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High-frequency response of atomic-force microscope cantilevers
Joseph A. Turner,a) Sigrun Hirsekorn, Ute Rabe,b) and Walter Arnold
Fraunhofer Institute for Nondestructive Testing, Building 37, University, D-66123 Saarbru¨cken, Germany

~Received 3 February 1997; accepted for publication 21 April 1997!

Recent advances in atomic-force microscopy have moved beyond the original quasistatic
implementation into a fully dynamic regime in which the atomic-force microscope cantilever is in
contact with an insonified sample. The resulting dynamical system is complex and highly nonlinear.
Simplification of this problem is often realized by modeling the cantilever as a one degree of
freedom system. This type of first-mode approximation~FMA!, or point-mass model, has been
successful in advancing material property measurement techniques. The limits and validity of such
an approximation have not, however, been fully addressed. In this article, the complete flexural
beam equation is examined and compared directly with the FMA using both linear and nonlinear
examples. These comparisons are made using analytical and finite difference numerical techniques.
The two systems are shown to have differences in drive-point impedance and are influenced
differently by the interaction damping. It is shown that the higher modes must be included for
excitations above the first resonance if both the low and high frequency dynamics are to be modeled
accurately. ©1997 American Institute of Physics.@S0021-8979~97!02115-4#

I. INTRODUCTION

Atomic-force microscopes~AFM! were originally devel-
oped to provide surface topography information.1 Deflection
of the microscope cantilever as a function of surface location
is used to generate high-resolution images of surfaces. Cur-
rent applications using the AFM have moved beyond the
original quasistatic motion into a dynamic range. This work
has shown that vibrational excitation of the specimen surface
or AFM cantilever can provide a better signal-to-noise ratio
and offers opportunities for noncontact and intermittent con-
tact methods. High-frequency contact techniques also offer
the potential for high resolution measurement of material
properties and surface properties such as adhesion.2–4 The
high-frequency motion of an elastic cantilevered beam in
contact with complex surface forces is, however, not easily
described. The tip–sample interaction forces are, in general,
nonlinear and are the subject of intensive research them-
selves. When an elastic beam interacts with these surface
forces, the many flexural modes may also be a part of the
dynamics. It is now recognized that these higher modes are
often excited in experiments.5–7

The complexities of the elastic beam vibrations have
given rise to models that simplify the dynamics considerably.
In one such approach the elastic beam equation is approxi-
mated with a one degree of freedom mass-spring model.8–10

The mass and stiffness of this oscillator are chosen such that
the natural frequency is the same as the natural frequency of
the first flexural mode of the beam. All higher modes are
thus neglected. One would then assume that this type of first-
mode approximation~FMA! is only valid for surface excita-
tion frequencies well below the second natural frequency of
the beam. Higher frequency vibrations would require inclu-
sion of the higher modes. This type of model is very effec-
tive when the cantilever is much stiffer than the specimen

surface—a condition that assures that the measured signal is
not dominated by the cantilever compliance.10 Such a model
has also been used to help in further understanding of non-
linear tip–force interactions. However, the importance of the
higher modes and thus the limitations of FMA have not been
fully investigated. Because these higher excitation frequen-
cies can be useful for determining material properties, this
type of understanding is important.

In this article, the elastic beam equation describing the
flexural vibrations is examined and compared directly with
FMA using both analytical and numerical techniques. The
higher modes are shown to be an important part of higher
frequency dynamics. For the linear case, the drive-point im-
pedance and the effect of interaction damping are shown to
be fundamentally different in these two dynamical systems.
These aspects are shown explicitly in the numerical ex-
amples presented as well. When the boundary condition is
nonlinear, FMA is also shown to predict a different response
than that of the elastic beam. All of these differences are
shown to be important when the excitation frequency is
above the first flexural natural frequency as expected.

II. GOVERNING EQUATIONS

The atomic-force microscope cantilever here is a canti-
levered, rectangular elastic beam as depicted in Fig. 1~a!.
The beam has widtha, heightb, and lengthL. The equation
that governs the flexural vibrations of such an elastic beam is
given by11,12

EIy99~x,t !1g ẏ~x,t !1rAÿ~x,t !50, ~1!

where the primes or dots denote the corresponding deriva-
tives with respect to space,]/]x, or time,]/]t. Herer is the
material density,E is the elastic modulus,A5ab is the
cross-sectional area, andI5ab3/12 is the bending moment
of inertia. The material damping is characterized byg.
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The initial conditions considered here are given by

y~x,0!52
F0

6EI
x2~x23L !, ẏ~x,0!50. ~2!

Thus, the above formula for the initial deformation gives the
initial deflection due to an end loadF0 defined as being
positive when it acts in the upward direction. The initial
velocity of the beam is assumed here to always be zero.

Boundary conditions must also be specified. At the can-
tilevered end, the boundary conditions are

y~0,t !5a1~ t !5A1 sin~V1t !, y8~0,t !50, ~3!

such that the displacement is equal to a harmonic loading
and the slope is equal to zero. Often this end will be assumed
to be clamped such thatA150.

The other end of the beam,x5L, is assumed to be in-
teracting with the surface through surface forces. Thus the
moment and shear force at this end of the beam are pre-
scribed. These boundary conditions are written

y9~L,t !50,

EIy-~L,t !52Fs@y~L,t !,a2~ t !#

1s int@ ẏ~L,t !2ȧ2~ t !#,

a2~ t !5A2~ t !sin~V2t !. ~4!

The functionFs represents any type of elastic force displace-
ment relation, linear or nonlinear, between the end of the
beam and the surface. Its dependence on displacement, ve-
locity, and other parameters will be addressed when needed.
This force relation is represented in Fig. 1 as the spring with
spring constantk which is not necessarily linear. Vibration
of the specimen surface is described by the functiona2(t)
assumed here to be harmonic with time dependent amplitude,

A2(t). The interaction damping, characterized bys int , is as-
sumed here to be a linear, viscous type of damping.

The equation of motion, Eq.~1!, with appropriate initial
conditions and boundary conditions, can be solved analyti-
cally provided the shear boundary condition functionFs is
simple enough and linear.11,12 If Fs is nonlinear, as is the
case for most tip–surface interaction models,7,10 the solution
of Eq. ~1! is not trivial.

