-b
y'(x,t)= T oAx i =Y (A6)
yjN-%—l 2y(N) yEN l)'
y(n+l 2y n)+y(n 1)
y”(xlt)E (A)J()Z )
(A1) yJN+2 yJ(N+l)_2yJ(Nfl)+yJ(N72)
2(Ax)* :
. t ~yj(n+2) 2y(n+l +2y(n 1) y}n 2) _( EI FS[yJ(N),aZ(JAt)]
y (X! ) 2(AX)3 ’
Yﬂ)l yJ(N)l S
— ol oAb | |.
,,,, (n+2) 4an+1)+6y(n) 4yj(n 1)+y(n 2) N '
(X, t)~ . The above boundary conditions contain three terms that are

(Ax)* (N+1)

not actual locations on the beany{ ", y("*Y  and
y(N”) These “fictitious” nodes are requwed for the time
The second order, centered finite difference approximationsteppmg equations defining the nodes near the ends of the
for the necessary temporal derivatives are beam. We see that E¢A3) for nodesn=1, n=N-1, and
n=N is given by
(n)

(n)
. _YidaTYia
y(x,t)_ 24t ’ (1) (1) _ (1)
(AZ) yJ+1_ 1+C {Zy (1 C)y
(n) -2 (n)+ (ﬂ)
(x S o
T (At)?

—D[y{¥ -4y + 6y~ 4y ¥ +y{ "V,

The discretized equation of motion for the elastic beam, Eq.

(1), is then approximated as (N-1) (N-1) (N— 1) (N+1)
yJ+l = 1+C { y (l C)y D[y
El (n+2) _ 4y(n+1) 4 gy(M_ 4y, (0=1) 4\, (n=2) N N-1 N-2) N-3)
(Ax)? 8% Yi Yi Yi yi ) 4y} >+6y( ) 4y( y( T, (A7)
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N) _
y1(+)1_

1
1+C

{2y{V—(1-C)yY, - DLyN*?

4yJ(N+l)+6yJ(N)_4y(Nfl)+y(N72)]}.

A new vector can then be defined that contains all of the
node locations at a particular time st¢p This vector, of

lengthN, is given by

B i i (1
Yj
The boundary conditions given in Eq#\6) allow the above y(@
equations to be written in terms of the “real” nodes as :3)
Y
yj¥i= L){ny”—(l—c)y‘“ —D[y}® —4y?
+7yiM—4A, sin(jAtQ,)1}, y®=2
(N=1)
yN-D - {Zy(N—l)_(l_C)y(N—l)_D[_Zy(N) Yj
j+1 1+C ] -1 ] ygN)
J
+5yJ€N—1>_4yJ§N—2>+yJ§N—3>]}, (A8)  The finite difference progression is then written in terms of
this vector by
(N) 1 v _ (1—c)viN) Y .= !
Yi+1= P Yi ( )Yi-1 S+l licts OintAt
1+C+ AX et o AR
2(Ax)® X[2Y;=(1-C)Y;_1—DMY;-DG], (All)
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