One approach often used to simplify the equation of mo-
tion is to approximate the motion of the end of the beam by
an equivalent mass-spring system.8–10 Such a system is
shown in Fig. 1~b!. The natural frequency of this mass-spring
oscillator is chosen to equal the natural frequency of the first
flexural mode. This type of FMA, often referred to as the
point-mass model, is a low-frequency approximation. The
motion of the end of the beam,d(t) > y(L,t), is in this case
characterized by

mFMAd̈~ t !12mFMAbFMAḋ~ t !1kFMAd~ t !

5Fs@d~ t !,a2~ t !#2s int@ ḋ~ t !2ȧ2~ t !#. ~5!

The mass, spring stiffness, and damping in Eq.~5! are related
to the parameters of the beam and given by

mFMA5
3rAL

~1.875!4
,

kFMA5
3EI

L3
, 2bFMA5

g

rA
. ~6!

Equation~5!, though much simpler, retains the complication
of a possible nonlinearFs . The FMA is thus a low-
frequency approximation of the elastic beam equation. The
limitations of this approximation in terms of frequency
range, damping, and nonlinear behavior have not been fully
investigated. Here, a number of analytical and numerical ex-
amples will be presented for both linear and nonlinear sur-
face interactions that helps sort out these questions. The
higher flexural modes will be shown to be quite important
when the excitation frequency is above the frequency of the
first mode.

III. LINEAR RESPONSE

An examination of the linear response of the elastic
beam equation in comparison with the first-mode approxima-
tion is now presented. Two issues are discussed regarding
the linear response of these dynamical systems described by
Eqs.~1! and~5!. Differences in the drive-point impedance of
each system are first examined. It is shown that the FMA
will always underestimate the total excitation energy of the
beam when the driving frequency is higher than the natural
frequency of the first flexural mode. Differences in the effect
of interaction damping on both systems are then discussed.
For the elastic beam interaction damping has a different ef-
fect on the higher frequency modes than the internal damp-
ing of the beam or the damping caused by losses to air.
These differences can not be captured by the FMA. Finally,
numerical examples that highlight both of these differences
are given.

FIG. 1. Schematics of the two dynamical systems compared here. Elastic
beam~a! and spring-mass system~b! coupled to a moving surface with a
linear dashpot and linear or nonlinear spring.
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A. Drive-point impedance

One important distinction between the elastic beam
equation, Eq.~1!, and the first-mode approximation, Eq.~5!,
is the difference in their drive-point impedances.12 The
drive-point impedance, defined as the ratio of the system
velocity at a particular location to the force applied at the
same location, characterizes the ability of the forcing to ex-
cite the beam. When examined as a function of frequency
with constant forcing amplitude, it provides a sense of how
much energy the beam is willing to accept from an excitation
at a particular frequency. This type of information is impor-
tant for understanding the expected amplitude of excitation
of the beam. In particular, predictions about the driving am-
plitudes necessary to cause the tip–surface separation cannot
be made without accurate knowledge of the amount of en-
ergy exciting the beam. The drive-point impedance of the
elastic beam will now be compared with the impedance cal-
culated using the first-mode approximation.

A somewhat simpler equation of motion is considered to
highlight this difference. The elastic beam, with damping
neglected, is cantilevered at one end and free at the other. A
harmonic load is applied at positionx 5 x0 . The equation of
motion is thus given by

EIy99~x,t !1rAÿ~x,t !5Fd~x2x0!e
ivt, ~7!

where the generalized functiond(z) is infinity when its ar-
gument is zero and is zero otherwise. Equation~7! is solved
by superposition using the natural modes of the unforced
system. Thus, the displacement is expanded as

y~x,t !5eivt(
n51

`

PnYn~x!, ~8!

where the weighting of the modes, given by the coefficients
Pn , is determined from the forcing. The spatial eigenfunc-
tions,Yn(x), determined from the free vibration analysis of
the clamped-free beam, are given by11

Yn~x!5S sin~knL !2sinh~knL !

cos~knL !1cosh~knL ! D @sin~knx!2sinh~knx!#

1@cos~knx!2cosh~knx!#. ~9!

Here,kn are the flexural wave numbers which are related to
their corresponding natural frequencies through the disper-
sion relationkn

45vn
2rA/EI. The allowable flexural wave

numbers, determined by the boundary conditions, satisfy the
relation11

cos~knL !cosh~knL !521. ~10!

The assumed form for the displacement, Eq.~8!, is sub-
stituted into the equation of motion giving

(
n51

`

@EIkn
42rAv2#PnYn~x!5Fd~x2x0!. ~11!

The constantsPn are then determined by multiplying Eq.
~11! by Ym(x) and integrating from 0 toL. The orthogonal-
ity condition,

E
0

L

Ym~x!Yn~x!dx5Ldmn , ~12!

allows the integrations to be easily evaluated. We find that

Pn5
F

M

Yn~x0!

vn
22v2 , ~13!

whereM 5 rAL is the total mass of the beam andvn are the
natural frequencies of the free beam determined from the
above dispersion relation and Eq.~10!. The motion of the
beam to the harmonic excitation located atx5L is thus

y~x,t !5 (
n51

`
FeivtYn~L !Yn~x!

M ~vn
22v2!

. ~14!

From the definition of the drive-point impedance,Z(v)
5ẏ(L,t)/F(t), we find that for the elastic beam

Zbeam~v!5
iv

M (
n51

`
@Yn~L !#2

~vn
22v2!

. ~15!

The impedance goes to infinity at each of the natural fre-
quencies which means that the system is very easy to excite
at these frequencies. In reality, any damping present reduces
these poles to a large finite value. The drive-point impedance
for the first-mode approximation to the same forcing is sim-
ply

ZFMA~v!5
iv

mFMA
S 1

v1
22v2D . ~16!

From the definition of the point mass given by Eq.~6!,
we know thatmFMA53M /(1.875)4'M /4. Using the defini-
tion of the natural modes, Eq.~9!, at x5L, along with the
condition given by Eq. ~10! it can be shown that
@Yn(L)#

254. Thus, the drive-point impedance for the elastic
beam is approximately equal~within 3%! to the input imped-
ance for the FMA plus the impedance resulting from the
higher modes. In other words

Zbeam~v!5ZFMA~v!1 (
n52

`
4iv

M ~vn
22v2!

. ~17!

Of course the FMA cannot predict the high impedances
that occur at the resonances of the higher modes since these
modes are neglected from the outset. However, we also see
from Eq. ~17! that the FMA will underestimate the drive-
point impedance for all frequencies higher than the lowest
mode even away from the resonances. This result is illus-
trated in Fig. 2. The drive-point impedances given above
were divided by 4iv/M and squared. The logarithm of this
value is shown in Fig. 2, plotted versus excitation frequency
nondimensionalized by the first natural frequency. A small
amount of damping was added to remove the singularities at
the resonances. The drive-point impedance of the elastic
beam, shown as a solid line, has many peaks at the reso-
nances. The lower dashed line is the drive-point impedance
for the FMA. It has a single peak at the first resonance fol-
lowed by a decay proportional to 1/v4 @corresponding to the
1/v decay ofZFMA(v)#. The smoothed trend of the elastic
beam drive-point impedance is also plotted as the upper
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dashed line. This smoothed trend, which passes through the
inflection points of the nonsmoothed curve, is always higher
than the FMA result. The decay of the smoothed trend is
proportional to 1/v3 @corresponding to the 1/Av decay of
Zbeam(v)#.

13 Thus for low frequencies the FMA has approxi-
mately the correct impedance as expected. However, when
the excitation is above the second resonance, the difference
in impedance is appreciable. If predictions are to be made
about effects related to the amplitude, such as when tip–
surface separation occurs, the amount of energy input into
the beam must be modeled accurately. This difference in
drive-point impedance will also be seen in the numerical
examples presented here.

B. Interaction damping effects

The damping of vibrating atomic-force cantilevers is
caused by two very different effects. System damping is the
damping caused by internal losses in the beam as well as
losses to any surrounding fluid in which the beam vibrates.
There is also damping caused by the interaction forces which
act through the contact between the cantilever tip and the
specimen surface. This damping is thought to be caused pri-
marily by adhesion effects. Uncoupled cantilevers vibrating
in air have been shown to have very small damping withQ
varying between 90 and 900.6 Thus, the interaction damping
is expected to be the main source of damping in the coupled
systems. Understanding how the interaction damping affects
the beam vibration is therefore important.

In the first-mode approximation the interaction damping
is modeled in the same way as the system damping of the
uncoupled beam. The two dashpots are connected in series
with one another as shown in Fig. 1~b!. The interaction
damping for the elastic beam is a boundary condition which
affects the motion of the beam very differently than the
damping in the beam.

This effect can be seen by solving the elastic beam free
vibration problem@A150, A2(t)50# with attached linear
spring and linear dashpot located at the end of the beam.
This type of boundary condition has been examined
previously.5,6 The predicted response was plotted as a func-
tion of frequency for different values of linear spring
stiffness.6 However, the influence of the linear dashpot con-
stant has not yet been systematically examined.

The equation of motion for this example is

EIy99~x,t !1rAÿ~x,t !50, ~18!

with boundary conditions

y~0,t !50, y8~0,t !50,

y9~L,t !50, EIy-~L,t !5ky~L,t !1s intẏ~L,t !, ~19!

wherek is the spring constant of the attached linear spring
@Fs52ky(L,t)# ands int is the interaction damping coeffi-
cient. Substitution of a general solution of Eq.~18! into the
boundary conditions, Eqs.~19!, results in an equation that
determines the allowable values for the wave numbers. This
equation is5,6

~kL!3@11cos~kL!cosh~kL!#

5@ ip~kL!21q#@cos~kL!sinh~kL!2sin~kL!cosh~kL!#,
~20!

where the above two dimensionless measures of the interac-
tion damping,p, and stiffness,q, are

p5
3s int

~1.875!2mFMAv1
, q5

3k

kFMA
. ~21!

The solution of the above transcendental equation, Eq.~20!,
for dimensionless wave numbers,j5knL, for generalp and
q gives a complex value. To understand what meaning these
complex wave numbers have, the displacement is expanded
as a superposition of modes which have the following form:

y~x,t !5eivt(
n51

`

@B1ne
iknx1B2ne

2 iknx1B3ne
knx

1B4ne
2knx#, ~22!

where theBs are again determined from the boundary con-
ditions. Each mode of the solution given by Eq.~22! is com-
posed of two harmonic components and two evanescent
components. The first two terms are harmonic left and right
traveling waves. The other two terms are left and right eva-
nescent waves that decay exponentially in space. When the
wave number is complex, the harmonic traveling waves are
augmented by a spatial decay. The evanescent waves, in con-
trast, acquire a harmonic component. The real part of the
roots found from Eq.~20! corresponds to the stiffness of the
harmonic modes and thus the wave speed and frequency.
The imaginary part governs the damping of the mode.

Equation~20! was solved using Mathematica14 for the
complex rootsj5knL corresponding to the eigenmodes of
the system. One example is illustrated in Fig. 3. A dimen-
sionless stiffness ofq530 was used. The real and imaginary
parts of the first three complex roots of Eq.~20! are plotted
as a function of interaction damping characterized by the

FIG. 2. Quantity related to the drive-point impedance plotted vs frequency
normalized by the first natural frequency. The solid line is the drive-point
impedance of the elastic beam given by Eq.~17!. The upper dashed line is
the smoothed trend of the elastic beam impedance which passes through the
inflection points of the unsmoothed impedance. The lower dashed line is the
drive-point impedance for the first-mode approximation given by Eq.~16!.
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dimensionless quantity,p. The mode shapes of these three
modes without interaction damping are also shown. The re-
sults illustrate the three possible effects the interaction damp-
ing can have on the modes. We see that the first mode has an
increase in the real part as the damping is increased. This
mode acquires an additional stiffness from the interaction
damping. The imaginary part increases untilp is about 4 and
then begins decreasing. This mode becomes more heavily
damped below a certain level of interaction damping. The
damping then decreases as the interaction damping is in-
creased further. Mode three is affected in the opposite way.
As the interaction damping is increased, it is softened—its
real part decreases. The damping also increases below a cer-
tain level and then decreases. The effects seen in modes one
and three, caused by the interaction damping, are determined
by the different mode shapes. For moderate levels of inter-
action damping, the mode is increasingly damped. However,
once the damping becomes too large, the displacement at the
end of the beam becomes much smaller, such that the dash-
pot cannot cause further damping. The third possible effect
of damping is illustrated by mode two. This mode is also
softened by increased damping. In this case, as the damping
is increased, the real and imaginary parts of mode two con-
verge. After a threshold level of interaction damping is sur-
passed, the real and imaginary parts are identical. The mode
becomes very soft and very heavily damped. This mode
passes from a state of normal damped vibration, called an
underdamped vibration, into an overdamped state.11 The
condition of overdamping has the effect that the mode can no
longer oscillate—it is damped completely away before it can
complete one period of oscillation. This overdamping effect
may possibly be the reason that some modes are very diffi-
cult to detect in experiments.6 Similar results are obtained for
other values ofq as well. One mode was always observed to
behave in the same way as mode two in the example. Modes

below this special mode are stiffened and those above it are
softened with increasingp.

As seen in Fig. 3, each mode has a different sensitivity
not only to the interaction stiffness but also to the tip–sample
damping. For given nominal interaction stiffness and damp-
ing some modes will have a larger change in natural fre-
quency for fluctuations in stiffness caused by moving the
probe to different locations on the specimen. Therefore we
would like to predict the change in wave number for changes
in interaction stiffness and damping so that the optimum
mode and corresponding excitation frequency can be chosen
for experiments. The slope of the real part curves shown in
Fig. 3 governs the change in stiffness and, therefore, natural
frequency for changes in interaction stiffness and damping.
The slope of the imaginary part curves governs the change in
modal damping expected for changes in interaction stiffness
and damping. Thus, if nominal interaction stiffness and
damping properties can be approximated, the mode that
should be most sensitive to changes in stiffness and damping
as the probe is moved can then be determined. Those modes
with the highest slopes will be most sensitive.

It has been shown in this discussion that each mode is
affected very differently by the localized interaction damping
because each mode has a very different mode shape. This
damping is in contrast to the damping in the beam in which
all modes have damping proportional tog. The type of com-
plicated interaction damping shown here for the higher fre-
quencies cannot be captured by the FMA. It was also shown
that the interaction stiffness and interaction damping can
both lead to stiffening of the modes. This coupling effect
may make it difficult experimentally to separate the effects
due to interaction stiffness and interaction damping. The dif-
ference between the effect of interaction damping and beam
damping is also illustrated in the numerical examples pre-
sented in Sec. III C.

C. Temporal response

The differences in the linear response of the elastic beam
and the first-mode approximation can be clearly seen by nu-
merical solution of the two differential equations. A finite
difference solution to both equations is used to illustrate
these differences. This numerical method is briefly discussed
in the Appendix as well as in a number of texts.15,16 As a
first check on the finite difference solution for the elastic
beam, the free vibration response was calculated. Parameters
typical to those found in atomic-force microscopes previ-
ously examined were used.5–7 The elastic modulus and
density for ^100& silicon, E5169 GPa, r52330 kg/m3,
respectively, were used. The beam has widtha551
mm, thicknessb51.5mm, and lengthL5262mm. These
values yield a first natural frequency off 1530 kHz
~mFMA51.13310211 kg, kFMA50.404 N/m!. The code was
run on a Digital VAX workstation. Run times were on the
order of 2500 time steps per second.

For this check, the undamped beam was initially unde-
flected with zero initial velocity. Ninety beam segments were
used such that the segment size was about 19 times smaller
than the wavelength of the 10th eigenmode. The time inter-
val wasDt52 ns. The beam was excited at the cantilevered

FIG. 3. Real and imaginary parts of the first three wave numbers calculated
from Eq. ~20! as a function of the dimensionless interaction damping,
p53s int /(1.875)

2mFMAv1 . The dimensionless interaction stiffness is
q53k/kFMA530. The real and imaginary parts of the second mode are seen
to converge whenp is about 4.5. They are equal for all higher values of
p.
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end with a pulse ofV15500 kHz, duration of 1 cycle~2 ms!,
and amplitudeA152 nm. The beam was then allowed to
vibrate for 500ms. The time trace of the deflection of the end
of the beam was then fast Fourier transformed and squared
giving a quantity proportional to the power spectrum. The
result is shown in Fig. 4, up to a frequency of 8 MHz. The
frequency resolution is 1900 Hz. The vertical dashed lines
are the theoretical values of the natural frequencies calcu-
lated from the above material parameters. The agreement is
very good. The error in frequency of the 10th mode~7.6
MHz! is 1.1%. Thus for the frequency range considered here,
below 5 MHz, the results should be quite good. Although the
linear response of the FMA was also examined, the results
are not presented here. The FMA spectrum consists of only
the single peak associated with the first natural frequency.
Satisfied that the numerical model accurately captures the
high-frequency motion, the linear effects discussed above
were then examined.

The above discussion of drive-point impedance and in-
teraction damping are demonstrated with a simple numerical
example using a linear spring with stiffness ofk5790kFMA
~linear approximation of the nonlinear function discussed in
Sec. IV! and linear dashpot. The specimen surface was ex-
cited atV251.6 MHz harmonically. This frequency is cen-
tered roughly between the neighboring resonances of 1.38
and 1.99 MHz. The amplitude was ramped up from zero to
0.1 nm in 10 cycles~6.25ms! and held constant for 10 more
cycles. The forcing was then stopped and the system was
allowed to vibrate for 250ms. These time domain solutions
of both the elastic beam and the FMA, shown in Figs. 5~a!
and 5~b!, highlight the difference in drive-point impedance.
As discussed above, the FMA will always underestimate the
amount of energy input into the system for excitation fre-
quencies greater than the first natural frequency. This has a
profound influence on the coefficient of restitution, discussed
previously,17 when the tip impacts the surface. The vibration
amplitude calculated from the FMA is always lower than that
found from the elastic beam solution.

The different effects from the interaction damping are
also seen in Fig. 5. For the results shown, the system damp-

ing was equal to zero (g50) and the interaction damping
was chosen such thatp50.4. The FMA solution, shown in
Fig. 5~b!, damps out very quickly because of the high level
of damping. The elastic beam solution, shown in Fig. 5~a!,
has a component still remaining at the end of the time win-
dow shown. The remaining modes feel the effects of the
interaction damping much less than the first flexural mode as
was seen in Fig. 3. Because the interaction damping is typi-
cally much larger than the system damping, this effect is
indeed important.

The different effects of the two types of damping are
seen more dramatically in another example. In the first case,
the system damping in each system was set equal with
g/rAv150.4 and the interaction damping was set to zero.
The second case corresponds to the results given in Fig. 5 in
which the interaction damping was chosen such thatp50.4
and the system damping was set to zero. The results for both
cases are shown in Fig. 6 which is a plot of the log square
amplitude versus time. Figures 6~a! and 6~b! are, respec-
tively, the solutions of the FMA and elastic beam for system
damping only. The expected exponential decay of both solu-
tions is apparent. The elastic beam solution has more high-
frequency components, but all modes are seen to be damped
proportionally. The solution for the interaction damping

FIG. 4. Power spectrum of free elastic beam calculated using the finite
difference method. The vertical dashed lines mark the theoretical flexural
natural frequencies.

FIG. 5. Time response for both elastic beam solution~a! and first-mode
approximation~b! with interaction damping only (p50.4).
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alone is shown in Figs. 6~c! and 6~d!. The FMA response is
almost the same as before, the difference resulting from the
fact that the excitation has acted through the dashpot in the
second case. The decay in both cases is exponential and
identical as expected. The beats seen in both FMA responses,
Figs. 6~a! and 6~c!, occur at the frequency of the first-mode
resonance. The decay of the elastic beam solution for inter-
action damping alone is very different. The decay begins
exponential, but then becomes nonexponential after a certain
amount of time. This type of nonexponential decay is char-
acteristic of nonproportionally damped modes.18–20 Each
mode has a different response atx5L where the dashpot is
located and is therefore damped in a different way. The
modes with large amplitude motion near the end of the beam
are damped most heavily and last for only a short time. This
aspect of the dynamics, important for understanding surface
damping properties, cannot be appropriately modeled by the
FMA. Although a linear, viscous type of damping was used
in this example, the outcome was a result of the damping
being local. This difference in the damping is expected to be
present for any type of nonlinear interaction damping as
well.

Thus far we have shown how important the higher
modes of vibration are for excitations above the first natural
frequency. Accurate determination of the energy input into
the system and for modeling the interaction damping are
very much dependent upon the higher modes. The impor-
tance of these modes has, at this point, been discussed for the
linear case only. In Sec. IV, the nonlinear aspects of the
higher frequency modes will be shown to be equally as im-
portant to the dynamics of a vibrating elastic beam.

IV. NONLINEAR RESPONSE

In Sec. III, the differences in the linear response of the
elastic beam and the first-mode approximation were dis-
cussed. Those results highlighted the fundamental differ-

ences between these two very different dynamical systems.
Here the finite difference method will be used again to in-
vestigate the importance of the higher modes of vibration
when the interaction forces are nonlinear. In order for a com-
parison to be made between the elastic beam equation and
the FMA, an appropriate nonlinear interaction force-
displacement model is needed. This force-displacement
model is discussed briefly in the next section. Numerical
results for the temporal response and frequency response are
then presented.

A. Interaction force curve

In order to examine the effects of the higher modes on
the nonlinear response in detail, a suitable nonlinear interac-
tion force curve is needed. The goal here is to determine the
degree to which nonlinear effects are not captured by the
first-mode approximation. Therefore a number of nonlinear
models is suitable. The model used here is discussed at
length elsewhere,21 but is briefly outlined here. The inter-
ested reader is referred to the original work for a more com-
plete discussion.

The vibrating cantilevers considered here typically have
a tip at or near the end of the beam. It is through this tip that
the surface interaction forces act. However, the point of the
tip is not necessarily the center of action of the interaction
forces. Some of the interaction forces have rather long range
effects such that there is some point, or distribution of points,
below the end of the beam through which the interaction
forces are presumed to act. Here it is assumed that the action
of the forces takes place through a single pointy(L,t)
2y0 , such thaty0 is the location below the end of the beam
that is the center of action of the forces. The center of action
of the forces will be called the sensor tip here although it is
recognized that it is not necessarily the tip itself.

Four different interaction force functions are used to
model the four different regions of interaction forces as-
sumed by this model. When the center of action of the forces
is in contact with the specimen surface, a modified Hertzian
contact model is used. In the region where the tip is interact-
ing only with the thin water layer, the force is modeled using
an adhesion model. If the sensor tip is not within the water
layer, the force is assumed to be zero. The transition zone
between the contact region and the adhesion layer is modeled
using an interpolation that is based upon metallic adhesion
effects. These different force relations are summed up as21

Fs@z#5H Fcont~z!

F inter~z!

FWF~z!

0
J , when H z<0

0<z<za
za<z<2d
z>2d

J , ~23!

whereFcont, F inter, andFWF are the contact force, the inter-
polating force, and the force of the waterfilm, respectively:

Fcont~z!5
4

3
E*AR~2z!32A2pgSOE* ~2Rz!3/21F0 ,

F inter~z!52C1e
2az2C2 ,

FWF~z!52
4pRgw

11z/d
. ~24!

FIG. 6. Square of amplitude plotted vs time for four cases:~a! First-mode
approximation with system damping only (2bFMA /v150.4), ~b! elastic
beam solution with system damping only (g/rAv150.4), ~c! FMA with
interaction damping only (p50.4), ~d! elastic beam solution with interac-
tion damping only (p50.4).

972 J. Appl. Phys., Vol. 82, No. 3, 1 August 1997 Turner et al.

Downloaded¬29¬Aug¬2007¬to¬129.93.17.223.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://jap.aip.org/jap/copyright.jsp



In Eqs. ~24!, the reduced elastic modulus,E* , is written in
terms of the elastic moduli of the tip and surface,ET and
ES , and Poisson’s ratio of the tip and surface,nT andnS , as

1

E*
5
12nT

2

ET
1
12nS

2

ES
. ~25!

R is the tip radius,gSO, is the adhesion constant between the
tip and the sample surface,a is the inverse of the shielding
length of the metallic adhesion,gw is the adhesion constant
between two water films, andd is the thickness of the water
film. The constantsC1 andC2 as well as the pointza are
determined by enforcing continuity of the position and slope
between the functionsF inter(z), FWF(z), andFcont(z). How-
ever, the derivative is not continuous atz50. The forceF0

characterizes all forces not explicitly described by the modi-
fied Hertzian model. The following parameters, correspond-
ing to a ^100& single crystal silicon tip interacting with a
chromium surface,21 were used in the numerical results that
follow:

R520 nm, gSO50.167 N/M, a515 nm21,

F0520.456 nN,

ET5130 Gpa, nT50.181, ES5204 GPa,

nS50.26,

gw50.072 N/m, d52.83 nm. ~26!

The region near the transition between the above force
models is shown in Fig. 7. The straight line is a linear ap-
proximation which is tangent at the equilibrium position. The
slope of this line is the value of the linear spring stiffness
which is used for comparison with the nonlinear results.

In the following simulations, the beam is assumed to be
initially in contact with the specimen surface. In this case,
the initial beam deflection, which can be measured experi-
mentally, must balance with the interaction forces such that

kFMAy~L, t50!5Fs@y~L, t50!2y0#. ~27!

Equation~27! can be solved iteratively for the quantity
y0 defining the center of action of the forces. Using the pa-

rameters for the interaction forces, Eqs.~26!, and the param-
eters for the beam given above along with a measured initial
beam deflection ofy(L, t50)58.63 nm we find thaty0
58.9404 nm.

The above interaction force model is used in the follow-
ing section to demonstrate the nonlinear vibrations of the
elastic cantilever. When the specimen surface is vibrated, the
forcing is given byFs@y(L,t)2y02a2(t)#.

B. Frequency response

The nonlinear response of the vibrating cantilever was
calculated using the finite difference method discussed in the
Appendix. Solutions for both the elastic beam and the first-
mode approximation are presented for comparison. The in-
teraction force curve discussed in Sec. IV A changes very
quickly nearz50. Therefore, the change in displacement at
each time step was monitored to insure that the change in
displacement was small compared to the length scale over
which the interaction force curve changes quickly. For
the examples presented here, the maximum change in ampli-
tude at any time step (Dt50.01 ns) was always less than
1.1331024 nm which was judged suitable for the interaction
force curve shown in Fig. 7. The numerical stability of the
solutions presented here was also checked.

The same values of damping were used for all examples
presented here. The system damping was chosen such that
the first mode of the uncoupled beam had aQ of 10. Thus,

g

rA
52bFMA5

v1

10
. ~28!

The interaction damping was chosen to be 10 times this
value of damping or

s int

rAL
5v1 . ~29!

The frequency response of the vibrating beam with the
nonlinear boundary condition is first examined so that sev-
eral relevant frequencies can be chosen for the time depen-
dent examination. The beam was initially in contact with the
specimen surface and deflected according to the force bal-
ance governed by Eq.~2! above. The specimen surface was
excited withV251.6 MHz, a frequency that lies between
the two resonances of the linear response of 1.33 and 1.99
MHz. The amplitude was ramped from zero to 0.5 nm in 20
cycles and then held constant for 500ms. The time domain
response of the end of the beam was then fast Fourier trans-
formed and squared. The power spectra from this steady-
state excitation for the elastic beam solution and the first-
mode approximation are shown in Fig. 8. The vertical dashed
lines correspond to the natural frequencies of the beam vi-
brations when attached to a linear spring with appropriate
stiffness calculated from the slope of the interaction force
curve at the equilibrium position~see Fig. 7!.

The power spectra for the two solutions are extremely
different. The spectrum calculated from the FMA does have
distinct nonlinear traits as expected. There are peaks, or
strong responses, at multiples and subharmonics of the exci-
tation frequency as has been observed in experiments.6,10

FIG. 7. Interaction force curves used for calculations. Both the linear and
nonlinear curves are shown. The straight line is tangent to the nonlinear
curve at the point of initial contact between the tip and surface.
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These responses are clearly seen atV2/2, V2 , 3V2/2,
2V2 , 5V2/2, and 3V2 . The oscillations seen in Fig. 8~b!
have a period corresponding to the first-mode resonance.
Thus, nonlinear mixing between the first resonance and the
excitation frequency is observed. However, aside from these
responses the frequency response has no other noticeable
features. The power spectrum for the elastic beam solution
is, on the other hand, very complex and covers a wide fre-
quency range even though the excitation was at a single fre-
quency. We see a large degree of mixing between the various
modes and the excitation frequency. A similar type of fre-
quency response has been observed in experiments.6,22 Such
behavior is not captured by the FMA.

The nonlinearity also acts to shift the natural frequen-
cies. The peaks in the power spectrum are near the peaks
calculated from the linear spring, but some have been shifted
higher and some have been shifted lower in frequency. The
nonlinear effects act to stiffen some modes while softening
others. This may help explain the failure of linear models to
predict the natural frequencies measured in experiments.5

The spread in frequencies however, is caused not only by the
damping, but also by the nonlinearity. The temporal response
of these systems is now examined at several different fre-
quencies.

C. Temporal response

The temporal response of the elastic beam and the first-
mode approximation can now be compared for a variety of
frequencies based upon the results shown in Fig. 8. The re-
sponses at 1.6, 2.0, and 2.32 MHz indicated by arrows in Fig.
8~a!, are presented here. As seen from Fig. 8~a!, these fre-
quencies correspond to a nonresonance~moderate response!,
a resonance~large response!, and an antiresonance~low re-
sponse!, respectively. Thus, the ability of the FMA to model
the elastic beam response for excitations above the first reso-
nance will be fully tested.

The specimen surface was first excited by a variable am-
plitude harmonic wave withV251.6 MHz. The excitation
was ramped linearly in 20 cycles~12.5ms!, held at constant
amplitude of 1 nm for 20 cycles, and linearly ramped back to
zero in 20 cycles. Total excitation time was 37.5ms. The
specimen excitation function,a2(t), is shown in Fig. 9. The
results are shown in Figs. 10~a! and 10~b! for the elastic
beam solution and the first-mode approximation, respec-
tively. The responses are qualitatively as well as quantita-
tively different. The elastic beam solution has many more
high-frequency components at higher amplitudes than the
FMA result. This result is not such a surprise since the
higher modes are neglected by the FMA. The different re-
sponse caused by the interaction damping is also observed in
Fig. 10. Certain higher frequency modes are not damped to
the same extent as other modes.

The mean response from both solutions can also be com-
pared. The above time domain responses were low-pass fil-
tered to give the mean response. This result is shown in Fig.
11. Here it is clear that the FMA has also a different response
than that of the elastic beam solution. The FMA solution is
very symmetric in time, reaching its maximum in phase with
the excitation. The elastic beam solution has a slight time lag

FIG. 8. Spectral response of the two dynamical systems considered here
when the interaction forces are modeled nonlinearly:~a! spectrum of the
motion of the end of the elastic beam,~b! spectrum of the first-mode ap-
proximation. The arrows in~a! indicate the frequencies at which the tempo-
ral response of both systems is examined. The vertical dashed lines are the
natural frequencies of the beam calculated from the linear approximation of
the interaction force curve at the initial contact~see Fig. 7!.

FIG. 9. Surface amplitude,a2(t), used for comparing the two dynamical
systems. The amplitude is ramped from 0 to 1 nm in 20 cycles, held constant
for 20 cycles, and ramped to zero in 20 cycles. The excitation frequency
shown here isV251.6 MHz.
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before reaching its maximum and is not as symmetric as the
FMA solution. Both of these characteristics have been ob-
served in experiments with high-frequency excitations of
atomic-force microscope cantilevers.2,6,10,17,22Similar results

have also been obtained using a different solution
technique.21 The low-frequency response is seen to be influ-
enced by the complex mixing of the higher modes as well as
by the interaction damping.

The resonant frequency ofV252.0 MHz was examined
next. The excitation was ramped linearly in 20 cycles~10
ms!, held at a constant amplitude of 1 nm for 20 cycles, and
linearly ramped back to zero in 20 cycles. Total excitation
time was 30ms. The results are shown in Fig. 12 for the
elastic beam solution and the first-mode approximation. As
expected, the FMA solution is worse than the previous non-
resonant case, although not tremendously so. The high level
of damping prevents the elastic beam resonance from having
an extremely high response. The inset shows the comparison
of the low-pass filtered results of both solutions.

Finally, the antiresonant frequency ofV252.32 MHz
was examined. The excitation was ramped linearly in 30
cycles~13 ms!, held at a constant amplitude of 1 nm for 30
cycles, and linearly ramped back to zero in 30 cycles. Total
excitation time was 39ms. The results are shown in Fig. 13
for the elastic beam solution and the first-mode approxima-
tion. As expected, the FMA does a better job of matching
this response, especially the low-frequency behavior. The
low-pass filtered responses are again shown in the inset. As
seen in Fig. 8, the response at this frequency is expected to

FIG. 10. Time domain response of the two models to the surface excitation
shown in Fig. 9 at the nonresonant frequency ofV251.6 MHz. The system
damping and interaction damping are given byg/rA52bFMA5v1/10 and
s int /rAL5v1 , respectively.

FIG. 11. Time domain signals shown in Fig. 10 after being low-pass fil-
tered. The solution from the first-mode approximation is very symmetric and
rises to a much higher amplitude than the more asymmetric solution of the
elastic beam.

FIG. 12. Time domain response of the two models to the surface excitation
similar to that shown in Fig. 9 at a resonance frequency ofV252.0 MHz.
The damping is the same as in Fig. 10. The inset shows the comparison of
the low-pass filtered results of the two models.
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be much smaller than at other frequencies. This fact helps the
FMA better match the low-frequency response. However, as
before, the two results are quantitatively different.

As expected the FMA performed better at nonresonant
frequencies than at resonant frequencies. The resonances are
generally not known before an experiment is made and they
can be difficult to find experimentally. Therefore, the non-
resonant result shown in Fig. 10 is probably most represen-
tative of the ability of the FMA to model the response of
atomic-force microscope cantilevers which are excited above
the first resonance frequency. The high-frequency response
of the beam was underestimated by the FMA for all frequen-
cies observed. The low-frequency response predicted by the
FMA was qualitatively similar to the low-frequency response
of the elastic beam. However, the two solutions had quanti-
tative differences that may be important when comparison
with experiments is made. Because the FMA is a low-
frequency approximation, its use for modeling excitation fre-
quencies above the first natural frequency must be made with
caution.

V. DISCUSSION

The high-frequency responses of atomic-force micro-
scope cantilevers were examined here in detail and compared
with solutions using a first-mode approximation. Two impor-

tant differences in the linear behavior of these two dynamical
systems were discussed. The drive-point impedance and the
effects of interaction damping are distinctly different in these
two systems. These differences were shown to be important
whenever the excitation frequency is above the natural fre-
quency of the first flexural mode. Therefore, caution must be
exercised when using low-frequency approximations such as
the FMA to model the high-frequency dynamics of these
beams.

A direct numerical simulation of the elastic beam equa-
tion using a finite difference approximation was also pre-
sented. These simulations provided insight into the impor-
tance of the higher-order modes. It was shown that the higher
frequency modes are very important when an accurate view
of the dynamics is needed. It was also shown that the low-
frequency response to a high-frequency excitation required
the inclusion of the higher modes. Although inclusion of
these higher order modes complicates the problem consider-
ably, it is indeed a necessity governed by the complex dy-
namics. Numerical solutions are often the final step in solv-
ing these types of nonlinear problems. Therefore inclusion of
all modes should not be prohibitive. The finite difference
method used here is very efficient and provides the high
level of accuracy needed for comparisons with experimental
results. The deflection of all points along the beam are cal-
culated simultaneously which may also be useful for com-
parison with experimental results. It is anticipated that nu-
merical simulation techniques will allow further progress to
be made in understanding the complex nonlinear interaction
forces that affect the motion of atomic-force microscope can-
tilevers. Differences in expected vibrational response can
easily be calculated for a number of different force-
interaction models, as for instance, those with hysteretic be-
havior, for comparison.

One other note should be also made about the calcula-
tions and nonlinear responses observed. A chaotic type of
motion was observed in various simulations when the exci-
tation amplitude was large. The beam was observed to jump
from contact mode to free vibration mode in a chaotic fash-
ion. The numerical stability of these solutions is still being
examined. Such chaotic responses, which have also been ob-
served experimentally,10,17,23 are highly sensitive to slight
changes in initial conditions and boundary conditions. There-
fore, experimental repeatability, which is important for mea-
surement of material properties or surface properties, is
nearly impossible for this type of motion. Although the cha-
otic behavior is interesting from a nonlinear dynamics point
of view, its use for quantitative measurements is, for this
reason, questioned.
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FIG. 13. Time domain response of the two models to the surface excitation
similar to that shown in Fig. 9 at an antiresonance frequency ofV25
2.32 MHz. The damping is the same as in Fig. 10. The low-pass filtered
responses of the two models are shown in the inset.
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APPENDIX

Solutions of the partial differential equations, Eqs.~1!
and~5!, with nonlinear boundary conditions are not trivial. A
numerical approach is used in many of the examples pre-
sented above. A direct numerical simulation, such as the fi-
nite difference approximation discussed here, has a number
of advantages. An efficient numerical solution allows the
problem to be solved for a large parameter range so that the
vibration dependence can be observed. It is then possible for
new experiments to be suggested in which certain interaction
parameters can be better observed.

The finite difference approximation is a standard nu-
merical technique used to solve differential equations. This
technique is discussed in a number of excellent texts and will
not be discussed in detail here.15,16 The derivatives in the
governing equations are, in essence, approximated by a Tay-
lor series expansion. The beam is divided into a number of
finite segments of sizeDx such thatx5nDx. The motion of
each segment is related to the motion of the neighboring
segments. Time is also discretized such thatt5 jDt. In the
following discussion, the subscripts toy refer to the temporal
step and the superscripts refer to the spatial nodes.

The second order, centered finite difference approxima-
tions for spatial derivatives are given by

y8~x,t !>
yj

~n11!2yj
~n21!

2Dx
,

y9~x,t !>
yj

~n11!22yj
~n!1yj

~n21!

~Dx!2
,

~A1!

y-~x,t !>
yj

~n12!22yj
~n11!12yj

~n21!2yj
~n22!

2~Dx!3
,

y99~x,t !>
yj

~n12!24yj
~n11!16yj

~n!24yj
~n21!1yj

~n22!

~Dx!4
.

The second order, centered finite difference approximations
for the necessary temporal derivatives are

ẏ~x,t !>
yj11

~n! 2yj21
~n!

2Dt
,

~A2!

ÿ~x,t !>
yj11

~n! 22yj
~n!1yj21

~n!

~Dt !2
.

The discretized equation of motion for the elastic beam, Eq.
~1!, is then approximated as

EI

~Dx!4
~yj

~n12!24yj
~n11!16yj

~n!24yj
~n21!1yj

~n22!!

1
g

2Dt
~yj11

~n! 2yj21
~n! !1

rA

~Dt !2
~yj11

~n! 22yj
~n!1yj21

~n! !50.

~A3!

Equation ~A3! can be rearranged to yield a time-stepping
equation

yj11
~n! 5S 1

11CD $2yj
~n!2~12C!yj21

~n!

2D@yj
~n12!24yj

~n11!16yj
~n!24yj

~n21!1yj
~n22!#%,

~A4!

where the constantsD andC are given by

D5
EI

rA

~Dt !2

~Dx!4
, C5

g

rA

Dt

2
. ~A5!

Thus, the motion at the next step in time is determined by the
two previous time steps. Discretized versions of the bound-
ary conditions, Eqs.~3! and ~4!, are given by

yj
~0!5A1 sin~V1 jDt !,

yj
~1!5yj

~21! ,
~A6!

yj
~N11!52yj

~N!2yj
~N21! ,

yj
~N12!52yj

~N11!22yj
~N21!1yj

~N22!

2S 2~Dx!3

EI D FFs@yj
~N! ,a2~ jDt !#

2s intS yj11
~N! 2yj21

~N!

2Dt
2ȧ2~ jDt ! D G .

The above boundary conditions contain three terms that are
not actual locations on the beam,yj

(21) , yj
(N11) , and

yj
(N12) . These ‘‘fictitious’’ nodes are required for the time
stepping equations defining the nodes near the ends of the
beam. We see that Eq.~A3! for nodesn51, n5N21, and
n5N is given by

yj11
~1! 5S 1

11CD $2yj
~1!2~12C!yj21

~1!

2D@yj
~3!24yj

~2!16yj
~1!24yj

~0!1yj
~21!#%,

yj11
~N21!5S 1

11CD $2yj
~N21!2~12C!yj21

~N21!2D@yj
~N11!

24yj
~N!16yj

~N21!24yj
~N22!1yj

~N23!#%, ~A7!
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yj11
~N! 5S 1

11CD $2yj
~N!2~12C!yj21

~N! 2D@yj
~N12!

24yj
~N11!16yj

~N!24yj
~N21!1yj

~N22!#%.

The boundary conditions given in Eqs.~A6! allow the above
equations to be written in terms of the ‘‘real’’ nodes as

yj11
~1! 5S 1

11CD $2yj
~1!2~12C!yj21

~1! 2D@yj
~3!24yj

~2!

17yj
~1!24A1 sin~ jDtV1!#%,

yj11
~N21!5S 1

11CD $2yj
~N21!2~12C!yj21

~N21!2D@22yj
~N!

15yj
~N21!24yj

~N22!1yj
~N23!#%, ~A8!

yj11
~N! 5S 1

11C1
s intDt

rDx
D X2yj~N!2~12C!yj21

~N!

2DH 2yj~N!24yj
~N21!12yj

~N22!2
2~Dx!3

EI

3FFs@yj
~N! ,a2~ jDt !#1s intS yj21

~N!

2Dt

1ȧ2~ jDt ! D G J C.
Similar equations can also be written for the other nodes.

An equation for the motion of then50 node is not required
since its motion is given directly by the boundary condition
in Eqs.~A6!.

The initial conditions, given by Eq.~2!, are now written

y0
~n!5y21

~n!52
F0

6EI
~nDx!2~nDx23L !. ~A9!

A new vector can then be defined that contains all of the
node locations at a particular time stepj . This vector, of
lengthN, is given by

~A10!

The finite difference progression is then written in terms of
this vector by

YI j115S 1

11C1dnN
s intDt

rADx
D

3@2YI j2~12C!YI j212DM= YI j2DGI #, ~A11!

where the symboldnN implies that this term is included only
whenn5N. TheN3N matrix =M and forcing vectorGI of
lengthN are given by

M= 53
7 24 1 0 . . . .

24 6 24 1 0 . . .

1 24 6 24 1 0 . .

0 . . . . . 0 .

. 0 1 24 6 24 1 0

. . 0 1 24 6 24 1

. . . 0 1 24 5 22

. . . . 0 2 24 2

4 ,
~A12!

978 J. Appl. Phys., Vol. 82, No. 3, 1 August 1997 Turner et al.

Downloaded¬29¬Aug¬2007¬to¬129.93.17.223.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://jap.aip.org/jap/copyright.jsp



The width of the beam segments,Dx, must be chosen
small enough such that the segment length is several times
smaller than the wavelength of the highest mode to be de-
scribed. This aspect is discussed in more detail in the text of
the article. The stability criterion for the numerical progres-
sion requires thatD,1.15,16This implies a limitation on the
time step thatDt,(Dx)2AEI/rA.

A similar finite difference approximation can also be
made for the first-mode approximation given by Eq.~5!. Us-
ing the above approximations, the time-stepping equation for
the FMA is

dj115S 1

11bFMADt1
s intDt

2mFMA

D H F22
kFMA
mFMA

~Dt !2Gdj
2@12bFMADt#dj211

~Dt !2

mFMA
FFs@dj ,a2~ jDt !#

1s intS dj21

2Dt
1ȧ2~ jDt ! D G J . ~A13!

These finite difference solutions to the governing equa-
tions of motion were used for the numerical solutions pre-
sented above.
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